棉籽油季铵盐缓蚀剂在酸性溶液中对N80钢的缓蚀性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油井酸化是国内外普遍采用的一种油井增产技术,但大量酸液的使用会对所涉及的金属造成严重的腐蚀。为减少金属的腐蚀和酸液的消耗,缓蚀剂保护技术广泛应用在这一过程中,研制开发合乎生产实践要求的缓蚀剂至关重要。缓蚀性能和机理的研究是更好地进行缓蚀剂开发的前提,因而系统地探讨缓蚀特征及吸附行为对理论研究和实际应用都具有重要意义。为了提高效益和控制成本,缓蚀协同效应的研究成为近年来缓蚀剂研究上作中的一个重要内容和热点。与此同时,上业界和学术界也逐渐意识到酸化缓蚀剂对环境造成巨大的污染,因此开发研究新型的更加环保的缓蚀剂是一项十分有意义的工作。棉籽汕是新疆具有特色优势的极其丰富的可再生天然资源,开发棉籽油咪唑啉低毒高效缓蚀剂是一项值得深入研究的课题。
     本文以棉籽油为原料,合成了三个系列棉籽油咪唑啉季铵盐缓蚀剂,通过失重法、电化学极化曲线法测试了所合成缓蚀剂的缓蚀性能。探讨了吸附热力参数、腐蚀动力学参数及分子结构等同缓蚀效率之间的关系,对缓蚀剂分子在金属表面的作用机制进行了理论分析,研究了缓蚀剂与表面活性剂的协同作用。主要研究内容和结果如下
     1.以棉籽油和二乙烯三胺、三乙烯四胺、四乙烯五胺为原料合成了三个系列的棉籽油咪唑啉季铵盐缓蚀剂。利用红外光谱对合成的咪唑啉缓蚀剂的结构进行了农征,1610cm-1附近的咪唑啉环的吸收峰以及700cm-1附近苯环的吸收峰为目标化合物的特征峰。
     2.利用失重法对上述化合物在15%HCl中对碳钢的缓蚀性能进行了测试,并对它们在金属表面的吸附行为进行了拟合。结果表明,所合成的缓蚀剂具有良好的缓蚀性能。随着缓蚀剂浓度的增大,上述缓蚀剂的缓蚀效率都升高,在所研究浓度范围内缓蚀效率均可达90%以上;温度的升高使缓蚀效率下降,腐蚀速度加快。缓蚀剂在碳钢表面的吸附行为符合Langmuir吸附模型,所得缓蚀剂分子的吸附自由能都在20~40KJ/mol之间,说明缓蚀剂分子在碳钢表面的吸附是化学吸附和物理吸附共存的吸附方式,且属自发的放热过程。
     3.利用电化学极化曲线法对碳钢电极在加有缓蚀剂的盐酸中的电化学行为进行了研究,探讨了缓蚀剂的作用机理。研究表明,上述化化合物皆能不同程度地抑制金属电极的阴阳极反应,表现为以抑制阳极为主的混合型缓蚀剂;阴阳极反应的腐蚀电流都减小,Tafel余率都不同程度地增大
     4.考察了缓蚀剂与CTAB、PEG400、TW80的缓蚀协同效应。失重法和极化曲线法测试结果都表明:缓蚀剂与PEG400、TW80有良好缓蚀协同性能,可减少缓蚀剂的用量,节约缓蚀应用成本。
     5.通过量子化学计算得到了五种模型分子的分子几何构型、前线分子轨道能量及轨道分布图、分子偶极矩、原子电荷、Fukui指数、化学势、化学软硬度以及亲电指数。分析了模型分子的活性位点以及缓蚀效率与上述理论参数的关系。结果表明,5种模型分子具有相似的反应活性位点,主要的活性位点是咪唑环上靠近外侧的N原子。其中,B2分子具有最强的亲电反应活性,说明具有最好的缓蚀性能,这与实验结果是一致的。这些结果为合理推断缓蚀剂分子的吸附位点、寻找理论参数与缓蚀率之间的关系、认识缓蚀剂的缓蚀机理提供了一定的理论参考和指导。
The process of oil well acidizing is a technology which has been widely used in most oil fields at home and abroad. However, high concentration of acid use can bring about serious corrosion. In order to diminish metal dissolution and acid consumption, corrosion inhibitors were widely used in this process. The developed inhibitors which fitting well with the practicality of the produce are very important. For this reason, there is a very important theoretical and practical meaning to test the property and explore the mechanism of the corrosion inhibitors. For improving economic performance and controlling of costs, the study of the synergistic effect of corrosion inhibitors has been a very hot subject in recent years.
     Meanwhile, environmental pollution and ecological damage caused by corrosion inhibitor has been realized by industrial community and academic interests. It is of great significance to research organic inhibitors which are more friendly to the environment. Cotton-seed oil, a kind of natural and renewable resource. which is also extremely abundant in Xinjiang. Therefore, developing low toxicity and efficient cotton-seed oil inhibitor is a significant research project worthy of carrying out deeply study.
     In this paper, three series of cotton-seed oil corrosion inhibitors were synthesized. The corrosion inhibition and their synergistic inhibition with the surfactants to the mild steel in15%HCl solution were investigated. Moreover, the adsorption mechanism of corrosion inhibitor was also proposed. The main contents and results of the present work are as follows.
     1. Using cotton-seed oil and diethylenetriamine, triethylenetetramine, tetraethylenepentamine as raw materials, three series cotton-seed oil imidazoline quaternary ammonium corrosion inhibitors were synthesized. The molecular structure of imidazoline corrosion inhibitors was carried out using the infrared spectrometry. Near the1610cm-1and700cm-1were ascribed to the characteristic absorption peak of imidazoline ring and the characteristic absorption peak of benzene ring, respectively. The results confirmed that the synthesized products are the target product.
