督脉电针与神经营养素-3和维甲酸预诱导的MSCs移植联合治疗EB诱导的大鼠脊髓脱髓鞘损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在研究督脉电针联合神经营养素-3(Neurotrophin3, NT-3)+维甲酸(Retinoid acid, RA)预诱导的MSCs(Bone marrow mesenchymal stem cells, MSCs)移植治疗溴化乙锭(Ethidium bromide, EB)诱导的大鼠脊髓脱髓鞘损伤,通过督脉电针提高病灶的NT-3浓度,促使经预诱导表达酪氨酸激酶受体C (tyrosine kinasereceptor C, TrkC)基因的MSCs移植后能更多地分化为少突胶质前体样细胞和少突胶质样细胞,参与髓鞘结构的重建,改善脊髓的神经传导功能。从而为MSCs移植治疗MS的神经替代机制提供实验依据,为临床应用提供治疗策略。为求证上述研究设想,现将实验内容分以下2个部分。
     1体外NT-3联合维甲酸预诱导MSCs表达TrkC的研究
     目的:用NT-3+RA预诱导MSCs,增加TrkC mRNA的转录,并翻译为TrkC蛋白。
     方法:贴壁法培养及纯化MSCs。分为对照组、NT-3组、RA组和NT-3+RA组对MSCs诱导分化。在预诱导1d、3d后提取RNA,反转录为cDNA后进荧光定量PCR反应检测TrkC mRNA的转录。用琼脂糖凝胶水平电泳检测MSCs TrkCmRNA Real-time PCR后的产物,原位杂交技术检测预诱导1d的TrkC mRNA在MSCs内的表达。免疫荧光细胞化学染色技术和Western blot检测预诱导1d、3d、7d TrkC蛋白在MSCs的表达。
     结果:NT-3+RA共同诱导后1d后就可以观察到TrkC mRNA相对表达量(3.54±0.87)明显升高,高于同一时间点内的对照组(1.20±0.39),RA组(2.07±0.45)及NT-3组(1.24±0.13),P<0.05;而且也高于3d后的RA组(2.15±0.81)、NT-3组(1.75±0.57)及NT-3+RA组(2.43±0.43),P<0.05。琼脂糖凝胶水平电泳可见229bp的TrkC mRNA cDNAReal-time PCR扩增产物存在。原位杂交技术进行检测,发现对照组、RA组、NT-3组及NT-3+RA组MSCs均检测到TrkC mRNA转录。然而免疫荧光细胞化学染色技术和Western blot检测未能发现TrkC蛋白在MSCs表达。
     结论:NT-3+RA预诱导24h后可以明显增加MSCs TrkC mRNA转录,然而未能发现TrkC蛋白在MSCs表达。2`督脉电针与NT-3和RA预诱导的MSCs移植联合治疗EB诱导的大鼠脊髓脱髓鞘损伤模型目`的:利用预诱导1d的MSCs移植到EB诱导的大鼠脊髓脱髓鞘损伤模型,并联合督脉电针治疗,提高病灶处的NT-3水平,促使移植的MSCs更多地分化为少突胶质前体样细胞和少突胶质样细胞,参与髓鞘结构的重建,改善脊髓的神经传导功能。方`法:贴壁法培养及纯化带绿色荧光蛋白MSCs,NT-3+RA预诱导1d。应用SD成年雌鼠,注射EB制备脱髓鞘模型。分为7组:Sham组、1天EB组和EA组,4天EB组和EA组,14天EB组和EA组,用ELISA试剂盒检测脱髓鞘脊髓组织的内源性NT-3水平。另取动物造模后随机分为6组:EB组、EA组、MSCs组、NR-MSCs组、NR-MSCs+EA组和NR-MSCs+NP组。造模电针3d后,在脊髓脱髓鞘部位移植预诱导的MSCs。其中EA组、NR-MSCs+EA组和NR-MSCs+NP组在细胞移植后第2d开始进行电针治疗,隔天1次,持续29d。并且从移植后1d开始,每隔1d进行平衡木评分。29d后进行运动诱发电位的检查,然后分别灌注取出脊髓组织固定进行冰冻切片,进行免疫组化分析,观察TrkC、髓鞘碱性蛋白(BMP)的表达,计算MSCs存活数,硫酸软骨素蛋白多糖(NG2)和成熟少突胶质细胞标志物(APC)的阳性分化率。及固定后进行半薄切片髓鞘计数、透射电镜观察及超薄切片免疫电镜观察MSCs的分化。
     结果:督脉电针治疗14d后,EA组的NT-3浓度明显高于EB组。MSCs组、NR-MSCs组、NR-MSCs+EA组和NR-MSCs+NP组的MSCs细胞存活数差异无统计学意义。MSCs移植到体内后能表达TrkC蛋白。NR-MSCs+EA组的NG2阳性率和APC阳性率明显升高,差异有统计学意义。在NR-MSCs+EA组和NR-MSCs+NP组可见GFP阳性细胞与MBP阳性标记和Hoechest33342标记的细胞核重合,在前者,还可以观察到MBP+GFP+Hoechest33342阳性标记的细胞包绕宿主的NF神经纤维。GFP免疫电镜法观察可见NR-MSCs+EA组脊髓脱髓鞘区内MSCs分化为少突胶质样细胞并形成髓鞘包绕轴突。髓鞘计数情况,NR-MSCs+EA组溃变髓鞘明显减少,新生髓鞘和正常髓鞘明显增多,差异有统计学意义。皮质运动诱发电位,NR-MSCs+EA组潜伏服期明显缩短,峰峰值明显增加,差异有统计学意义。6组动物平衡木评分没有差异。
     结论:督脉电针治疗14d能明显提高EB脱髓鞘大鼠模型脊髓内的NT-3浓度。督脉电针与NT-3+RA预诱导的MSCs移植联合治疗EB脱髓鞘大鼠模型对MSCs存活没有明显影响,但能明显促进MSCs更多的向少突胶质前体样细胞及少突胶质样细胞分化,并形成髓鞘包绕轴突。联合治疗还能减少髓鞘溃变,促进更多的新生髓鞘形成,保留更多的正常髓鞘,改善脊髓神经传导功能,但对EB脱髓鞘大鼠的运动功能疗效不明显。
The principal aim of this research is to explored whether Government vesselelectro-acupuncture(EA) combined with neurotrophin-3(NT-3)+retinoic acid(RA)pre-induced bone marrow mesenchymal stem cells (MSCs) transplantation treatmentcould promote differentiation of MSCs into oligodendrocyte precursor-like cells andoligodendrocyte-like cells in demyelinated spinal cord injury induced by ethidiumbromide(EB) through up-regulating the expression of TrkC in MSCs and increasingthe concentration of NT-3in injury area, and then to participate in the myelin structurereconstruction, improve the nerve conduction of spine cord. It will provide theexperimental evidence for the mechanism of neuronal cell replacement of MSCs andtherapeutic strategie for the clinical application.
     In order to validate the suppositions, the whole research was divided into two partsas follows:
     Part1: The study of TrkC expression in MSCs pre-induced withNT-3and RA in vitro
     Objective: To up-regulate the transcription of TrkC mRNA and translation of TrkCprotein in MSCs by pre-induced with NT-3+RA.
