X射线脉冲星信号模拟源及探测器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着卫星导航技术的发展和对自主导航日益迫切的要求,近几年各航天大国都在X射线脉冲星导航研究领域开展了大量研究工作,该方法的可行性已经得到了国际导航届的认可。本文在调研、分析国内外研究进展的基础上,重点研究了脉冲星导航地面模拟系统的方案及关键技术。
     在进行X射线脉冲星导航空间搭载试验和未来脉冲星导航系统应用之前,为了研究X射线脉冲星导航的相关关键技术,必须在地面搭建实验系统,将空间试验所要进行的X射线光子的探测、光子到达时间的确定、脉冲轮廓的累积、定位精度的计算以及轨道控制等在地面均进行相关研究和实验。依据导航基本原理提出了地面模拟系统的总体构架以及各部分的主要研究内容,设计了单模拟器(依次模拟多脉冲星源)单探测器和多模拟器(分别模拟不同的脉冲星源)多探测器两种地面模拟方案。全文围绕地面模拟系统中X射线脉冲星信号模拟源和X射线探测器两大关键技术进行研究,搭建了单模拟器单探测器的实验系统并对系统性能的影响因素进行了测试分析。
     针对X射线脉冲星信号模拟源的设计要求,通过分析比较X射线的产生、调制机理和各种方法的优缺点,提出了栅控X射线管调制的方案。详细描述了栅控X射线管的基本结构和产生调制脉冲X射线的工作机理,对栅控X射线管的结构进行设计,计算了栅极电压对电子的控制能力和到达阳极的电子数,研制了栅极控制的X射线管,实验测试了不同阳极电压情况下的出射X射线剂量率、阳极电流和计数率随栅极电压的变化曲线,验证了设计计算的正确性,并以此作为脉冲星信号模拟源信号加载的依据。采用直接数字频率合成的方法研制了任意信号脉冲发生装置,对研制的电子学信号发生器进行测试,结果表明该装置可以根据给定的数据产生任意脉冲轮廓。
     分析了未来空间应用时对大面积X射线探测器的需求,设计了拼接微通道板MCP(Micro-Channel Plate)探测器的初步方案,提出了共享阳极的方法以减少阵列探测器读出电子学通道数。研制了封装MCP探测器以进行地面模拟实验,测试了该探测器阳极输出原始信号脉冲FWHM约600ps,具有很好的时间响应特性。
     基于所研制的X射线脉冲星信号模拟源和封装MCP探测器,搭建了单模拟源单探测器的地面模拟实验系统,成功实现了X射线脉冲星信号的模拟。测试并分析了探测器读出电子学阈值电压、入射X射线功率、不同的模拟源栅极信号加载方式、栅控X射线管阳极电压、栅极电压等对模拟系统和采集脉冲轮廓的影响。探测器读出电子学应调整合适的阈值电压,以剔除探测器暗计数和电子学噪声并尽量不影响探测器对有效信号的计数,在本系统中阈值电压为-150mV时脉冲轮廓信噪比较高。X射线强度对累积脉冲轮廓信噪比影响较大,X射线强度与X射线管灯丝电流、栅极控制信号的电压范围和阳极电压相关,灯丝电流越大,出射X射线功率越大,采集到的光子数越多,轮廓越光滑;栅极电压跨度取2V较为合适,栅极电压跨度越大出射X射线强度差越明显,因而脉冲轮廓特征越明显;随着阳极电压的提高,累积的光子数量增多,轮廓越来越光滑。当采用数字信号加载时,频率过低会导致累积脉冲轮廓展宽,分辨精度不够且细节表现差。当数字信号频率高于1MHz时累积脉冲轮廓真实度较好,模拟源产生的信号能够逼真反应实际脉冲星的辐射脉冲轮廓特征。
With the development of satellite navigation technology and the increasinglyurgent requirements for autonomous navigation in recent years, the major spacepowers carried out extensive research in the field of X-ray pulsar based navigation.The feasibility of this new navigation method has been recognized by the internationalnavigation experts. On the basis of investigation and analysis of the international anddomestic research progress, scheme and key technologies of the pulsar navigationground simulation system is mainly studied in this thesis.