     2. The inhibiting effect of these compounds on the corrosion of mild steel in15%HCl solutions have been studied using weight loss measurement, and the adsorption behavior on the metal surface is simulated. The results show that the inhibition efficiency increases and the corrosion rate decreases with the increasing concentration of the inhibitors, and the inhibition efficiency can reach above90%. The increasing temperature decreaes the inhibition efficiency, and accelerates the corrosion rate. At the same time, the adsorption behavior of the inhibitors on the metal surface fits well with Langmuir adsorption isotherm. The adsorption free energy values locate in the range of20-40kJ/mol, which indicates that the adsorption of inhibitors includes the physisorption and chemsorption.
     3. The electrochemical behavior of the mild steel electrode in the blank and containing the inhibitors is studied by electrochemical method. The polarization curves results indicate that the inhibitors suppress anodic processes mostly of electrode corrosion at different degree. and the inhibitors the mixed-type inhibitors; the Tafel slopes increase at different degree. Furthermore, the research finds that the increasing temperature decreases the inhibition efficiency.
     4. This work investigates the corrosion inhibition of the inhibitors and their synergistic inhibition with PEG400.TW-80and CTAB.By weight loss method and Tafel polarization curves.lt found that PKG400,TW-80have a good synergistic effect with the inhibitors,the efficiency of imidazoline inhibitors improved great by combining with them. In this way we can reduce the dosage of corrosion inhibitors and control of costs.
     5. This part provides quantum chemical studies on the reactive sites and the relationship between the inhibition efficiency and the theoretical parameters for the five models of imidazolines. The structures, the frontier molecular orbital energies and distributions, dipole moments, atom charges, and the reactive descriptors, like the Fukui function, chemical potentials, hardness and softness as well as electrophilicity have been calculated and discussed. It has been found that the main reactive site is the N atom near the outer side of the imidazole ring. Because B2showed the strongest electrophilic power, it is logic to have the highest inhibition efficiency. These results provide useful information and guidelines about the reactive sites suitable for bonding with metal surfaces, the relationship between the theoretical parameters and inhibition efficiency, as well as the corrosion inhibition mechanism.
引文
[l]张天胜,缓蚀剂.化学工业出版社:北京,2002.
    [2]吴萌顺,金属腐蚀研究方法.冶金工业出版社:北京,1993.
    [3]吴荫顺,郑家燊,电化学保护和缓蚀剂应用技术.化学工业出版社:北京,2006.
    [4]许淳淳,可持续发展战略与腐蚀的全面控制.化工设备与防腐蚀,2002,5(1):49-55.
    [5]柯伟,中国腐蚀调查报告.化学工业出版社:北京,2003.
    [6]J. C. Oung, H. C. Shih, Evaluating film-forming corrosion inhibitors for carbon steel in gas-well environments. Corrosion Prevention & Control,1997,44 (3):81-88.
    [7]吴振玉Gemini表面活性剂在酸性溶液中对金属的缓蚀性能研究.博士学位论文,中南大学,2011.
    [8]庞雪辉.酸性条件下环境友好型缓蚀剂缓蚀性能及机理的研究.博士学位论文,中国海洋大学,2007.
    [9]A. Frignani, M. Tassinari, L. Meszaros, G. Trabanelli, The use of electrochemical impedance spectroscopy to study ARMCO iron corrosion in acid solutions inhibited by quaternary ammonium compounds. Corrosion Science,1991,32 (8):903-911.
    [10]A. Aytac,U. Ozmen, M. Kabasakaloglu, Investigation of some Schiff bases as acidic corrosion of alloy AA3102. Materials Chemistry and Physics,2005,89(1):176-181.
    [11]M. Ohsawa, W. Suetaka, Spectro-electrochemical studies of the corrosion inhibition of copper by mercaptobenzothiazole. Corrosion Science,1979,19(10):709-722.
    [12]N. C. Subramanyam, S. M. Mayanna. Azoles as corrosion inhibitors for mild steel in alkaline mine water. Corrosion Science,1985,25 (3):163-169.
    [13]R.M. Saleh,A. A. Ismall, A. A. El Hosary, Corrosion Inhibition by Naturally Occurring Substances: Ⅶ. The effect of aqueous extracts of some leaves and fruit-peels on the corrosion of steel, Al, Zn and Cu in acids. British Corrosion Journal,1982,17(3):131-135.
    [14]F. Bentiss, M. Traisnel, L. Gengembre, M. Lagrenee, A new triazole derivative as inhibitor of the acid corrosion of mild steel:electrochemical studies, weight loss determination, SEM and XPS. Applied Surface Science,1999,152 (3-4):237-249.
    [15]A. Frignani, L. Tommesani, G. Brunoro, C. Monticelli, M.Fogagnolo, Influence of the alkyl chain on the protective effects of 1,2,3-benzotriazole towards copper corrosion.:Part 1:inhibition of the anodic and cathodic reactions. Corrosion Science,1999,41 (6):1205-1215.
    [16]M. A. Quraishi,R. A. Sardar, Aromatic triazoles as corrosion inhibitors for mild steel in acidic environments. Corrosion,2002,58 (09):748-755.
    [17]D. Tromans, Copper and zinc equilibria in concentrated ammonia solutions:Relevance to stress corrosion cracking of alpha-brass. Corrosion Science,1997,39 (7):1307-1319.
    [18]S. Sathiyanarayanan, C. Marikkannu, N. Palaniswamy, Corrosion inhibition effect of tetramines for mild steel in 1M HCI. Applied Surface Science,2005,241 (3-4):477-484.
    [19]G. Lendvay-Gyorik, G. Meszaros, B. Lengyel, G. Lendvay, Electrochemical and quantum chemical studies on the formation of protective films by alkynols on iron. Corrosion Science,2003,45 (8): 1685-1702.
    [20]M. A. Pech-Canul, M. Echeverria, Corrosion inhibition of steel in neutral chloride solutions by mixtures of N-phosphono-methylglycine with zinc ions. Corrosion Engineering, Science and Technology, 2003,38(2):135-138.