     Methods: MSCs were isolated, cultured and purified in vitro by adherent culture. Theexperiment groups are designed as control group, NT-3group, RA group andNT-3+RA group. Total mRNA in MSCs was extracted by Trizol, and reversetranscribed to cDNA at1day and3day after induced. The expression of TrkC mRNAwas detected by real-time PCR. The cDNA productions of the real-time PCR wereverified by agarose gel horizontal electrophoresis. The TrkC mRNA in MSCs after1dinduced was detected by in situ hybridization. The expression of TrkC protein inMSCs was validated by immunofluorescence staining and Western blot after1d,3dand7d induced.
     Results: The relative expression of TrkC mRNA in NT-3+RA group(3.54±0.87) washigher than control group(1.20±0.39), RA group (2.07±0.45) and NT-3group(1.24±0.13) after1day induced(P<0.05). The cDNA productions of TrkC mRNAReal-time PCR were found by agarose gel horizontal electrophoresis. TrkC mRNAcould be found in the MSCs by in situ hybridization. The expression of TrkC proteinin MSCs was not detected by immunofluorescence staining and Western blot.
     Conclusions: The transcription of TrkC mRNA in MSCs was increased obviouslyafter1day pre-induced with NT-3+RA. However, the TrkC protein was not detected.
     Part2: Governor Vessel electro-acupuncture combined withneurotrophin-3and retinoic acid pre-induced MSCstransplantation treatment the rat demyelinated spinal cordinjury induced by EB
     Objective: To study whether MSCs transplantation, pre-induced with NT-3+RA1day, combined with Governor Vessel electro-acupuncture treatment, whichup-regulated the expression of NT-3in injury area of the rat demyelinated spinal cordinjury induced by EB, could promote the differentiation of MSCs intooligodendrocyte precursor-like cells and oligodendrocyte-like cells to participate inthe myelin structure reconstruction and improve the nerve conduction of spine cordand locomotion.
     Methods: GFP-MSCs were isolated, cultured and purified in vitro by adherent culture,and then pre-induced with NT-3+RA for1day. Demyelinated model of SD femaleadult rats were induced by EB injection and part of them were divided into7groups:sham group, one-day EB group and EA group, four-day EB group and EA group,14-day EB group and EA group. The concentration of NT-3was detected by ELISAmethod. The other model animals were divided into6groups at random: EB group,EA group, MSCs group, NR-MSCs group, NR-MSCs+EA group and NR-MSCs+NP group. The pre-induced MSCs were transplanted into the lesion site of the modelanimal3days after the modeling and Governor Vessel EA treatment. The animals inEA group, NR-MSCs+EA group and NR-MSCs+NP group were received GVelectro-acupuncture treatment once every other day after2day the transplantationperformed and last for29days. Behavior score evaluation (Balance Beam Score) wastested every other day. After the cortical motor evoked potential were detected, theanimals were perfuse and fix for frozen sections and immunofluorescence. Theexpression of TrkC and BMP in MSCs were evaluated. The survival rate of MSCs, thepositive rate of NG2and APC of MSCs were counted. Some animals were perfuseand fix for semi-thin sections to count the number of the myelin and differentiation ofMSCs by immune electron microscopy.
     Results: The concentration of NT-3was significantly higher in EA group after14-daytreatment. The survival rate of MSCs had no statistical significance betweenNR-MSCs group, NR-MSCs+EA group and NR-MSCs+NP group. The TrkC proteinin MSCs could be detected in vivo. The NR-MSCs+EA group exhibited higherNG2-positive rate and APC-positive rate and the difference was statisticallysignificant. In NR-MSCs+EA group and NR-MSCs+NP group, some cells weremarked by MBP, GFP and hocest33342simultaneously. Immune electron microscopyshowed that GFP-MSCs could differentiate into oligodendrocytes-like cells andformed myelin sheaths to wrap axon. Less degenerated myelin, more newborn myelinand normal myelin showed in NR-MSCs+EA group and the difference werestatistically significant. The NR-MSCs+EA group had shorter latency and higheramplitude in Cortical motor evoked potentials and the difference was statisticallysignificant. The Balance Beam Score had no statistical significant in all groups.
     Conclusion: Governor Vessel electro-acupuncture could increase the concentrationof NT-3in lesion site of the rat with spinal cord demyelination induced by EBinjection. Combined government vessel electro-acupuncture with MSCstransplantation pre-induced with NT-3+RA could promote differentiation of MSCsinto oligodendrocyte precursor-like cells and oligodendrocyte-like cells, and then toparticipate in the myelin structure reconstruction and improve the nerve conduction ofspine cord. But the combination therapy had no effect on the survival rate of MSCsand the recovery of locomotion.
引文
[1] Koutsouraki E, Costa V, Baloyannis S. Epidemiology of multiple sclerosis inEurope: a review. Int Rev Psychiatry,2010,22(1):2-13.
    [2] Sloka JS, Pryse-Phillips WE, Stefanelli M. The relation of ultraviolet radiationand multiple sclerosis in Newfoundland. Can J Neurol Sci,2008,35(1):69-74.
    [3] van der Mei IA, Ponsonby AL, Dwyer T, et al. Vitamin D levels in people withmultiple sclerosis and community controls in Tasmania, Australia. J Neurol,2007,254(5):581-590.
    [4] Ramroodi N, Niazi AA, Sanadgol N, et al. Evaluation of reactive Epstein-BarrVirus (EBV) in Iranian patient with different subtypes of multiple sclerosis (MS).Braz J Infect Dis,2013,[Epub ahead of print].
    [5] Ramagopalan SV, Lee JD, Yee IM, et al. Association of smoking with risk ofmultiple sclerosis: a population-based study. J Neurol,2013,[Epub ahead of print].
    [6] Nielsen NM, Westergaard T, Rostgaard K, et al. Familial risk of multiple sclerosis:a nationwide cohort study. Am J Epidemiol,2005,162(8):774-778.
    [7] Sadovnick AD, Baird PA, Ward RH. Multiple sclerosis: updated risks for relatives.Am J Med Genet,1988,29(3):533-541.
    [8] Ebers GC, Bulman DE, Sadovnick AD, et al. A population-based study ofmultiple sclerosis in twins. New England Journal of Medicine,1986,315(26):1638-1642.
    [9] Haines JL, Terwedow HA, Burgess K, et al. Linkage of the MHC to familialmultiple sclerosis suggests genetic heterogeneity. The Multiple Sclerosis GeneticsGroup. Hum Mol Genet,1998,7(8):1229-1234.
    [10]Yin YW, Zhang YD, Wang JZ, et al. Association between apolipoprotein E genepolymorphism and the risk of multiple sclerosis: a meta-analysis of6977subjects.Gene,2012,511(1):12-17.
    [11] Gourraud PA, Harbo HF, Hauser SL, et al. The genetics of multiple sclerosis: anup-to-date review. Immunol Rev,2012,248(1):87-103.
    [12]Sawcer S, Hellenthal G, Pirinen M, et al. Genetic risk and a primary role forcell-mediated immune mechanisms in multiple sclerosis. Nature,2011,476(7359):214-219.
    [13]Ferber IA, Brocke S, Taylor-Edwards C, et al. Mice with a disrupted IFN-gammagene are susceptible to the induction of experimental autoimmune encephalomyelitis(EAE). J Immunol,1996,156(1):5-7.