     Prior to the space flight test and the application of the X-ray pulsar navigation, aground simulation system needs to be set up in order to study the key technologies ofthe pulsar navigation. All the flight test experiments need to be tested and studied withground simulation system, including the X-ray photon detection, photon arrival timemeasurement, the pulse profile construction and the positioning accuracydetermination. Based on the principle of pulsar navigation, the overall framework ofthe ground simulation system is proposed in the thesis, and the major researchcontents of each part are introduced. Two different simulation schemes are provided,single emulator with single detector and multi-emulator with multi-detector. Keytechnologies of the X-ray pulsar emulator and X-ray detector are studied in detail, andsingle emulator with single detector ground simulation system is built in laboratory toanalyze the system performance.
     By comparing the advantages and disadvantages of various X-ray generation andmodulation mechanism and methods, a novel grid controlled X-ray tube modulationmethod is proposed according to the requirements of the X-ray pulsar emulator. Thetube structure and modulation mechanism of the grid controlled X-ray tube isillustrated in detail, and the electrode structure and voltage applied on the electrodesare designed and optimized. Quantity of the electrons at the anode, the electron flight trajectory and the grid cut-off voltage of two types of grid are calculated underdifferent anode voltage. The two grid type tubes are designed and fabricated; testresults of X-ray intensity, anode current and the detector count rate coincide with thecalculation results. The relationship of the X-ray intensity and the grid voltage is thepulsar emulation basis. Arbitrary waveform generator is designed and developed withdirect digital Synthesis method.
     According to pulsar radiation property and navigation space applicationrequirements, large area detector is needed in the future. A Micro-Channel Plate(MCP)tiling detector is suggested, and in order to simplify the electric readout circuit a novelsharing anode method is proposed. Since the large area detector is not suitable for theground simulation because of its size and cost, a compact vacuum sealed MCPdetector for the ground simulation system is developed. The anode output FWHM ofthe sealed detector is600ps.
     With the developed pulsar emulator and the sealed MCP detector, the singleemulator with single detector pulsar navigation ground simulation system is set up inlaboratory. Different X-ray pulsar pulses are generated and tested, the pulse profilesare reconstructed. The influence of the detector electronics threshold voltage, incidentX-ray intensity, the tube grid signal modulation type, grid voltage and anode voltageare analyzed. In this system all these parameters should be set properly in order to geta high quality pulse profile.
引文
[1]李黎.基于X射线脉冲星的航天器自主导航方法研究[D].长沙:国防科学技术大学,2006.
    [2]孙守明.基于X射线脉冲星的航天器自主导航方法研究[D].长沙:国防科学技术大学,2011.
    [3]袁建平,罗建军,岳晓奎,等.卫星导航原理与应用[M].北京:中国宇航出版社,2003.
    [4]许其凤. GPS卫星导航与精密定位[M].北京:解放军出版社,1989.
    [5] Codik A. Autonomous navigation of GPS satellites: A challenge for the future[J]. Journal ofThe Institute of Navigation,1985:221-224.
    [6] Paul D. Groves. Principles of GNSS, Inertial and Multisensor Integrated NavigationSystems[M]. London, UK: Artech House INC.,2008.
    [7]陈刘成.卫星导航及相关技术研究和实现[D].郑州:中国人民解放军信息工程大学,2002.
    [8] Elliott D. Kaplan, Christopher Hegarty Understanding GPS: Principles and Applications(Second Edition)[M]. London, UK: Artech House, INC.,2006.
    [9] Klimov V., Persev V., Revnivykh S., et al. GLONASS Status, Performance andPerspectives[C]. Proceedings of the18th International Technical Meeting of the SatelliteDivision of The Institute of Navigation (ION GNSS2005), Long Beach, CA, Sep2005.
    [10] Bradford W. Parkinson, James J. Spilker. Global Positioning System: Theory andApplications[M]. Reston, USA: Amer Inst of Aeronautics,1996.
    [11] Bauer F.H, Hartman K., Lightsey E. G. Space borne GPS current status and future visions[C].IEEE Aerospace Conference,1998(3):195-208
    [12]北斗导航系统概述. http://www.beidou.gov.cn/xtjs.html
    [13]帅平,曲广吉.导航星座自主导航的时间同步技术[J].宇航学报,2005,26(6):768-772.
    [14]帅平,曲广吉,陈忠贵.导航星座自主导航技术研究[J].中国工程科学,2006,8(3):22-30.