    [21]F. C. Giacomelli, C. Giacomelli, M. F. Amadori, V. Schmidt. A. Spinelli, Inhibitor effect of succinic acid on the corrosion resistance of mild steel:electrochemical, gravimetric and optical microscopic studies. Materials Chemistry and Physics,2004,83 (I):124-128.
    [22]E. S. Ferreira, C. Giacomelli. F. C. Giacomelli, A. Spinelli, Evaluation of the inhibitor effect of l-ascorbic acid on the corrosion of mild steel.Materials Chemistry and Physics,2004,83 (1):129-134.
    [23]M. A. Quraishi, F. A. Ansari, D. Jamal, Thiourea derivatives as corrosion inhibitors for mild steel in formic acid. Materials Chemistry and Physics,2003,77 (3):687-690.
    [24]G. Bereket, E. Hiir, C. Ogretir, Quantum chemical studies on some imidazole derivatives as corrosion inhibitors for iron in acidic medium. Journal of Molecular Structure:THEOCHEM,2002,578 (1-3):79-88.
    [25]R. Gasparac, C. R. Martin, E. Stupnisek-Lisac, In Situ Studies of Imidazole and Its Derivatives as Copper Corrosion Inhibitors. I. Activation Energies and Thermodynamics of Adsorption. Journal of The Electrochemical Society,2000,147 (2):548-551.
    [26]A. Y. El-Etre, Inhibition of acid corrosion of aluminum using vanillin. Corrosion Science,2001,43 (6): 1031-1039.
    [27]G. J. E. Schmitt, T. Frodl, K. Tatsch, S. Dresel, H. J. Moller, E. M. Meisenzahl, Striatal dopamin transporter in drug-naive schizophrenic patients:a99mTc-TRODAT-1-SPECT study. European Neuropsychopharmacology,2000,10, Supplement 3 (0):324.
    [28]V. Hluchan, B. L. Wheeler, N. Hackerman, Amino acids as corrosion inhibitors in hydrochloric acid solutions. Materials and Corrosion,1988,39(11):512-517.
    [29]J. Telegdi, E. Kalman, F. H. Karman, Corrosion and scale inhibitors with systematically changed structure. Corrosion Science,1992,33 (7):1099-1103.
    [30]V. Sastri. J. Perumareddi, Selection of corrosion inhibitors for use in sour media. Corrosion,1994,50 (06):432-437.
    [31]F. X. Perrin. J. Pagetti, Characterization and mechanism of direct film formation on a cu electrode through electro-oxidation of 2-mercaptobenzimidazole. Corrosion Science,1998,40 (10):1647-1662.
    [32]B. Muller. C. Oughourlian. M. Schubert. Amphiphilic copolymers as corrosion inhibitors for zinc pigment. Corrosion Science,2000,42 (3):577-584.
    [33]D. W. Deberry, Evalution of corrosion inhibitors in SO2 scrubber solutions.1984,40 (5):250-256.
    [34]S. Ramachandran, B.-L. Tsai, M. Blanco, H. Chen. Y. Tang, W. A. Goddard. Self-Assembled Monolayer Mechanism for Corrosion Inhibition of Iron by Imidazolines. Langmuir,1996,12 (26): 6419-6428.
    [35]J. A. Martin, F. W. Valone, The existence of imidazoline corrosion inhibitors. Corrosion.1985.41 (5): 281-287.
    [36]J. A. Martin, F. W. Valone, Spectroscopic techniques for quality assuranteof oil field corrosion inhibitors. Corrosion,1985,41 (5):465-473.
    [37]韦庆明,新疆“一黑一白战略”对工业经济的影响.黑龙江对外经贸,2010,(4):82-83.
    [38]马鹏晴.新疆石油产业发展对新疆经济发展的影响.硕士学位论文,新疆财纤大学,2009.
    [39]王岚,棉籽油皂脚的开发与利用.中国油脂,2005,30(2):34-36.
    [40]X. Y. Zhang, F. P. Wang, Y. F. He, Y. L. Du, Study of the inhibition mechanism of imidazoline amide on CO2 corrosion of Armco iron. Corrosion Science,2001,43 (8):1417-1431.
    [41]杨军胜.棉籽油衍生物缓蚀剂的合成及其性能研究.硕士学位论文,新疆大学,2009.
    [42]S. A. Umoren, O. Ogbobe, I. O. Igwe, E. E. Ebenso, Inhibition of mild steel corrosion in acidic medium using synthetic and naturally occurring polymers and synergistic halide additives. Corrosion Science,2008.50 (7):1998-2006.
    [43]S. A. Umoren, E. E. Ebenso, The synergistic effect of polyacrylamide and iodide ions on the corrosion inhibition of mild steel in H2SO4. Materials Chemistry and Physics,2007,106 (2-3):387-393.
    [44]A. S. Fouda, M. N. Moussa, F. I. Taha, A. I. Elneanaa, The role of some thiosemicarbazide derivatives in the corrosion inhibition of aluminium in hydrochloric acid.Corrosion Science,1986,26 (9):719-726.
    [45]1. B. Obot, N. O. Obi-Egbedi, S. A. Umoren, The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium.Corrosion Science,2009,51 (2):276-282.
    [46]S. A. Umoren, E. E. Ebenso, O. Ogbobe, Synergistic effect of halide ions and polyethylene glycol on the corrosion inhibition of aluminium in alkaline medium. Journal of Applied Polymer Science,2009,113 (6):3533-3543.
    [47]C. J. Newton, J. M. Sykes, Effect of Mix Specification on Corrosion of Steel in Mortars Immersed in Chloride Solutions. British Corrosion Journal,1991,26 (1):31-45.
    [48]C. Monticelli, G. Brunoro, A. Frignani, G. Trabanelli, Evaluation of Corrosion Inhibitors by Electrochemical Noise Analysis. Journal of The Electrochemical Society,1992,139 (3):706-711.
