星上时频主备链路比对测量及自主完好性监测方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星载时频生成与保持系统以星载原子钟输出频率为参考,综合各种软硬件措施为导航卫星有效载荷提供精确、可靠、稳定并且连续的参考频率信号,其性能指标的优劣会直接影响卫星导航系统的定位、授时和测速精度。星上参考频率信号的精确性主要由星载原子钟及参考频率生成链路的性能决定,而可靠性和稳定性指标则主要取决于对参考频率信号的监测以及控制能力。因为运行环境的特殊性,目前的星载时频生成与保持系统主要采取冗余备份的手段来增强导航卫星参考频率的可靠性。为了保证主用参考频率信号发生故障时平稳过渡到备用参考频率信号,必须尽可能保证主备链路信号的同步性。而对星上时频主备链路的高精度监测是主备参考频率信号保持同步的重要前提。因此,星上时频主备链路的高精度测量和完好性监测具有重要的科学意义和实用价值。
     星上时频主备链路监测要解决的关键问题是在星上环境下特殊频点信号的高分辨率测量和有限资源条件下的完好性监测。
     本论文分析了现代导航卫星时频生成与保持技术和国内外频标比对测量技术的研究成果,在充分考虑星上运行环境的特殊性的前提下,提出了星上时频主备链路的高精度比对测量及其自主完好性检测方法,并研制原理样机,测试验证了所提出方法的有效性。
     论文的主要研究内容和创新点如下:
     (1)在比较现有导航卫星时频生成与保持技术特点的基础上,提出一种导航卫星时频生成与保持系统设计方案,并对设计方案中的关键技术进行了分析。
     (2)依据星上运行环境的要求,提出了一种针对特殊频点信号的数字化高精度比对测量方法,同步测量星上时频主备链路,通过差分抵消系统误差的影响;并研制出基于DSP的星上时频主备链路比对测量系统原理样机,具有测量精度高、体积小、功耗小的特点,适合于星上应用环境。
     (3)理论分析并仿真研究了星上时频链路比对测量系统的误差来源及其对测量精度的影响,并提出了相应改善措施。
     (4)分析常见星上参考频率信号异常及其影响,提出基于中间振荡器的星上时频主备链路自主完好性监测方法,在不增加星上时频主备链路比对测量系统硬件构架的基础上,且不需星地闭环的条件下对星上参考频率信号缺失、频率或相位跳变等异常现象进行实时检测并判断异常归属。
     (5)搭建实验平台对所研制的星上时频链路比对测量系统原理样机进行了测试。系统相位差测量分辨率优于1ps,频差测量分辨率优于10μHz;在设定0.3028mHz跳变检测门限的前提下,对于稳定度为5E-12/s的模拟星上参考频率信号0.8mHz以上的频率跳变和0.078ns以上的相位跳变达到0.019%的检测虚警率和100%的检测率,并能准确判断异常归属。
     理论分析、实验仿真、原理样机验证三个阶段的结论充分证明了本文提出的星上时频高精度比对测量及其完好性监测方法的可行性。所研制的星上时频链路比对测量系统原理样机系统本底噪声测试典型值优于1E-12/s,最优值达到6.76E-13/s,满足星上时频主备链路的高精度测量及其完好性监测的需求。
Onboard time and frequency generation and maintenance systems are used toprovide accurate, reliable, stable and continuous time and frequency referencestandard for navigation satellites. Its implement is based on the output of space atomicclocks as reference and integrating the resources of hardware and software. Theperformance of reference standard is related to the precision of positioning, timingand velocity measurement of satellite navigation system. Accurate signal depends onthe performance of atomic clock and signal generated chain when reliable and stablesignal is maintained depending on high-precision measurement and steering capacity.Because the environment of onboard satellite is complicated and can’t intolerancefailure, signal hot-standby redundant is used widely to enhance the reliability. In orderto ensure a smooth transition to the standby signal when the master signal is failure,there is high-precision measurement device to keep the master and slave signalsynchronizing. So studying the methods that high-precision measure and autonomousintegrity monitor time and frequency reference signal of onboard satellites haveimportant scientific significance and practical value.
     The key issues of monitoring and measuring time and frequency reference signal ofonboard satellites includes: high-resolution measurement method of special frequency,autonomous integrity monitoring method of reference signals under limited resources.
     This paper analyzed the research results of onboard time-frequency generation andmaintenance at home and abroad, and then researched the particular runningenvironment of satellite. The high-resolution phase difference measurement andautonomous integrity monitoring method are proposed based on previously mentionedresearch. Finally, a prototype have been developed and tested to validate theperformance of proposed method.
     The main research contents and innovation as follows:
     (1)Propose a new scheme of onboard time-frequency generation andmaintenance system based on analyzing the advantages and disadvantages of existingscheme. And then the key issues are analyzed in that scheme.
     (2)According to the characteristics and requirement of space atomic clock outputfrequency and running environment, a high-resolution phase difference digitalmeasurement method is proposed. It can measure synchronously two signals toremove the system error. A prototype has been developed based on DSP, with highmeasurement accuracy, small size, low power consumption, and it is suitable forapplying in satellite.
     (3) Analysis and simulation are implemented to determine the reasons of thesystem errors and effect on measurement accuracy in theory. And then theimprovement measures are proposed correspondingly.
     (4)Analyzing typical abnormal states of space atomic clock and its influences,proposed a solving scheme that realize the autonomous integrity monitoring based oncommon oscillator of measurement system without additional hardware. The schemecan determine which clock is abnormal and what happen. Abnormal states that can bedetected include space clock failure, frequency of phase hopping.