    [15]郑晋军,林益明,陈忠贵,等. GPS星间链路技术及自主导航算法分析[J].航天器工程,2009,18(2):28-35.
    [16] Menn, Michael. Autonomous Navigation for GPS via Crosslink Ranging [C]. Proceedings ofthe IEEE Position,Location,and Navigation Symposium,Las Vegas, NV, Nov.4-7,1986:143-146.
    [17]杨宁虎,陈力.卫星导航系统星间链路分析[J].全球定位系统,2007,12(3):18-21.
    [18] Maine K P,Anderson P.Langer J. Crosslinks for the Next-generation GPS[C]. Proceedings of2003IEEE Aerospace Conference,2003:1589-1596
    [19]孙娟.导航星座星间链路设计研究[D].南京:南京航空航天大学,2011.
    [20]帅平,李明,陈绍龙,等. X射线脉冲星导航系统原理与方法[M].北京:中国宇航出版社,2009.
    [21] Sheikh S I. The use of variable celestial X-ray sources for spacecraft navigation[D]. Maryland:University of Maryland,2005.
    [22]郑伟,孙守明,汤国建.基于X射线脉冲星的深空探测自主导航方法[J].中国空间科学技术,2008,28(5):1-6.
    [23]帅平,陈绍龙,吴一帆,等. X射线脉冲星导航技术及应用前景分析[J].中国航天,10,2006:27-32.
    [24]帅平,李明,陈绍龙,等.基于X射线脉冲星的导航卫星自主导航[J].中国空间科学技术,2008,2:1-7.
    [25] Sheikh S I. Spacecraft navigation using X-ray pulsars[J]. Journal of guidance, control, anddynamics,2006,29(1):49~63.
    [26] Paul G., John C., Sheikh S I, et al. XNAV beyond the moon[C]. Proceedings of the63rdAnnual Meeting of the Institute of Navigation,2007:423-431.
    [27] Sheikh S I., Ray P S., Kathryn W. et al. Relative navigation of spacecraft utilizing bright,aperiodic celestial sources[C]. Proceedings of the63rd annual meeting of the Institute ofNavigation,2007:444-453.
    [28]杨廷高,南仁东,金乘进,等.脉冲星自主导航概述[C].2005年全国时间频率学术交流会,2005.
    [29]熊凯,魏春岭,刘良栋.基于脉冲星的空间飞行器自主导航技术研究[J].航天控制,2007,25(4):36-40.
    [30] Hewish A., Bell J., Pilkington D. H., et al. Observation of a rapidly pulsar radio source[J].Nature,1968,217:709-713.
    [31] Chester T J. Navigation using X-ray pulsars[M].NASA Technical Reports N81-27129,1981:22-25.
    [32] Wood K S. Using the Unconventional Stellar Aspect(USA)Experiment on ARGOS toDetermine Atmospheric Parameters by X-ray Occultation[C]. Proceedings of InternationalSociety of Optical Engineering(SPIE), Nashville, Tennessee,2002:258-265.
    [33] Dave Beckett. Overview of the XNAV Program X-ray Navigation Using Celestial Sources[C].20th Annual AIAA/USU Conference on Small Satellites,2006:47.
    [34] John E Hanson. Principles of X-ray Navigation[D]. Stanford, USA: Stanford University.1996.
    [35] Suneel I. Sheikh, John E. Hanson, John Collins,et al. Deep Space Navigation AugmentationUsing Variable Celestial X-ray Sources[C]. Institute of Navigation2009InternationalTechnical Meeting, Anaheim, CA, Jan2009:34-48.
    [36] Darry J. Pines. X-ray Navigation for Autonomous Position Determination[C]. NationalAcademies Panel on Robotics, Communication and Navigation. Mar29,2011.
    [37] Gary V Stephenson. X-ray Pulsar Navigation for Missions to Mars[C]. The14th AnnualInternational Mars Society Convention, Dallas, TX, August2010.
    [38] NASA Space Technology Roadmap.http://www.nasa.gov/pdf/501627main_STR-Int-Foldout_rev11-NRCupdated.pdf
    [39] TA05Navigation and Communication.http://www.nasa.gov/pdf/501623main_TA05-ID_rev6_NRC_wTASR.pdf
    [40] Keith C. Gendreau, Zaven Arzoumanian, Takashi Okajima. The Neutron star InteriorComposition ExploreR (NICER): an Explorer mission of opportunity for soft x-ray timingspectroscopy[C]. Proc. SPIE8443, Space Telescopes and Instrumentation2012: Ultravioletto Gamma Ray,844313,2012.