    [49]R. A. Cottis,2-15 Interpretation of electrochemical noise data. Corrosion,2001,57 (3):265-284.
    [50]曹楚南,腐蚀电化学原理(第三版).化学工业出版社:北京,2008.
    [51]H.-L. Wang, H.-B. Fan, J.-S. Zheng, Corrosion inhibition of mild steel in hydrochloric acid solution by a mercapto-triazole compound. Materials Chemistry and Physics,2003,77 (3):655-661.
    [52]H. A. El Dahan, T. Y. S. Mohamed, S. A. Abo E1-Enin, Efficient quaternary ammonium salt as corrosion inhibitor for steel pickling in sulphuric acid media. Anti-Corrosion Methods and Materials,1999, 46(5):358-363.
    [53]宁世光,石明理,刘奉岭,余立新,李延芳,章荣玲,程在英,咪唑啉衍生物对钢在酸中的缓蚀作用与电子密度和前线轨道能量的关.中国腐蚀与防护学报,1990,10(4):383-389.
    [54]A. Edwards, C. Osborne, S. Webster, D. Klenerman, M. Joseph, P. Ostovar, M. Doyle, Mechanistic studies of the corrosion inhibitor oleic imidazoline. Corrosion Science,1994,36 (2):315-325.
    [55]A. J. Szyprowski, Proceeding of the 8 th European Symposium on Corrosion Inhibitor [J]. N.S. Ferrara,1995;p 1229.
    [56]傅献彩,沈文霞,姚天扬,物理化学.高等教育出版社:北京,1999.
    [57]D.-q. Zhang, L.-x. Gao, G.-d. Zhou, K. Lee, Undecyl substitution in imidazole and its action on corrosion inhibition of copper in aerated acidic chloride media. Journal of Applied Electrochemistry,2008, 38(1):71-76.
    [58]A. S. Algaber, E. M. E1-Nemma, M. M. Saleh, Effect of ocrylphenol polyethylene oxide on the corrosion inhibition of steel in 0.5M H2SO4. Materials Chemistry and Physics,2004,86(1):26-32.
    [59]R. Subramanian, V. Lakshminarayanan, Effect of adsorption of some azoles on copper passivation in alkaline medium. Corrosion Science,2002,44(3):535-554.
    [60]L. B. Tang, G. N. Mu, G. H. Liu, The effect of neutral red on the corrosion inhibition of cold rolled steel in 1.0 M hydrochloric acid. Corrosion Science,2003,45(10):2251-2262.
    [61]C.A. Bunton, L. B.Robinson, J. Schaak, M. F. Stam, Catalysis of nucleophilic substitutions by micelles of dicationic detergents. The Journal of Organic Chemistry,1971,36(16):2346-2350.
    [62]F. M.Menger, C. A. Littau, Gemini-surfactants:synthesis and properties. Journal of the American Chemical Society,1991,113(4):1451-1452.
    [63]Y.-p. Zhu, A. Masuyama, M. Okahara, Preparation and surface active properties of amphipathic compounds with two sulfate groups and two lipophilic alkyl chains. Journal of the American Oil Chemists' Society,1990,67(7):459-463.
    [64]Y. Zhu. A. Masuyama,M. Okahara, Preparation and surface- active properties of new amphipathic compounds with two phosphate groups and two long-chain alkyl groups. Journal of the American Oil Chemists'Society,1991.68 (4):268-271.
    [65]F. M. Menger. C. A. Littau, Gemini surfactants:a new class of self-assembling molecules. Journal of the American Chemical Society,1993,115 (22):10083-10090.
    [66]R. Zana, Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution:a review. Advances in Colloid and Interface Science,2002,97 (1-3):205-253.
    [67]Y. J. Li, P. X. Li,C. C. Dong, X. Y. Wang, Y. L. Wang, H. K. Yan, R. K. Thomas,Aggregation Properties of Cationic Gemini Surfactants with Partially Fluorinated Spacers in Aqueous Solution. Langmuir,2006,22 (1):42-45.
    [68]F. M. Menger, J. S. Keiper, Gemini Surfactants. Angewandte Chemie International Edition,2000,39 (11):1906-1920.
    [69]D. Danino, Y. Talmon, R. Zana, Alkanediyl-α,ω-Bis(Dimethylalkylammonium Bromide) Surfactants (Dimeric Surfactants).5. Aggregation and Microstructure in Aqueous Solutions. Langmuir,1995,11 (5): 1448-1456.
    [70]R. Oda, P. Panizza, F. Lequeux, A novel shear-induced phase transition of worm-like micelles:gemini surfactant 12-2-12. Progress in Colloid and Polymer Science 1997,105 276-280.
    [71]Y. J. Li, X. Y. Wang, Y. L. Wang, Comparative Studies on Interactions of Bovine Serum Albumin with Cationic Gemini and Single-Chain Surfactants. The Journal of Physical Chemistry B.2006,110(16): 8499-8505.
    [72]L. G. QIU. A. J. XIE, Y. H. SHEN, Synthesis and Surface Activity of Novel Triazole—based Cationic Gemini Surfactants. Chinese Chemical Letters,2003,14 (6):653-656.
    [73]R. Zana. M. Benrraou, R. Rueff, Alkanediyl-a,ω-bis(dimethylalkylammonium bromide) surfactants.I. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree. Langmuir,1991,7(6):1072-1075.
    [74]R. Guo, T. Q. Liu. X. Wei, Effects of SDS and some alcohols on the inhibition efficiency of corrosion for nickel. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,209(1):37-45.
    [75]W.Huang, J. X.Zhao. Adsorption of quaternary ammonium gemini surfactants on zinc and the inhibitive effect on zinc corrosion in vitriolic solution. Colloids and Surfaces A:Phvsicochemical and Engineering Aspects,2006,278 (1-3):246-251.