    [14]Bettelli E, Sullivan B, Szabo SJ, et al. Loss of T-bet, but not STAT1, prevents thedevelopment of experimental autoimmune encephalomyelitis. J Exp Med,2004,200(1):79-87.
    [15]Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23rather than interleukin-12is thecritical cytokine for autoimmune inflammation of the brain. Nature,2003,421(6924):744-748.
    [16]Montes M, Zhang X, Berthelot L, et al. Oligoclonal myelin-reactive T-cellinfiltrates derived from multiple sclerosis lesions are enriched in Th17cells. ClinImmunol,2009,130(2):133-144.
    [17]Durelli L, Conti L, Clerico M, et al. T-helper17cells expand in multiple sclerosisand are inhibited by interferon-beta. Ann Neurol,2009,65(5):499-509.
    [18]Kebir H, Kreymborg K, Ifergan I, et al. Human TH17lymphocytes promoteblood-brain barrier disruption and central nervous system inflammation. Nat Med,2007,13(10):1173-1175.
    [19]Kroenke MA, Carlson TJ, Andjelkovic AV, et al. IL-12-and IL-23-modulated Tcells induce distinct types of EAE based on histology, CNS chemokine profile, andresponse to cytokine inhibition. J Exp Med,2008,205(7):1535-1541.
    [20]King IL, Dickendesher TL, Segal BM. Circulating Ly-6C+myeloid precursorsmigrate to the CNS and play a pathogenic role during autoimmune demyelinatingdisease. Blood,2009,113(14):3190-3197.
    [21]Jadidi-Niaragh F, Mirshafiey A. Th17cell, the new player of neuroinflammatoryprocess in multiple sclerosis. Scand J Immunol,2011,74(1):1-13.
    [22]Kohm AP, Carpentier PA, Miller SD. Regulation of experimental autoimmuneencephalomyelitis (EAE) by CD4+CD25+regulatory T cells. Novartis Found Symp,2003,252:45-52; discussion52-44,106-114.
    [23]Xu L, Kitani A, Fuss I, et al. Cutting edge: regulatory T cells induceCD4+CD25-Foxp3-T cells or are self-induced to become Th17cells in the absence ofexogenous TGF-beta. J Immunol,2007,178(11):6725-6729.
    [24]Kimura A, Naka T, Kishimoto T. IL-6-dependent and-independent pathways inthe development of interleukin17-producing T helper cells. Proc Natl Acad Sci U S A,2007,104(29):12099-12104.
    [25]Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of aninflammatory cytokine milieu supports de novo differentiation of IL-17-producing Tcells. Immunity,2006,24(2):179-189.
    [26]李盈,胡学强. Th17/Treg失衡在多发性硬化发病和治疗中的意义.中国免疫学杂志,2009,25(6):575-576.
    [27]Freedman MS, Thompson EJ, Deisenhammer F, et al. Recommended standard ofcerebrospinal fluid analysis in the diagnosis of multiple sclerosis: a consensusstatement. Arch Neurol,2005,62(6):865-870.
    [28]Serafini B, Rosicarelli B, Magliozzi R, et al. Detection of ectopic B-cell follicleswith germinal centers in the meninges of patients with secondary progressive multiplesclerosis. Brain Pathol,2004,14(2):164-174.
    [29]Henderson AP, Barnett MH, Parratt JD, et al. Multiple sclerosis: distribution ofinflammatory cells in newly forming lesions. Ann Neurol,2009,66(6):739-753.
    [30]Prineas JW. Multiple sclerosis: presence of lymphatic capillaries and lymphoidtissue in the brain and spinal cord. Science,1979,203(4385):1123-1125.
    [31]程伟志,张冬青.多发性硬化症与自身反应性B细胞.中国免疫学杂志,2008,24(9):862-865.
    [32]Dam-Tuxen R, Riise E. Antibodies against a class II HLA-peptide complex raisedby active immunization of mice with antigen mimicking peptides. Scand J Immunol,2009,70(2):93-100.
    [33]钱宪明,周晓慧,钱柳, et al.病毒分子模拟介导多发性硬化发病机制的初步分析.中国神经免疫学和神经病学杂志,2011,18(4):253-256.
    [34]Nylander A, Hafler DA. Multiple sclerosis. J Clin Invest,2012,122(4):1180-1188.
    [35]李振新.多发性硬化和视神经脊髓炎的临床病理研究.博士论文:复旦大学,28.2005.
    [36]吕长虹,李志荣.急性多发性硬化症的临床病理研究.中华病理学杂志,1996,25(2):93-95.
    [37]van der Goes A, Boorsma W, Hoekstra K, et al. Determination of the sequentialdegradation of myelin proteins by macrophages. J Neuroimmunol,2005,161(1-2):12-20.
    [38]Huizinga R, van der Star BJ, Kipp M, et al. Phagocytosis of neuronal debris bymicroglia is associated with neuronal damage in multiple sclerosis. Glia,2012,60(3):422-431.
    [39]Prineas JW, Parratt JD. Oligodendrocytes and the early multiple sclerosis lesion.Ann Neurol,2012,72(1):18-31.
    [40]Lassmann H. Axonal and neuronal pathology in multiple sclerosis: what have welearnt from animal models. Exp Neurol,2010,225(1):2-8.
    [41]Smith KJ, Blakemore WF, McDonald WI. Central remyelination restores secureconduction. Nature,1979,280(5721):395-396.
    [42]Rodriguez M. A function of myelin is to protect axons from subsequent injury:implications for deficits in multiple sclerosis. Brain,2003,126(Pt4):751-752.
    [43]Goldschmidt T, Antel J, Konig FB, et al. Remyelination capacity of the MS braindecreases with disease chronicity. Neurology,2009,72(22):1914-1921.
    [44]Patani R, Balaratnam M, Vora A, et al. Remyelination can be extensive inmultiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol,2007,33(3):277-287.
    [45]Crang AJ, Blakemore WF. The effect of the number of oligodendrocytestransplanted into X-irradiated, glial-free lesions on the extent of oligodendrocyteremyelination. Neurosci Lett,1989,103(3):269-274.
    [46]Stoffels JM, de Jonge JC, Stancic M, et al. Fibronectin aggregation in multiplesclerosis lesions impairs remyelination. Brain,2013,136(Pt1):116-131.
    [47]Wang S, Sdrulla AD, diSibio G, et al. Notch receptor activation inhibitsoligodendrocyte differentiation. Neuron,1998,21(1):63-75.
    [48]Charles P, Reynolds R, Seilhean D, et al. Re-expression of PSA-NCAM bydemyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain,2002,125(Pt9):1972-1979.
    [49]Tawk M, Makoukji J, Belle M, et al. Wnt/β-catenin signaling is an essential anddirect driver of myelin gene expression and myelinogenesis. The Journal ofNeuroscience,2011,31(10):3729-3742.
    [50]Huang JK, Jarjour AA, Nait Oumesmar B, et al. Retinoid X receptor gammasignaling accelerates CNS remyelination. Nat Neurosci,2011,14(1):45-53.
    [51]Jepson S, Vought B, Gross CH, et al. LINGO-1, a transmembrane signalingprotein, inhibits oligodendrocyte differentiation and myelination through intercellularself-interactions. J Biol Chem,2012,287(26):22184-22195.