    [41] Paul S. Ray, S I. Sheikh, Paul H Graven. et al. Deep Space Navigation Using Celestial X-raySources[C]. ION NTM2008, San Diego, CA, Jan2008.
    [42]毛悦. X射线脉冲星导航算法研究[D].郑州:解放军信息工程大学.2009.
    [43]王奕迪.深空探测中的X射线脉冲星导航方法研究[D].长沙:国防科技大学.2011.
    [44]杨廷高,高玉平.脉冲星时间尺度及其TOA预报初步分析[J].时间频率学报,2012,35(1):16-23.
    [45]倪广仁,柯熙政,杨廷高,等.毫秒脉冲星计时观[J].云南天文台台刊,2003,3:47-55.
    [46]苏哲. X射线脉冲星导航信号处理方法和仿真实验系统研究[D].西安:西安电子科技大学.2011.
    [47]谢振华,许录平,倪广仁.基于双谱的脉冲星累积脉冲轮廓时间延迟测量[J].物理学报,57(10),2008:6683-6688.
    [48]费保俊,潘高田,姚国政,等. X射线脉冲星导航中脉冲轮廓的频偏和时延算法[J].测绘学报,2011,40:126-132.
    [49]费保俊,姚国政,杜键,等. X射线脉冲星自主导航的脉冲轮廓和联合观测方程[J].中国科学:物理学、力学、天文学,2010,40(5):644-650.
    [50]李建勋,柯熙政,赵宝升.一种脉冲星周期的时域估计新方法[J].物理学报,2012,61(6):069701.
    [51]李建勋.基于X射线脉冲星的定时与自主定位理论研究[D].西安:西安理工大学.2009.
    [52]徐钧,韩金林,王陈.脉冲星脉冲宽度的测量方法[J].天文学报,2011,52(3):180-189.
    [53]阿里木.克力木,艾力.伊沙木丁,阿布都加怕尔.如苏力,等.大型射电望远镜脉冲星观测能力的模拟研究[J].新疆大学学报,2012,29(2):203-210.
    [54]胡慧君,赵宝升,盛立志,等.用于脉冲星导航的X射线光子计数探测器研究[J].物理学报,2012,61(1):019701.
    [55]胡慧君.用于脉冲星导航的X射线光子计数探测器及其关键技术研究[D].西安:中科院西安光机所.2011.
    [56]盛立志,赵宝升,胡慧君,等.用于脉冲星导航的X射线探测器性能研究[C].第二届中国卫星导航学术年会电子文集,2011.
    [57] Lizhi Sheng, Baosheng Zhao, Huijun Hu, et al. Temporal Resolution of X-ray Detector for
    Pulsar Navigation[C]. Proc. SPIE8196, International Symposium on Photoelectronic
    Detection and Imaging2011: Space Exploration Technologies and Applications,2011:
    81961C.
    [1] Sheikh S I. The use of variable celestial X-ray sources for spacecraft navigation [D]. Maryland:University of Maryland,2005.
    [2] Ray P S., Wood K S., Phlips B F. Spacecraft Navigation Using X-ray Pulsars. NRL REVIEW,2006:95-102.
    [3]方军,戴本忠.毫秒脉冲星的高能辐射[J].云南大学学报,2005,27(6):480-484.
    [4]张承民,吴鑫基,贺龙松.脉冲星的辐射机制[J].河北工学院学报,1994,23(4):77-81.
    [5] Verbunt F., Van den Heuvel.Formation and Evolution of Neutron Stars and Black Holes inBinaries[J]. X-ray Binaries,1995:457-494.
    [6] Andrew G. Lyne, Francis Graham Smith.Pulsar Astronomy[M]. Cambridge, UK: CambridgeUniversity Press3rdEdition,2006.
    [7] Charles P. A., Seward F. D. Exploring the X-ray Universe[M]. Cambridge, UK: CambridgeUniversity Press,1995.
    [8] Thompson D. J. Pulse Period of Several Well Known Pulsars.http://heasarc.gsfc.nasa.gov/docs/objects/pulsars/pulsars_lc.html
    [9] Giacconi R., Gursky H., Paolini F. R., et al. Evidence for X-rays From Sources Outside theSolar System[J]. Physical Review Letters,1962,9(11):439-443.