    [76]L.-G. Qiu, A.-J. Xie, Y.-H. Shen, The adsorption and corrosion inhibition of some cationic gemini surfactants on carbon steel surface in hydrochloric acid. Corrosion Science,2005,47(1):273-278.
    [77]L.-G. Qiu, A.-J. Xie, Y.-H. Shen, Understanding the effect of the spacer length on adsorption of gemini surfactants onto steel surface in acid medium. Applied Surface Science,2005,246 (1-3):1-5.
    [78]L.-G. Qiu,A.-J. Xie, Y.-H. Shen, A novel triazole-based cationic gemini surfactant:synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid. Materials Chemistry and Physics,2005, 91(2-3):269-273.
    [79]L. G. Qiu,Y. Wu, Corrosion inhibition of steel in acidic medium by cationic gemini surfactants.Nova Science Publisher: New York,2007;p 159-185.
    [80]M. E1 Achouri, M. R. Infante, F. Izquierdo, S. Kertit, H. M. Gouttaya, B. Nciri, Synthesis of some cationic gemini surfactants and their inhibitive effect on iron corrosion in hydrochloric acid medium. Corrosion Science,2001,43 (1):19-35.
    [81]S.-Z. Yao, X.-H. Jiang, L.-M. Zhou, Y.-J. Lv, X.-Q. Hu, Corrosion inhibition of iron in 20% hydrochloric acid by 1,4/1,6-bis(α-octylpyridinium)butane/hexane dibromide. Materials Chemistry and Physics,2007,104 (2-3):301-305.
    [82]M. A. Hegazy, A novel Schiff base-based cationic gemini surfactants:Synthesis and effect on corrosion inhibition of carbon steel in hydrochloric acid solution. Corrosion Science,2009,51 (11): 2610-2618.
    [83]X. M. Wang,H. Y, Yang, F. H. Wang, A cationic gemini-surfactant as effective inhibitor for mild steel in HCl solutions. Corrosion Science,2010.52(4):1268-1276.
    [84]N. A. Negm, A. M. A. Sabagh. M. A. Migahed, H. M. A. Bary, H. M. E. Din, Effectiveness of some diquaternary ammonium surfactants as corrosion inhibitors for carbon steel in 0.5M HCl solution. Corrosion Science,2010,52(6):2122-2132.
    [85]M. A. Hegazy, M. Abdallah, H. Ahmed, Novel cationic gemini surfactants as corrosion inhibitors for carbon steel pipelines. Corrosion Science,2010,52 (9):2897-2904.
    [86]L.-G. Qiu, A.-J. Xie, Y.-H. Shen, Understanding the adsorption of cationic gemini surfactants on steel surface in hydrochloric acid. Materials Chemistry and Physics,2004,87 (2-3):237-240.
    [87]T. Suzuki, H. Nishihara, K. Aramaki, The synergistic inhibition effect of octylmercaptopropionate and 8-quinolinol on the corrosion of iron in an aerated 0.5 M Na2SO4 solution. Corrosion Science,1996,38(8): 1223-1234.
    [88]H. B. Rudresh, S. M. Mayanna, The synergistic effect of Halide ions on the corrosion inhibition of zinc by n-decylamine. Corrosion Science,1979,19 (6):361-370.
    [89]K. Aramaki, M. Hagiwara, H. Nishihara, The synergistic effect of anions and the ammonium cation on the inhibition of iron corrosion in acid solution. Corrosion Science,1987,27 (5):487-497.
    [90]S.Syed Azim, S. Muralidharan, S. Venkatakrishna Iyer, Studies on the influence of iodide ions on the synergistic inhibition of the corrosion of mild steel in an acidic solution. Journal of Applied Electrochemistry,1995,25 (5):495-500.
    [91]N.Caltskan, S. Bilgic, Effect of iodide ions on the synergistic inhibition of the corrosion of manganese-14 steel in acidic media. Applied Surface Science,2000,153 (2-3):128-133.
    [92]C. Jeyaprabha, S. Sathiyanarayanan, G. Venkatachari, Influence of halide ions on the adsorption of diphenylamine on iron in 0.5M H2SO4 solutions. Electrochimica Acta,2006,51 (19):4080-4088.
    [93]I. B. Obot, N. O. Obi-Egbedi, S. A. Umoren, The synergistic inhibitive effect and some quantum chemical parameters of 2,3-diaminonaphthalene and iodide ions on the hydrochloric acid corrosion of aluminium. Corrosion Science,2009,51 (2):276-282.
    [94]A. S. Fouda, H. A. Mostafa, F. El-Taib, G.Y. Elewady, Synergistic influence of iodide ions on the inhibition of corrosion of C-steel in sulphuric acid by some aliphatic amines. Corrosion Science,2005,47 (8):1988-2004.
    [95]Q. Qu, Z. Hao,S. Jiang. L. Li, W. Bai, Synergistic inhibition between dodecylamine and potassium iodide on the corrosion of cold rolled steel in 0.1 M phosphoric acid. Materials and Corrosion,2008,59 (11):883-888.
    [96]E. E. Oguzie, Y. Li, F. H. Wang,Effect of surface nanocrystallization on corrosion and corrosion inhibition of low carbon steel:Synergistic effect of methionine and iodide ion.Electrochimica Acta,2007, 52(24):6988-6996.
    [97]E. E. Oguzie, Y. Li, F. H. Wang, Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion. Journal of Colloid and Interface Science,2007, 310(1):90-98.
    [98]D.-Q. Zhang, X.-M. He, Q.-R. Cai, L.-X. Gao, G. Kim, Arginine self-assembled monolayers against copper corrosion and synergistic effect of iodide ion. Journal of Applied Electrochemistry,2009,39 (8): 1193-1198.
    [99]D.-Q. Zhang, Q.-R. Cai. X.-M. He, L.-X. Gao, G. S. Kim, Corrosion inhibition and adsorption behavior of methionine on copper in HCI and synergistic effect of zinc ions. Materials Chemistry and Physics,2009,114(2-3):612-617.