    [52]Mi S, Hu B, Hahm K, et al. LINGO-1antagonist promotes spinal cordremyelination and axonal integrity in MOG-induced experimental autoimmuneencephalomyelitis. Nat Med,2007,13(10):1228-1233.
    [53]Back SA, Tuohy TM, Chen H, et al. Hyaluronan accumulates in demyelinatedlesions and inhibits oligodendrocyte progenitor maturation. Nat Med,2005,11(9):966-972.
    [54]Sloane JA, Batt C, Ma Y, et al. Hyaluronan blocks oligodendrocyte progenitormaturation and remyelination through TLR2. Proc Natl Acad Sci U S A,2010,107(25):11555-11560.
    [55]Pohl HB, Porcheri C, Mueggler T, et al. Genetically induced adultoligodendrocyte cell death is associated with poor myelin clearance, reducedremyelination, and axonal damage. J Neurosci,2011,31(3):1069-1080.
    [56]Kotter MR, Li WW, Zhao C, et al. Myelin impairs CNS remyelination byinhibiting oligodendrocyte precursor cell differentiation. J Neurosci,2006,26(1):328-332.
    [57]郭德玉,李宗信,李斌.多发性硬化动物模型的复制.中国比较医学杂志,2007,16(12):731-732.
    [58]Jander S, Stoll G. Differential induction of interleukin-12, interleukin-18, andinterleukin-1β converting enzyme mRNA in experimental autoimmuneencephalomyelitis of the Lewis rat. Journal of Neuroimmunology,1998,91(1):93-99.
    [59]Bebo Jr BF, Zelinka-Vincent E, Adamus G, et al. Gonadal hormones influence theimmune response to PLP139-151and the clinical course of relapsing experimentalautoimmune encephalomyelitis. Journal of Neuroimmunology,1998,84(2):122-130.
    [60]Lyons JA, San M, Happ MP, et al. B cells are critical to induction ofexperimental allergic encephalomyelitis by protein but not by a short encephalitogenicpeptide. European journal of immunology,1999,29(11):3432-3439.
    [61]Ortler S, Leder C, Mittelbronn M, et al. B7‐H1restricts neuroantigen‐specificT cell responses and confines inflammatory CNS damage: Implications for the lesionpathogenesis of multiple sclerosis. European journal of immunology,2008,38(6):1734-1744.
    [62]Mokhtarian F, McFarlin D, Raine C. Adoptive transfer of myelin basicprotein-sensitized T cells produces chronic relapsing demyelinating disease in mice.Nature,1984,309(5966):356-358.
    [63]Mokhtarian F, Safavi F, Sarafraz-Yazdi E. Immunization with a peptide ofSemliki Forest virus promotes remyelination in experimental autoimmuneencephalomyelitis. Brain Res,2012,1488:92-103.
    [64]Smith JP, Morris-Downes M, Brennan FR, et al. A role for alpha4-integrin in thepathology following Semliki Forest virus infection. J Neuroimmunol,2000,106(1-2):60-68.
    [65]McCarthy DP, Richards MH, Miller SD. Mouse models of multiple sclerosis:experimental autoimmune encephalomyelitis and Theiler's virus-induceddemyelinating disease. Methods Mol Biol,2012,900:381-401.
    [66]Sherafat MA, Javan M, Mozafari S, et al. Castration attenuates myelin repairfollowing lysolecithin induced demyelination in rat optic chiasm: an evaluation usingvisual evoked potential, marker genes expression and myelin staining. NeurochemRes,2011,36(10):1887-1895.
    [67]Kuypers NJ, James KT, Enzmann GU, et al. Functional consequences of ethidiumbromide demyelination of the mouse ventral spinal cord. Exp Neurol,2013,[Epubahead of print].
    [68]Rosenbluth J, Schiff R. Spinal cord dysmyelination caused by an antiproteolipidprotein IgM antibody: implications for the mechanism of central nervous systemmyelin formation. J Neurosci Res,2009,87(4):956-963.
    [69]Takenaka A, Nakamura T, Mori R, et al. Further studies on bacteriallipopolysaccharide-induced protection against experimental allergicencephalomyelitis in guinea pigs. Effects of chemical modifications. J Neurol Sci,1982,55(2):165-174.
    [70]Blakemore WF. Remyelination by Schwann cells of axons demyelinated byintraspinal injection of6-aminonicotinamide in the rat. J Neurocytol,1975,4(6):745-757.
    [71]Rosenbluth J, Schiff R, Liang WL, et al. Antibody-mediated CNS demyelination:focal spinal cord lesions induced by implantation of an IgManti-galactocerebroside-secreting hybridoma. J Neurocytol,1999,28(4-5):397-416.
    [72]Hirahara Y, Matsuda KI, Yamada H, et al. G protein-coupled receptor30contributes to improved remyelination after cuprizone-induced demyelination. Glia,2013,61(3):420-431.
    [73]Woodruff RH, Franklin RJ. Demyelination and remyelination of the caudalcerebellar peduncle of adult rats following stereotaxic injections of lysolecithin,ethidium bromide, and complement/anti-galactocerebroside: a comparative study.Glia,1999,25(3):216-228.
    [74]Pereira LA, Dertkigil MS, Graca DL, et al. Dynamics of remyelination in thebrain of adult rats after exposure to ethidium bromide. J Submicrosc Cytol Pathol,1998,30(3):341-348.
    [75]Yajima K, Suzuki K. Ultrastructural changes of oligodendroglia and myelinsheaths induced by ethidium bromide. Neuropathol Appl Neurobiol,1979,5(1):49-62.
    [76]Yajima K, Suzuki K. Demyelination and remyelination in the rat central nervoussystem following ethidium bromide injection. Lab Invest,1979,41(5):385-392.
    [77]Blakemore WF. Ethidium bromide induced demyelination in the spinal cord ofthe cat. Neuropathol Appl Neurobiol,1982,8(5):365-375.
    [78]Zhang YJ, Zhang W, Lin CG, et al. Neurotrophin-3gene modified mesenchymalstem cells promote remyelination and functional recovery in the demyelinated spinalcord of rats. J Neurol Sci,2012,313(1-2):64-74.
    [79]吴卫平,胡学强.多发性硬化诊断和治疗中国专家共识(2011版).中华神经科杂志,2012,45(004):274-280.
    [80]Leussink VI, Jung S, Merschdorf U, et al. High-dose methylprednisolone therapyin multiple sclerosis induces apoptosis in peripheral blood leukocytes. Arch Neurol,2001,58(1):91-97.
    [81]艾青,濮月华,张星虎.甲基强的松龙治疗多发性硬化的机制.第四军医大学学报,2006,27(16):1528-1530.
    [82]Kiprov DD, Dau PC, Morand P. The effect of plasmapheresis and drugimmunosuppression on T-cell subsets as defined by monoclonal antibodies. J ClinApher,1983,1(2):57-63.
    [83]Jamshidian A, Gharagozloo M. Can plasma exchange therapy induce regulatory Tlymphocytes in multiple sclerosis patients? Clin Exp Immunol,2012,168(1):75-77.
    [84]Munemoto M, Otaki Y, Kasama S, et al. Therapeutic efficacy of double filtrationplasmapheresis in patients with anti-aquaporin-4antibody-positive multiple sclerosis.J Clin Neurosci,2011,18(4):478-480.