    [10] Culhane J. L., Sanford P. W. X-ray Astronomy[J]. Charles Scribner's Sons. New York,1981:192.
    [11] Wood K. S., Meekins J. F., Yentis D. J., et al. The HEAO A-1X-ray source catalog[J].Astrophysical Journal Supplement Series,1984,56:507-649.
    [12] Voges W., Aschenbach B., Boller T., et al. Rosat All-Sky Survey Faint Source Catalogue[J].International Astronomical Union Circular,2000,7432:3.
    [13]孙守明.基于X射线脉冲星的航天器自主导航方法研究[D].长沙:国防科学技术大学,2011.
    [14]帅平,李明,陈绍龙,等. X射线脉冲星导航系统原理与方法[M].北京,中国宇航出版社,2009.
    [15]胡慧君.用于脉冲星导航的X射线光子计数探测器及其关键技术研究[D].西安:中科院西安光机所.2011.
    [16]毛悦,陈建鹏,戴伟,等.星载原子钟稳定性影响分析[J].武汉大学学报(信息科学版),2011,36(10):1182-1186.
    [17]杨廷高. X射线脉冲星脉冲到达航天器时间测量[J].空间科学学报,2008,28(4):330-334.
    [18] Sheikh S I, Pines D J, Ray P S, et al. Spacecraft Navigation Using X-ray Pulsars[J]. GuideControl Dynamics,2006,29(1):49-63.
    [19] Moyer T D. Transformation from Proper Time to Earth to Coordinate Time in Solar SystemBarycentric Space-Time Frame of Reference-Part one[J]. Celestial Mechanics,1981,23:33-56.
    [20] Haugan M P. Post-newtonian Arrival-time Analysis for a Pulsar in a Binary System[J]. TheAstrophysical Journal.,1985,296:1-12.
    [21]毛悦. X射线脉冲星导航算法研究[D].郑州:解放军信息工程大学.2009.
    [22]谢振华,许录平,倪广仁.基于最大似然的X射线脉冲星空间定位研究[J].宇航学报,2007,28(6):1605-1608.
    [23] Paul G., John C., Sheikh S I, et al. XNAV beyond the moon[C]. Proceedings of the63rdAnnual Meeting of the Institute of Navigation,2007:423-431.
    [24]蔡炎,阿里塔尼,赵永恒,等.脉冲星参数统计和演化[J].天文学报,2011,52(6):449-458.
    [25]王娜,刘志勇.脉冲星参数特性研究报告.中科院新疆天文台,2012.6(内部).
    [1] X-Ray Interactions With Matterhttp://henke.lbl.gov/optical_constants/
    [2] Graven P H., Collins J.T., Sheikh S I., et al. Spacecraft navigation using x-ray pulsars[C].7thInternational ESA conference on guidance, navigation&control systems, Tralee,Countykerry, Ireland. June2008.
    [3] EPN Pulsar Data Archive.http://www.jb.man.ac.Uk/research/pulsar/resources/epn/browser.Html
    [4] MiniX X-ray Tube Datasheet. http://www.amptek.com/minix.html
    [5]赵宗彦. X射线与物质结构[M].安徽:安徽大学出版社.2004.
    [6]祈景玉. X射线结构分析[M].上海:同济大学出版社.2003.
    [7]严增灈.高电流密度氧化物阴极进展[J].光电技术,2005,46(2):19-24.
    [8]向世明,倪国强.光电子成像器件原理[M].北京:国防工业出版社.1999
    [9] Keith Gendreau. Next-Generation Communications.http://gsfctechnology.gsfc.nasa.gov/TechSheets/XRAY_Goddard_Final.pdf
    [10] S. Kita, Y. Watanabe, A. Ogawa, et al. Field-emission-type x-ray source usingcarbon-nanofiber[J]. Journal of Applied Physics,2008,103:064505.
    [11] Z. J. Liu, G. Yang, Y. Z. Lee, et al. Carbon nanotube based microfocus field emission x-raysource for microcomputed tomography[J]. Applied Physics Letters,2006,89:103111.
    [12] G. Cao, Y. Z. Lee, R. Peng, et al. A Dynamic Micro-CT Scanner Based on a Carbon NanotubeField Emission X-ray source[J]. Physics in Medicine and Biology,2009,54:2323-2340.