    [100]S. A. Umoren. Y. Li, F. H. Wang, Synergistic effect of iodide ion and polyacrylic acid on corrosion inhibition of iron in H2SO4 investigated by electrochemical techniques. Corrosion Science,2010, 52(7):2422-2429.
    [101]L. Larabi, Y. Harek. M. Traisnel, A. Mansri, Synergistic Influence of Poly(4-Vinylpyridine)and Potassium Iodide on Inhibition of Corrosion of Mild Steel in 1M HCI. Journal of Applied Electrochemistry, 2004,34(8):833-839.
    [102]C. Jeyaprabha, S. Sathiyanarayanan, G. Venkatachari, Co-adsorption effect of polyaniline and halide ions on the corrosion of iron in 0.5M H2SO4 solutions. Journal of Electroanalytical Chemistry,2005, 583 (2):232-240.
    [103]S. Sathiyanarayanan, C. Jeyaprabha, G. Venkatachari, Influence of metal cations on the inhibitive effect of polyaniline for iron in 0.5M H2SO4. Materials Chemistry and Physics,2008,107 (2-3):350-355.
    [104]S. A. Umoren, E. E. Ebenso, The synergistic effect of polyacrylamide and iodide ions on the corrosion inhibition of mild steel in H2SO4. Materials Chemistry and Physics,2007,106 (2-3):387-393.
    [105]S. A. Umoren, Y. Li, F. H. Wang, Electrochemical study of corrosion inhibition and adsorption behaviour for pure iron by polyacrylamide in H2SO4:Synergistic effect of iodide ions. Corrosion Science, 2010.52(5):1777-1786.
    [106]S. A. Umoren, Y. Li, F. H. Wang, Synergistic effect of iodide ion and polyacrylic acid on corrosion inhibition of iron in H2SO4 investigated by electrochemical techniques. Corrosion Science.2010, 52 (7):2422-2429.
    [107]S. Umoren,M. Solomon, I. Udosoro, A. Udoh, Synergistic and antagonistic effects between halide ions and carboxymethyl cellulose for the corrosion inhibition of mild steel in sulphuric acid solution. Cellulose,2010,17(3):635-648.
    [108]X. Li, S. Deng, H. Fu. G. Mu, Synergistic inhibition effect of rare earth cerium(IV) ion and 3,4-dihydroxybenzaldehye on the corrosion of cold rolled steel in H2SO4 solution. Corrosion Science,2009. 51 (11):2639-2651.
    [109]X. H. Li, S. D. Deng, G. N. Mu, H. Fu, Synergism between protocatechualdehyde and rate earth cerium(IV) ion on the corrosion of cold rolled steel in hydrochloric acid solution. Materials and Corrosion. 2010,61 (3):229-237.
    [110]X. Li, S. Deng, G. Mu, Q. Qu,The synergistic inhibition effect of rare earth cerium(Ⅳ) ion and iso-vanillin on the corrosion of cold rolled steel in 1.0 M H2SO4 solution. Materials Letters,2007,61 (11-12):2514-2517.
    [111]Y. Feng, K. S. Siow, W. K. Teo, A. K. Hsieh. The synergistic effects of propargyl alcohol and potassium iodide on the inhibition of mild steel in 0.5 M sulfuric acid solution. Corrosion Science,1999,41 (5):829-852.
    [112]M. Bouklah, B. Hammouti, A. Aouniti, M. Benkaddour, A. Bouyanzer, Synergistic effect of iodide ions on the corrosion inhibition of steel in 0.5M H2SO4 by new chalcone derivatives. Applied Surface Science,2006,252 (18):6236-6242.
    [113]L. B. Tang, X. M. Li, G. N. Mu, L. Li, G. H. Liu, Synergistic effect between 4-(2-pyridylazo) resorcin and chloride ion on the corrosion of cold rolled steel in 1.0M phosphoric acid. Applied Surface Science,2006,253(5):2367-2372.
    [114]L. B. Tang, X. M. Li, G. N. Mu, L. Li, G. H. Liu, Synergistic effect between 4-(2-pyridylazo) resorcin and chloride ion on the corrosion of cold rolled steel in 0.5M sulfuric acid. Applied Surface Science,2006,252 (18):6394-6401.
    [115]X. Li, L. Tang, L. Li, G. Mu, G. Liu, Synergistic inhibition between o-phenanthroline and chloride ion for steel corrosion in sulphuric acid. Corrosion Science,2006,48 (2):308-321.
    [116]G. N. Mu, X. M. Li, F. Li, Synergistic inhibition between o-phenanthroline and chloride ion on cold rolled steel corrosion in phosphoric acid. Materials Chemistry and Physics,2004,86 (1):59-68.
    [117]L. Tang, X. Li, Y. Si, G. Mu, G. Liu, The synergistic inhibition between 8-hydroxyquinoline and chloride ion for the corrosion of cold rolled steel in 0.5M sulfuric acid. Materials Chemistry and Physics, 2006,95(1):29-38.
    [118]X. H. Li, S. D. Deng, H. Fu, Synergistic inhibition effect of red tetrazolium and uracil on the corrosion of cold rolled steel in H3PO4 solution:Weight loss, electrochemical,and AFM approaches. Materials Chemistry and Physics,2009,115 (2-3):815-824.
    [119]Q. Qu, S. Jiang, W. Bai, L. Li, Effect of ethylenediamine tetraacetic acid disodium on the corrosion of cold rolled steel in the presence of benzotriazole in hydrochloric acid. Electrochimica Acta, 2007,52 (24):6811-6820.
    [120]M. H. Wahdan, The synergistic inhibition effect and thermodynamic properties of 2-mercaptobenzimidazol and some selected cations as a mixed inhibitor for pickling of mild steel in acid solution. Materials Chemistry and Physics,1997,49 (2):135-140.