    [85]Sorensen PS, Fazekas F, Lee M. Intravenous immunoglobulin G for the treatmentof relapsing-remitting multiple sclerosis: a meta-analysis. Eur J Neurol,2002,9(6):557-563.
    [86]Liu Z, Pelfrey CM, Cotleur A, et al. Immunomodulatory effects of interferonbeta-1a in multiple sclerosis. J Neuroimmunol,2001,112(1-2):153-162.
    [87]匡玉吉,焦淑成,李炜. β-干扰素与多发性硬化症的治疗.生物技术通讯,2006,17(003):457-459.
    [88]Sharief MK, Semra YK, Seidi OA, et al. Interferon-β therapy downregulates theanti-apoptosis protein FLIP in T cells from patients with multiple sclerosis. Journal ofNeuroimmunology,2001,120(1–2):199-207.
    [89]Vandenbroeck K, Urcelay E, Comabella M. IFN-beta pharmacogenomics inmultiple sclerosis. Pharmacogenomics,2010,11(8):1137-1148.
    [90]Axtell RC, de Jong BA, Boniface K, et al. T helper type1and17cells determineefficacy of interferon-beta in multiple sclerosis and experimental encephalomyelitis.Nat Med,2010,16(4):406-412.
    [91]Schrempf W, Ziemssen T. Glatiramer acetate: mechanisms of action in multiplesclerosis. Autoimmun Rev,2007,6(7):469-475.
    [92]Ben-Hur T, Einstein O, Mizrachi-Kol R, et al. Transplanted multipotential neuralprecursor cells migrate into the inflamed white matter in response to experimentalautoimmune encephalomyelitis. Glia,2003,41(1):73-80.
    [93]Woodhoo A, Sahni V, Gilson J, et al. Schwann cell precursors: a favourable cellfor myelin repair in the Central Nervous System. Brain,2007,130(Pt8):2175-2185.
    [94]Zujovic V, Doucerain C, Hidalgo A, et al. Exogenous schwann cells migrate,remyelinate and promote clinical recovery in experimental auto-immuneencephalomyelitis. PLoS One,2012,7(9):e42667.
    [95]Kato T, Honmou O, Uede T, et al. Transplantation of human olfactoryensheathing cells elicits remyelination of demyelinated rat spinal cord. Glia,2000,30(3):209-218.
    [96]Yang J, Jiang Z, Fitzgerald DC, et al. Adult neural stem cells expressing IL-10confer potent immunomodulation and remyelination in experimental autoimmuneencephalitis. J Clin Invest,2009,119(12):3678-3691.
    [97]Burt RK, Loh Y, Cohen B, et al. Autologous non-myeloablative haemopoieticstem cell transplantation in relapsing-remitting multiple sclerosis: a phase I/II study.Lancet Neurol,2009,8(3):244-253.
    [98]Gordon D, Pavlovska G, Uney JB, et al. Human mesenchymal stem cells infiltratethe spinal cord, reduce demyelination, and localize to white matter lesions inexperimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol,2010,69(11):1087-1095.
    [99]Capello E, Vuolo L, Gualandi F, et al. Autologous haematopoietic stem-celltransplantation in multiple sclerosis: benefits and risks. Neurol Sci,2009,30Suppl2:S175-177.
    [100] Liu L, Yuan W, Wang J. Mechanisms for osteogenic differentiation of humanmesenchymal stem cells induced by fluid shear stress. Biomech Model Mechanobiol,2010,9(6):659-670.
    [101] Chen K, Man C, Zhang B, et al. Effect of in vitro chondrogenicdifferentiation of autologous mesenchymal stem cells on cartilage and subchondralcancellous bone repair in osteoarthritis of temporomandibular joint. Int J OralMaxillofac Surg,2013,42(2):240-248.
    [102] Khayat G, Rosenzweig DH, Quinn TM. Low frequency mechanicalstimulation inhibits adipogenic differentiation of C3H10T1/2mesenchymal stem cells.Differentiation,2012,83(4):179-184.
    [103] Ding Y, Yan Q, Ruan JW, et al. Electroacupuncture Promotes theDifferentiation of Transplanted Bone Marrow Mesenchymal Stem CellsOverexpressing TrkC into Neuron-Like Cells in Transected Spinal Cord of Rats. CellTransplant,2012,[Epub ahead of print].
    [104] Kassis I, Grigoriadis N, Gowda-Kurkalli B, et al. Neuroprotection andimmunomodulation with mesenchymal stem cells in chronic experimentalautoimmune encephalomyelitis. Arch Neurol,2008,65(6):753-761.
    [105] Portmann-Lanz CB, Schoeberlein A, Portmann R, et al. Turning placenta intobrain: placental mesenchymal stem cells differentiate into neurons andoligodendrocytes. Am J Obstet Gynecol,2010,202(3):294e291-294e211.
    [106] Lu Z, Hu X, Zhu C, et al. Overexpression of CNTF in Mesenchymal StemCells reduces demyelination and induces clinical recovery in experimentalautoimmune encephalomyelitis mice. J Neuroimmunol,2009,206(1-2):58-69.
    [107] Yamout B, Hourani R, Salti H, et al. Bone marrow mesenchymal stem celltransplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol,2010,227(1-2):185-189.
    [108] Le Blanc K, Tammik L, Sundberg B, et al. Mesenchymal stem cells inhibitand stimulate mixed lymphocyte cultures and mitogenic responses independently ofthe major histocompatibility complex. Scand J Immunol,2003,57(1):11-20.
    [109] Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cells inhibitthe formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytesor natural killer cells. Transplantation,2003,76(8):1208-1213.
    [110] Rasmusson I, Ringden O, Sundberg B, et al. Mesenchymal stem cells inhibitlymphocyte proliferation by mitogens and alloantigens by different mechanisms. ExpCell Res,2005,305(1):33-41.
    [111] Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulateallogeneic immune cell responses. Blood,2005,105(4):1815-1822.
    [112] Beyth S, Borovsky Z, Mevorach D, et al. Human mesenchymal stem cellsalter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood,2005,105(5):2214-2219.
    [113] Augello A, Tasso R, Negrini SM, et al. Cell therapy using allogeneic bonemarrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis.Arthritis Rheum,2007,56(4):1175-1186.
    [114] Augello A, Tasso R, Negrini SM, et al. Cell therapy using allogeneic bonemarrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis.Arthritis Rheum,2007,56(4):1175-1186.
    [115] Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acutegraft-versus-host disease with third party haploidentical mesenchymal stem cells.Lancet,2004,363(9419):1439-1441.
    [116] Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acutegraft-versus-host disease with third party haploidentical mesenchymal stem cells.Lancet,2004,363(9419):1439-1441.
    [117] Gerdoni E, Gallo B, Casazza S, et al. Mesenchymal stem cells effectivelymodulate pathogenic immune response in experimental autoimmuneencephalomyelitis. Ann Neurol,2007,61(3):219-227.
    [118] Gordon D, Pavlovska G, Glover CP, et al. Human mesenchymal stem cellsabrogate experimental allergic encephalomyelitis after intraperitoneal injection, andwith sparse CNS infiltration. Neurosci Lett,2008,448(1):71-73.