    [13]胡慧君.用于脉冲星导航的X射线光子计数探测器及其关键技术研究[D].西安:中科院西安光机所.2011.
    [14]胡慧君,赵宝升,盛立志,等.基于X射线脉冲星导航的地面模拟系统研究[J].物理学报,2011,60(2):029701.
    [15] Baomei Chen, Baosheng Zhao, Huijun Hu, et al. X-ray photon-counting detector based on amicro-channel plate for pulsar navigation[J]. Chinese Optics Letters,2011,9(6):060401.
    [16]盛立志,赵宝升,吴建军,等. X射线脉冲星导航系统模拟光源的研究[J].物理学报,2013,62(12).
    [17] Lizhi Sheng, Baosheng Zhao, Feng Zhou, et al. An X-ray simulation Source for PulsarNavigation Experiments[C].30th International Congress on High-Speed Imaging&Photonics, Pretoria, South Africa, Sep2012.
    [18] Langmuir I. The effect of space charge and residual gases on thermionic currents of highvacuum[J]. Phys. Rev.,1913,2(6):450.
    [19] Langmuir I. The effect of space charge and initial velocities on the potential distribution andthermionic current between parallel plane electrodes[J]. Phys. Rev.,1923,21(4):419.
    [20] AXUV100G Datasheet. http://www.optodiode.com/pdf/AXUV100G.pdf.
    [21]盛立志,赵宝升,周峰,等.一种任意波形X射线发生装置及产生方法[P].中国发明专利:201210087972.X.
    [22]邱实,张军海.从CPT原子钟到光钟[J].中科院上海天文台年刊,2007,28:166-170.
    [1] Sheikh S I. The use of variable celestial X-ray sources for spacecraft navigation [D]. Maryland,USA: University of Maryland,2005.
    [2] Sheikh S I, Pines D J, Ray P S, et al. Spacecraft Navigation Using X-ray Pulsars[J]. GuideControl Dynamics,2006,29(1):49-63.
    [3]胡慧君.用于脉冲星导航的X射线光子计数探测器及其关键技术研究[D].西安:中科院西安光机所.2011.
    [4] Karen Byrum. Development of large area fast microchannel plate photo-detectors[C], Proc.SPIE8033, Advanced Photon Counting Techniques V,2011:80330U.
    [5] Timothy Credo, Henry Frisch, Harold S, et al. The Development of Large-area, PicosecondResolution, Time-of-Flight Detectors.http://hep.uchicago.edu/~frisch/adr.pdf
    [6] Ertley C., Anderson J., Byrum K., et al. Development of Picosecond-Resolution Large-AreaTime-of-Flight Systems[J]. IEEE Transactions on Nuclear Science,2009,56(3):1042-1045.
    [7] J. Boger, R. L. Hahn, J. K. Rowley, et al. The Sudbury Neutrino Observatory[J]. NuclearInstruments&Methods in Physics Research A,2000,449:172-207.
    [8]盛立志,赵宝升,刘永安,等.一种基于微通道板拼接的大面积X射线脉冲探测装置[P].中国发明专利:201110449030.7.
    [9]刘永安,盛立志,赵宝升,等.一种X射线探测器[P].中国实用新型专利:ZL201120410981.9.
    [10] Yong’an Liu, Baosheng Zhao, Lizhi Sheng, et al. An X-ray detector with ultra-fast timeresponse and high sensitivity[C].30th International Congress on High-Speed Imaging&Photonics, Pretoria, South Africa, Sep2012.
    [1] Lizhi Sheng, Baosheng Zhao, Feng Zhou, et al. An X-ray simulation Source for PulsarNavigation Experiments[C].30th International Congress on High-Speed Imaging&Photonics, Pretoria, South Africa, Sep2012.
    [2]盛立志,赵宝升,周峰,等. X射线脉冲星导航探测器性能研究[J].光子学报(已投出)
    [3]胡慧君.用于脉冲星导航的X射线光子计数探测器及其关键技术研究[D].西安:中科院西安光机所.2011.
    [4] EPN Pulsar Data Archive.http://www.jb.man.ac.UK/research/pulsar/resources/epn/browser.Html
    [5]王朋. X射线空间通信系统的研究[D].西安:中科院西安光机所.2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700