    [121]R. Solmaz, M. E. Mert, G. Kardas,B. Yazici, M. Erbil, Adsorption and Corrosion Inhibition Effect of 1,1'-Thiocarbonyldiimidazole on Mild Steel in H2SO4 Solution and Synergistic Effect of Iodide Ion. Acta Physico-Chimica Sinica,2008,24 (7):1185-1191.
    [122]E. E. Ebenso. Synergistic effect of halide ions on the corrosion inhibition of aluminium in H2SO4 using 2-acetylphenothiazine. Materials Chemistry and Physics,2003,79 (1):58-70.
    [123]H. A. El-Dahan, T. Y. Soror, R. M. El-Sherif, Studies on the inhibition of aluminum dissolution by hexamine-halide blends:Part I. Weight loss, open circuit potential and polarization measurements. Materials Chemistry and Physics,2005,89 (2-3):260-267.
    [124]X. H. Li, S. D. Deng, H. Fu, G. N. Mu, Synergistic inhibition effect of rare earth cerium(Ⅳ) ion and sodium oleate on the corrosion of cold rolled steel in phosphoric acid solution. Corrosion Science, 2010.52(4):1167-1178.
    [125]X. H. Li, S. D. Deng, H. Fu, G. N. Mu, Synergistic inhibition effect of rare earth cerium(IV) ion and anionic surfactant on the corrosion of cold rolled steel in H2SO4 solution. Corrosion Science,2008,50 (9):2635-2645.
    [126]X. M. Li, L. B. Tang, H. C. Liu, G. N. Mu, G. H. Liu, Influence of halide ions on inhibitive performance of cetyl trimethyi ammonium bromide in various concentrations of phosphoric acid for cold rolled steel. Materials Letters,2008,62 (15):2321-2324.
    [127]L. B. Tang, X. M. Li, G. N. Mu, G. H. Liu, L. Li, H. C. Liu, Y. S. Si, The synergistic inhibition between hexadecyl trimethyl ammonium bromide (HTAB) and NaBr for the corrosion of cold rolled steel in 0.5 M sulfuric acid. Journal of Materials Science,2006,41(10):3063-3069.
    [128]X. M. Li, L. B. Tang, Synergistic inhibition between OP and NaCI on the corrosion of cold-rolled steel in phosphoric acid. Materials Chemistry and Physics,2005,90 (2-3):286-297.
    [129]M. A. Amin, Q. Mohsen, O. A. Hazzazi, Synergistic effect of I- ions on the corrosion inhibition of Al in 1.0M phosphoric acid solutions by purine. Materials Chemistry and Physics,2009,114 (2-3): 908-914.
    [130]M. K. Pavithra, T. V. Venkatesha, K. Vathsala. K. O. Nay ana, Synergistic effect of halide ions on improving corrosion inhibition behaviour of benzisothiozole-3-piperizine hydrochloride on mild steel in 0.5M H2SO4 medium. Corrosion Science,2010,52(11):3811-3819.
    [131]P. C. Okafor, Y. Zheng, Synergistic inhibition behaviour of methylbenzyl quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions. Corrosion Science,2009,51(4):850-859.
    [132]D. Q. Zhang, L. X. Gao, G. D. Zhou, Synergistic effect of 2-mercapto benzimidazole and KI on copper corrosion inhibition in aerated sulfuric acid solution. Journal of Applied Electrochemistry,2003,33 (5):361-366.
    [133]E. E. Oguzie, C. Unaegbu, C. N. Ogukwe, B. N. Okolue, A. I. Onuchukwu, Inhibition of mild steel corrosion in sulphuric acid using indigo dye and synergistic halide additives. Materials Chemistry and Physics,2004,84(2-3):363-368.
    [134]H.Y. Ma, S. H. Chen, B. S. Yin, S. Y. Zhao, X. Q. Liu,Impedance spectroscopic study of corrosion inhibition of copper by surfactants in the acidic solutions.Corrosion Science,2003,45 (5): 867-882.
    [135]R. F. V. Villamil, P. Corio, S. M. L. Agostinho, J. C. Rubim, Effect of sodium dodecylsulfate on copper corrosion in sulfuric acid media in the absence and presence of benzotriazole. Journal of Electroanalytical Chemistry,1999,472 (2):112-119.
    [136]R. F. V. Villamil, P. Corio, J. C. Rubim, S. M. L. Agostinho, Sodium dodecylsulfate-benzotriazole synergistic effect as an inhibitor of processes on copper 1 chloridric acid interfaces. Journal of Electroanalytical Chemistry,2002.535 (1-2):75-83.
    [137]H. Tavakoli, T. Shahrabi, M. G. Hosseini, Synergistic effect on corrosion inhibition of copper by sodium dodecylbenzenesulphonate (SDBS) and 2-mercaptobenzoxazole. Materials Chemistry and Physics 2008,109 (2-3):281-286.
    [138]M. Hosseini, H. Tavakoli. T. Shahrabi, Synergism in copper corrosion inhibition by sodium dodecylbenzenesulphonate and 2-mercaptobenzoimidazole. Journal of Applied Electrochemistry,2008,38 (11):1629-1636.
    [139]M. Hosseini, S. F. L. Mertens, M. R. Arshadi. Synergism and antagonism in mild steel corrosion inhibition by sodium dodecylbenzenesulphonate and hexamethylenetetramine. Corrosion Science,2003,45 (7):1473-1489.
    [140]肖进新,赵振国,表面活性剂应用原理.化学工业出版社:北京,2003.
    [141]X. M. Li, L. B. Tang, G. N. Mu. L. Li. G. H. Liu, The synergistic inhibition of the cold rolled steel Corrosion in 0.5 M sulfuric acid by the mixture of OP and bromide ion. Materials Letters,2007,61 (13): 2723-2727.
    [142]G. N. Mu, X. M. Li, G. H. Liu, Synergistic inhibition between tween 60 and NaCl on the corrosion of cold rolled steel in 0.5M sulfuric acid. Corrosion Science,2005,47(8):1932-1952.