    [119] Bai L, Lennon DP, Eaton V, et al. Human bone marrow-derivedmesenchymal stem cells induce Th2-polarized immune response and promoteendogenous repair in animal models of multiple sclerosis. Glia,2009,57(11):1192-1203.
    [120] Barhum Y, Gai-Castro S, Bahat-Stromza M, et al. Intracerebroventriculartransplantation of human mesenchymal stem cells induced to secrete neurotrophicfactors attenuates clinical symptoms in a mouse model of multiple sclerosis. J MolNeurosci,2010,41(1):129-137.
    [121] Barhum Y, Gai-Castro S, Bahat-Stromza M, et al. Intracerebroventriculartransplantation of human mesenchymal stem cells induced to secrete neurotrophicfactors attenuates clinical symptoms in a mouse model of multiple sclerosis. J MolNeurosci,2010,41(1):129-137.
    [122] Lu Z, Hu X, Zhu C, et al. Overexpression of CNTF in Mesenchymal StemCells reduces demyelination and induces clinical recovery in experimentalautoimmune encephalomyelitis mice. J Neuroimmunol,2009,206(1-2):58-69.
    [123] Rivera FJ, Aigner L. Adult mesenchymal stem cell therapy for myelin repairin multiple sclerosis. Biol Res,2012,45(3):257-268.
    [124] Yan Q, Ruan JW, Ding Y, et al. Electro-acupuncture promotes differentiationof mesenchymal stem cells, regeneration of nerve fibers and partial functionalrecovery after spinal cord injury. Exp Toxicol Pathol,2011,63(1-2):151-156.
    [125] Zhang W, Zeng YS, Zhang XB, et al. Combination of adenoviralvector-mediated neurotrophin-3gene transfer and retinoic acid promotes adult bonemarrow cells to differentiate into neuronal phenotypes. Neurosci Lett,2006,408(2):98-103.
    [126] Park HW, Cho JS, Park CK, et al. Directed induction of functional motorneuron-like cells from genetically engineered human mesenchymal stem cells. PLoSOne,2012,7(4):e35244.
    [127] Chao MV. Neurotrophins and their receptors: a convergence point for manysignalling pathways. Nature Reviews Neuroscience,2003,4(4):299-309.
    [128] Yan H, Wood PM. NT‐3weakly stimulates proliferation of adult rat O1O4+oligodendrocyte‐lineage cells and increases oligodendrocyte myelination invitro. Journal of neuroscience research,2000,62(3):329-335.
    [129] Rubio N, Rodriguez R, Arevalo MA. In vitro myelination by oligodendrocyteprecursor cells transfected with the neurotrophin‐3gene. Glia,2004,47(1):78-87.
    [130] Jean I, Lavialle C, Barthelaix-Pouplard A, et al. Neurotrophin-3specificallyincreases mature oligodendrocyte population and enhances remyelination afterchemical demyelination of adult rat CNS. Brain research,2003,972(1):110-118.
    [131] Kahn M, Kumar S, Liebl D, et al. Mice lacking NT‐3, and its receptor TrkC,exhibit profound deficiencies in CNS glial cells. Glia,1999,26(2):153-165.
    [132] Weinkauf C, PereiraPerrin M. Trypanosoma cruzi promotes neuronal andglial cell survival through the neurotrophic receptor TrkC. Infection and immunity,2009,77(4):1368-1375.
    [133] Castellanos DA, Tsoulfas P, Frydel BR, et al. TrkC overexpression enhancessurvival and migration of neural stem cell transplants in the rat spinal cord. Celltransplantation,2002,11(3):297-307.
    [134]梁日生.转TrkC基因神经干细胞移植治疗脊髓损伤的实验研究:复旦大学,2005.
    [135] Zhao LX, Zhang J, Cao F, et al. Modification of the brain-derivedneurotrophic factor gene: a portal to transform mesenchymal stem cells intoadvantageous engineering cells for neuroregeneration and neuroprotection. ExpNeurol,2004,190(2):396-406.
    [136] Tao J, Ji F, Liu B, et al. Improvement of deficits by transplantation oflentiviral vector-modified human amniotic mesenchymal cells after cerebral ischemiain rats. Brain Res,2012,1448:1-10.
    [137] Zhang W, Yan Q, Zeng YS, et al. Implantation of adult bone marrow-derivedmesenchymal stem cells transfected with the neurotrophin-3gene and pretreated withretinoic acid in completely transected spinal cord. Brain Res,2010,1359:256-271.
    [138] Bi Y, Gong M, Zhang X, et al. Pre-activation of retinoid signaling facilitatesneuronal differentiation of mesenchymal stem cells. Dev Growth Differ,2010,52(5):419-431.
    [139] Jiang P, Selvaraj V, Deng W. Differentiation of embryonic stem cells intooligodendrocyte precursors. Journal of Visualized Experiments: JoVE,2010,39:http://www.jove.com/details.php?id=1960, doi:1910.3791/1960.
    [140] Sadowski D, Kiel ME, Apicella M, et al. Teratogenic potential in culturesoptimized for oligodendrocyte development from mouse embryonic stem cells. StemCells Dev,2010,19(9):1343-1353.
    [141] Lu L, Chen X, Zhang CW, et al. Morphological and functionalcharacterization of predifferentiation of myelinating glia-like cells from human bonemarrow stromal cells through activation of F3/Notch signaling in mouse retina. StemCells,2008,26(2):580-590.
    [142] Cho MH, Lee JH, Ahn HH, et al. Induction of neurogenesis in rat bonemarrow mesenchymal stem cells using purine structure-based compounds. MolBiosyst,2009,5(6):609-611.
    [143]陆利.骨髓间充质干细胞,银杏提取物及电针治疗多发性硬化的机理探讨.博士论文:北京中医药大学,52.2007.
    [144] Li WJ, Pan SQ, Zeng YS, et al. Identification of acupuncture-specificproteins in the process of electro-acupuncture after spinal cord injury. Neurosci Res,2010,67(4):307-316.
    [145]何庆勇,张吉,唐玉秀.针药并用治疗多发性硬化11例.世界针灸杂志(英文版),2007,17(3):43-45.
    [146]安成爀.针刺对EAE大鼠IL-17, NO影响的实验研究:北京中医药大学,2012.
    [147] Han S, Zhang KH, Lu PH, et al. Effects of annexins II and V on survival ofneurons and astrocytes in vitro. Acta Pharmacol Sin,2004,25(5):602-610.
    [148] Chen YY, Zhang W, Chen YL, et al. Electro-acupuncture improves survivaland migration of transplanted neural stem cells in injured spinal cord in rats. AcupunctElectrother Res,2008,33(1-2):19-31.
    [149] Ding Y, Yan Q, Ruan JW, et al. Electro-acupuncture promotes survival,differentiation of the bone marrow mesenchymal stem cells as well as functionalrecovery in the spinal cord-transected rats. BMC Neurosci,2009,10:35.
    [150] Huang SF, Ding Y, Ruan JW, et al. An experimental electro-acupuncturestudy in treatment of the rat demyelinated spinal cord injury induced by ethidiumbromide. Neurosci Res,2011,70(3):294-304.
    [151] Zhang J, Li Y, Chen J, et al. Human bone marrow stromal cell treatmentimproves neurological functional recovery in EAE mice. Exp Neurol,2005,195(1):16-26.