    [143]K. Esumi, M. Goino, Y. Koide, Adsorption and Adsolubilization by Monomeric. Dimeric, or Trimeric Quaternary Ammonium Surfactant at Silica/Water Interface.Journal of Colloid and Interface Science,1996,183(2):539-545.
    [144]M. J. Rosen, G. surfactants, Cosmetics & Toiletrise,1998,113(2):49-55.
    [145]R. Zana, H. Levy, K. Kwetkat, Mixed Micellization of Dimeric (Gemini) Surfactants and Conventional Surfactants.Ⅰ. Mixtures of an Anionic Dimeric Surfactant and of the Nonionic Surfactants C12E5 and C12E8.Journal of Colloid and Interface Science,1998,197(2):370-376.
    [146]R. Zana, Dimeric (Gemini) Surfactants:Effect of the Spacer Group on the Association Behavior in Aqueous Solution. Journal of Colloid and Interface Science,2002,248(2):203-220.
    [I47]K. Tsubone, The interaction of an anionic gemini surfactant with conventional anionic surfactants. Journal of Colloid and Interface Science,2003,261(2):524-528.
    [148]E. E. Oguzie. Y. Li, F. H. Wang, Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion.Journal of Colloid and Interface Science. 2007,310(1):90-98.
    [149]M. Gojic, The effect of propargylic alcohol on the corrosion inhibition of low alloy CrMo steel in sulphuric acid. Corrosion Science,2001,43 (5):919-929.
    [150]Y. Feng, K. S. Siow, W. K. Teo, A. K. Hsieh, The synergistic effects of propargyl alcohol and potassium iodide on the inhibition of mild steel in 0.5 M sulfuric acid solution. Corrosion Science,1999,41 (5):829-852.
    [151]Z.-Y. Wu, Z. Fang, L.-G. Qiu, Y. Wu, Z.-Q. Li, T. Xu, W. Wang, X. Jiang, Synergistic inhibition between the gemini surfactant and bromide ion for steel corrosion in sulphuric acid. Journal of Applied Electrochemistry,2009,39 (6):779-784.
    [152]D. Asefi, M. Arami, N. M. Mahmoodi, Electrochemical effect of cationic gemini surfactant and halide salts on corrosion inhibition of low carbon steel in acid medium. Corrosion Science,2010,52 (3): 794-800.
    [153]D. Asefi, N. M. Mahmoodi, M. Arami, Effect of nonionic co-surfactants on corrosion inhibition effect of cationic gemini surfactant. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010,355(1-3):183-186.
    [154]L.-G. Qiu, Y. Wu, Y.-M. Wang, X. Jiang, Synergistic effect between cationic gemini surfactant and chloride ion for the corrosion inhibition of steel in sulphuric acid. Corrosion Science,2008.50 (2): 576-582.
    [155]L. B. Tang, X. M. Li, H. C. Liu, G. N. Mu, G. H. Liu. Effect of NaBr on the corrosion of cold rolled steel in 1.0 M phosphoric acid. Journal of Materials Science,2006,41 (7):1991-1997.
    [156]张士国,杨频,用量子化学密度泛函理论研究环状含氮化合物分子结构与缓蚀性能的关系中国腐蚀与防护学报,2004,24(4):240-244.
    [157]于会华,张静,杜敏,量化学在缓蚀剂研究中的应用.材料保护,2010,43(11):36-39.
    [158]G. Gece, The use of quantum chemical methods in corrosion inhibitor studies. Corrosion Science. 2008,50 (11):2981-2992.
    [159]M. A. Quraishi, R. Sardar, D. Jamal,Corrosion inhibition of mild steel in hydrochloric acid by some aromatic hydrazides. Materials Chemistry and Physics,2001.71 (3):309-313.
    [160]刘建国,郑家燊,朱宏伟,分子模型技术在腐蚀缓蚀上的应用.腐蚀与防护,2003,24(3):107-109.
    [161]J. H. Henriquez-Roman, L. Padilla-Campos, M. A. Paez. J. Fl. Zagal, M. A. Rubio, C. M. Rangel, J. Costamagna, G. Cardenas-Jiron, The influence of aniline and its derivatives on the corrosion behaviour of copper in acid solution: a theoretical approach. Journal of Molecular Structure:THEOCHEM.2005,757 (1-3):1-7.
    [162]N. Khalil, Quantum chemical approach of corrosion inhibition. Electrochimica Acta,2003,48 (18):2635-2640.
    [163]M. Behpour, S. M. Ghoreishi, N. Soltani, M. Salavati-Niasari, M. Hamadanian, A. Gandomi, Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution. Corrosion Science,2008,50 (8):2172-2181.
    [164]M. K. Awad, R. M. Issa, F. M. Atlam, Theoretical investigation of the inhibition of corrosion by some triazole Schiff bases. Materials and Corrosion,2009,60 (10):813-819.
    [165]M. K. Awad, Semiempirical investigation of the inhibition efficiency of thiourea derivatives as corrosion inhibitors. Journal of Electroanatytical Chemistry,2004,567(2):219-225.
    [166]R. G. Parr, W. Yang,Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society.1984,106 (14):4049-4050.
    [167]W. Yang, W. J. Mortier. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines.Journal of the American Chemical Society,1986,108 (19):5708-5711.
    [168]R. G. Parr, R. G. Pearson, Absolute hardness:companion parameter to absolute electronegativity, Journal of the American Chemical Society,1983,105(26):7512-7516.
    [169]R. G. Parr, L.v. Szentpaly, S. Liu, Electrophilicity Index. Journal of the American Chemical Society,1999,121(9):1922-1924.
    [170]张军,李中谱,赵卫民,郭文跃,王勇,咪唑啉缓蚀剂缓蚀性能的理论研究.石油学报(石油加工),2008,24(5):598-604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700