    [152] Yamout B, Hourani R, Salti H, et al. Bone marrow mesenchymal stem celltransplantation in patients with multiple sclerosis: a pilot study. J Neuroimmunol,2010,227(1-2):185-189.
    [153] Karussis D, Karageorgiou C, Vaknin-Dembinsky A, et al. Safety andimmunological effects of mesenchymal stem cell transplantation in patients withmultiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol,2010,67(10):1187-1194.
    [154]王彤.骨髓间充质干细胞临床研究进展.北京:人民卫生出版社,2010.264-265.
    [155]卢丽雅. NT-3基因修饰MSCs的明胶海绵圆柱体支架移植促进大鼠全横断脊髓损伤部分结构和功能修复的研究.硕士论文:中山大学,8.2011.
    [156] Takahashi J, Palmer TD, Gage FH. Retinoic acid and neurotrophinscollaborate to regulate neurogenesis in adult-derived neural stem cell cultures. JNeurobiol,1999,38(1):65-81.
    [157] Elizalde C, Campa VM, Caro M, et al. Distinct roles for Wnt-4and Wnt-11during retinoic acid-induced neuronal differentiation. Stem Cells,2011,29(1):141-153.
    [158] Lu J, Tan L, Li P, et al. All-trans retinoic acid promotes neural lineage entryby pluripotent embryonic stem cells via multiple pathways. BMC Cell Biol,2009,10:57.doi:10.1186/1471-2121-1110-1157.
    [159] Zhang FX, Lai CH, Tse YC, et al. Expression of Trk receptors inotolith-related neurons in the vestibular nucleus of rats. Brain Res,2005,1062(1-2):92-100.
    [160]景乃禾,盛能印,谢治慧. BMP信号通路在中枢神经系统发育过程中的作用.细胞生物学杂志,2009,31(1):2-8.
    [161] Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane tothe nucleus. Cell,2003,113(6):685-700.
    [162] Kobayashi M, Fujii M, Kurihara K, et al. Bone morphogenetic protein-2andretinoic acid induce neurotrophin-3responsiveness in developing rat sympatheticneurons. Brain Res Mol Brain Res,1998,53(1-2):206-217.
    [163] Hisada K, Hata K, Ichida F, et al. Retinoic acid regulates commitment ofundifferentiated mesenchymal stem cells into osteoblasts and adipocytes. J BoneMiner Metab,2013,31(1):53-63.
    [164] Nakatani T, Ueno S, Mori N, et al. Role of NRSF/REST in the molecularmechanisms regulating neural-specific expression of trkC/neurotrophin-3receptorgene. Brain Res Mol Brain Res,2005,135(1-2):249-259.
    [165] Beltaifa S, Webster MJ, Ligons DL, et al. Discordant changes in corticalTrkC mRNA and protein during the human lifespan. Eur J Neurosci,2005,21(9):2433-2444.
    [166] Pisati F, Bossolasco P, Meregalli M, et al. Induction of neurotrophinexpression via human adult mesenchymal stem cells: implication for cell therapy inneurodegenerative diseases. Cell Transplant,2007,16(1):41-55.
    [167] Mescher A, Humphreys TOM. Activation of maternal mRNA in the absenceof poly(A) formation in fertilised sea urchin eggs. Nature,1974,249(5453):138-139.
    [168] Sebban S, Farago M, Gashai D, et al. Vav1fine tunes p53control ofapoptosis versus proliferation in breast cancer. PLoS One,2013,8(1):e54321.
    [169]阮经文,廖新学,严英硕, et al.针灸治疗慢性失眠的时效性与量效性临床研究.中山大学学报(医学科学版),2008,29(4):448-452.
    [170] Blondel O, Collin C, McCarran WJ, et al. A glia-derived signal regulatingneuronal differentiation. The Journal of Neuroscience,2000,20(21):8012-8020.
    [171] Kolarow R, Brigadski T, Lessmann V. Postsynaptic secretion of BDNF andNT-3from hippocampal neurons depends on calcium calmodulin kinase II signalingand proceeds via delayed fusion pore opening. J Neurosci,2007,27(39):10350-10364.
    [172] Shen L, Zeng W, Wu YX, et al. Neurotrophin-3accelerates wound healing indiabetic mice by promoting a paracrine response in mesenchymal stem cells. CellTransplant,2012,[Epub ahead of print].
    [173] Cheng PL, Song AH, Wong YH, et al. Self-amplifying autocrine actions ofBDNF in axon development. Proc Natl Acad Sci U S A,2011,108(45):18430-18435.
    [174] Balkowiec A, Katz DM. Activity-dependent release of endogenousbrain-derived neurotrophic factor from primary sensory neurons detected by ELISAinsitu. The Journal of Neuroscience,2000,20(19):7417-7423.
    [175] Michael G, Averill S, Nitkunan A, et al. Nerve growth factor treatmentincreases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal rootganglion cells and in their central terminations within the spinal cord. The Journal ofNeuroscience,1997,17(21):8476-8490.
    [176] Lessmann V, Gottmann K, Malcangio M. Neurotrophin secretion: currentfacts and future prospects. Prog Neurobiol,2003,69(5):341-374.
    [177] Langevin HM, Churchill DL, Wu J, et al. Evidence of connective tissueinvolvement in acupuncture. The FASEB journal,2002,16(8):872-874.
    [178] Goldman N, Chen M, Fujita T, et al. Adenosine A1receptors mediate localanti-nociceptive effects of acupuncture. Nature neuroscience,2010,13(7):883-888.
    [179]孟智宏,杜元灏.针刺对实验性脑梗死大鼠脑心组织及血液cAMP,cGMP的影响.中国中医急症,2005,14(10):989-990.
    [180] Wang Q, Jiang H, Chen S, et al. Effect of Ca2+complexation on oxygenpartial pressure in the urinary bladder meridian of goats. Frontiers of Medicine inChina,2009,3(1):96-99.
    [181] Wang C, Tian YF, Zhou D, et al.[Influence of electroacupuncture onmyocardial NO and NOS and intracellular Ca2+contents in myocardialischemia-reperfusion injury rats]. Zhen Ci Yan Jiu,2010,35(2):113-117.
    [182] He TF, Yang WJ, Zhang SH, et al. Electroacupuncture inhibits inflammationreaction by upregulating vasoactive intestinal Peptide in rats with adjuvant-inducedarthritis. Evid Based Complement Alternat Med,2011,2011:pii:290489. doi:290410.291155/292011/290489. Epub292010Sep290414.
    [183] Wu Y, Sun Z, Li Z, et al. Effect of acupuncture on free radicals in rats withearly experimental spinal cord injury. Journal of traditional Chinese medicine=Chungi tsa chih ying wen pan/sponsored by All-China Association of Traditional ChineseMedicine, Academy of Traditional Chinese Medicine,2002,22(1):51.
    [184] Karavanov A, Sainio K, Palgi J, et al. Neurotrophin3rescues neuronalprecursors from apoptosis and promotes neuronal differentiation in the embryonicmetanephric kidney. Proceedings of the National Academy of Sciences,1995,92(24):11279-11283.
    [185] Noll E, Miller RH. Regulation of oligodendrocyte differentiation: a role forretinoic acid in the spinal cord. Development,1994,120(3):649-660.
    [186] Mekki-Dauriac S, Agius E, Kan P, et al. Bone morphogenetic proteinsnegatively control oligodendrocyte precursor specification in the chick spinal cord.Development,2002,129(22):5117-5130.
    [187] Huang EJ, Wilkinson GA, Fari as I, et al. Expression of Trk receptors in thedeveloping mouse trigeminal ganglion: in vivo evidence for NT-3activation of TrkAand TrkB in addition to TrkC. Development,1999,126(10):2191-2203.
    [188] Wyatt S, Middleton G, Doxakis E, et al. Selective regulation of trkCexpression by NT3in the developing peripheral nervous system. The Journal ofNeuroscience,1999,19(15):6559-6570.
    [189] Zhang D, Mehler MF, Song Q, et al. Development of bone morphogeneticprotein receptors in the nervous system and possible roles in regulating trkCexpression. The Journal of Neuroscience,1998,18(9):3314-3326.
    [190] Osathanon T, Manokawinchoke J, Nowwarote N, et al. Notch signaling isinvolved in neurogenic commitment of human periodontal ligament-derivedmesenchymal stem cells. Stem cells and development,2013,22(8):1220-1231.
    [191] Boddy SL, Chen W, Romero-Guevara R, et al. Inner ear progenitor cells canbe generated in vitro from human bone marrow mesenchymal stem cells. Regen Med,2012,7(6):757-767.
    [192] Jori FP, Napolitano MA, Melone MA, et al. Molecular pathways involved inneural in vitro differentiation of marrow stromal stem cells. J Cell Biochem,2005,94(4):645-655.
    [193]许永涛.胰岛素样生长因子诱导骨髓间充质干细胞向少突胶质细胞定向分化:华中科技大学,2009.
    [194] Wang L, Kamath A, Frye J, et al. Aorta-derived mesoangioblasts differentiateinto the oligodendrocytes by inhibition of the Rho kinase signaling pathway. Stemcells and development,2011,21(7):1069-1089.
    [195] Chu MS, Chang CF, Yang CC, et al. Signalling pathway in the induction ofneurite outgrowth in human mesenchymal stem cells. Cell Signal,2006,18(4):519-530.
    [196] Robinson S, Miller R. Environmental enhancement of growthfactor-mediated oligodendrocyte precursor proliferation. Mol Cell Neurosci,1996,8(1):38-52.
    [197] Ness JK, Wood TL. Insulin-like growth factor I, but not neurotrophin-3,sustains Akt activation and provides long-term protection of immatureoligodendrocytes from glutamate-mediated apoptosis. Mol Cell Neurosci,2002,20(3):476-488.
    [198] Lachyankar MB, Condon PJ, Quesenberry PJ, et al. Embryonic precursorcells that express Trk receptors: induction of different cell fates by NGF, BDNF, NT-3,and CNTF. Exp Neurol,1997,144(2):350-360.
    [199] Wang JM, Zeng YS, Liu RY, et al. Recombinant adenovirus vector-mediatedfunctional expression of neurotropin-3receptor (TrkC) in neural stem cells. ExpNeurol,2007,203(1):123-127.
    [200] Rubio N, Rodriguez R, Arevalo MA. In vitro myelination by oligodendrocyteprecursor cells transfected with the neurotrophin-3gene. Glia,2004,47(1):78-87.
    [201] Sun WW, Zhao W, Wang TH. Effects of electro-acupuncture on PDGFexpression in spared dorsal root ganglion and associated dorsal horn subjected topartial dorsal root ganglionectomy in cats. Neurochem Res,2008,33(3):437-443.
    [202] Gao H, Guo J, Zhao P, et al. Influences of electroacupuncture on theexpression of insulin-like growth factor-1following, focal cerebral ischemia inmonkeys. Acupunct Electrother Res,2006,31(3-4):259-272.
    [203] Ou YW, Han L, Da CD, et al. Influence of acupuncture upon expressinglevels of basic fibroblast growth factor in rat brain following focal cerebralischemia--evaluated by time-resolved fluorescence immunoassay. Neurol Res,2001,23(1):47-50.
    [204] Steffenhagen C, Dechant FX, Oberbauer E, et al. Mesenchymal stem cellsprime proliferating adult neural progenitors toward an oligodendrocyte fate. StemCells Dev,2012,21(11):1838-1851.
    [205] Rivera FJ, Couillard-Despres S, Pedre X, et al. Mesenchymal stem cellsinstruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells,2006,24(10):2209-2219.
    [206] Bai L, Lennon DP, Caplan AI, et al. Hepatocyte growth factor mediatesmesenchymal stem cell-induced recovery in multiple sclerosis models. Nat Neurosci,2012,15(6):862-870.
    [207] Robinson AP, Foraker JE, Ylostalo J, et al. Human stem/progenitor cells frombone marrow enhance glial differentiation of rat neural stem cells: a role fortransforming growth factor beta and Notch signaling. Stem Cells Dev,2011,20(2):289-300.
    [208] Lu G, Haider HK, Jiang S, et al. Sca-1+Stem Cell Survival and Engraftmentin the Infarcted Heart Dual Role for Preconditioning-Induced Connexin-43.Circulation,2009,119(19):2587-2596.
    [209] Hahn J-Y, Cho H-J, Kang H-J, et al. Pre-treatment of mesenchymal stemcells with a combination of growth factors enhances gap junction formation,cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardialinfarction. Journal of the American College of Cardiology,2008,51(9):933-943.
    [210]崔晓军,李伊为,陈东风, et al.督脉电针对脊髓损伤大鼠神经干细胞的作用.解剖学研究,2002,24(3):180-183.
    [211]骆仲达,赖新生,许能贵.电针督脉对缺血性脑损伤大鼠神经细胞凋亡的影响.安徽中医学院学报,2002,21(6):27-29.
    [212]张向飞,邹宇,赵娅, et al.督脉电针刺激对脊髓全横断小鼠大脑皮质运动区BDNF表达的影响.四川大学学报(医学版),2012,2:025.
    [213]杨成,赵冬梅,刘同慎.督脉电针治疗脊髓损伤后不同神经营养因子表达的时间窗特征[J].中国临床康复,2005,9(25):135-137.
    [214]杨成,刘同慎,徐宁, et al.电针对脊髓损伤后星形胶质细胞增生的影响.交通医学,2003,17(5):599-599.
    [215] Lee KH, Yoon do H, Chung MA, et al. Neuroprotective effects of mexiletineon motor evoked potentials in demyelinated rat spinal cords. Neurosci Res,2010,67(1):59-64.
    [216]汤晓芙.脱髓鞘和轴索变性的电生理表现.中华神经科杂志,1995,6:023.
    [217]吕广明,吴辉群,栗卓, et al.大鼠皮质脊髓束Luxol Fast Blue染色.南通大学学报(医学版),2008,28(1):5-9.
    [218] Schucht P, Raineteau O, Schwab M, et al. Anatomical correlates oflocomotor recovery following dorsal and ventral lesions of the rat spinal cord.Experimental neurology,2002,176(1):143-153.
    [219] Jeffery N, Blakemore W. Locomotor deficits induced by experimental spinalcord demyelination are abolished by spontaneous remyelination. Brain,1997,120(1):27-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700