     (5) A test platform has been built to test the performance of developed prototype.It achieves including: the phase difference measurement resolution better than1ps,frequency difference measurement resolution is better than10μHz.When the detectionthreshold of is set as0.3028mHz,the frequency jump bigger than0.8mHz and phasejump bigger than0.078ns can be easily detected and distinguished towards thesimulated reference frequency of5E-12/s.
     This paper follows three stages such as theory analysis, experiment simulation, andprototype testing, which argue the feasibility of proposed method. Prototype has beentested and achieved that typical noise floor is superior to1E-12/s, and the best noisefloor reach6.76E-13/s. The performance is better than the monitoring requirements ofonboard time and frequency reference standard.
引文
[1]廖春发.国际GNSS发展回顾与启示[J].卫星应用,2012,2:31–36.
    [2]吴海涛,李孝辉,卢晓春等.卫星导航系统时间基础[M].北京:科学出版社,2011:67–72.
    [3]漆贯荣.时间科学基础[M].北京:高等教育出版社,2006:19–34.
    [4]张首刚.新型原子频标发展现状[J].时间频率学报,2009,Vol32(2):81–91.
    [5]刘铁新,翟造成.卫星导航定位与空间原子钟[J].全球定位系统,2002,2:7–17.
    [6]祝彬,郑娟. GPS卫星星钟的发展[J].中国航天,2008,3:28–31.
    [7]翟造成,李玉莹.下一代星载原子钟的新发展[J].全球定位系统,2010,5:1–5.
    [8]翟造成,杨培红.第三代卫星导航定位系统星载原子钟的新发展[J].天文学进展,2008,Vol26(4):301–310.
    [9]顾亚楠,陈忠贵,帅平.国外导航卫星星载原子钟技术发展概况[J].国际太空,2008,10:12–16.
    [10]李玉莹,刘铁新,翟造成.卫星导航定位系统的现状与星载钟的新发展[J].导航天地,2010,1:45–48.
    [11]翟造成,李玉莹,刘铁新.氢原子钟的空间应用前景[J].空间电子技术,2010,4:55–60.
    [12]周渭,偶小娟,周晖等.时频测控技术[M].西安:西安电子科技大学出版社,2006:56–65.
    [13]王莉.卫星导航定位系统定位精度估计[J].飞行器测控学报,2008,Vol27(2):80–84.
    [14]王庆华,Droz F,Rochat P.用于GNSS的SpT星载原子钟及时间系统介绍[J].武汉大学学报(信息科学版),2010,Vol36(10):1177–1181.
    [15]李孝辉,杨旭海,刘娅等.时间频率信号的精确测量[M].北京:科学出版社,2010:104–144.
    [16]Weiss M,Shome P,Beard R.On–board GPS clock monitoring for signalintegrity[C]. Proceeds of42th Annual Precise Time and Time Interval (PTTI) Meeting.2010:465–479.
    [17]张爱敏,高小珣,宁大愚,等.多通道双混频时差测量系统的实现[J].计量学报,2009,Vol30(6):563–566.
    [18]刘娅,李孝辉,王玉兰.一种基于数字技术的多通道频率测量系统[J].仪器仪表学报,2009,Vol30(9):1964–1968.
    [19]刘娅.多通道数字化频率测量方法研究与实现[D].中国科学院研究生院博士论文,2010.
    [20]应展烽,吴军基,易文俊.基于小波变换和三点法的基波频率测量.电机与控制学报[J],2010,Vol14(2):65–70.
    [21]Analog–to–Digital Converters ADS8364(Literature Number: SBAS219C)[Z].USA:Texas Instruments,2006.
    [22]TMS320C6713B Floating–piont Digital Signal Processor (Literature Number:SPRS294B)[Z].USA:Texas Instruments,2006.
    [23] MSP430x14x Mixed Signal Microcontroller (Literature Number:SLAS272F)[Z].USA:Texas Instruments,2004.
    [24]TMS320C6000DSP Host Port Interface Reference Guide (Literature Number:SPRU578C)[Z].USA:Texas Instruments,2006.
    [25]Epstein M,Freed G,Rajan J. GPS IIR rubidium clocks:In–orbt performanceaspects[C].Proceedings of35th Annual Precise Time and Time Interval (PTTI),2003:117–134.
    [26]Thomas B M,Wilson G R,James A B. Analysis of the Frequency Stability of On–orbit GPS Navstar Clock[C]. Proceedings of the47th IEEE International FrequencyControl Symposium,1993:23–32.
    [27]Cernigliaro A,Sesia I.Satellite.Clocks Characterization and Monitoring for GlobalNavigation Satellite Systems[C]. Proceedings of30th URSI General Assembly andScientific Symposium. Istanbul,Turkey,August13–20,2011.
    [28]Weiss M,Shome P,Beard R.GPS Signal Integrity Dependencies on AtomicClocks[C]. Proceedings of38th Annual Precise Time and Time Interval (PTTI)Meeting,2006:439–448.
    [29]张慧君.GNSS系统时差监测方法研究[D].中国科学院研究生院博士论文,2011.
    [30]许龙霞,李孝辉.基于接收机钟差的GPS完好性自主检测算法[J].宇航学报,2011,Vol32(3):537–542.
    [31]刘海颖,冯成涛,王惠南.一种惯性辅助卫星导航系统及其完好性检测方法[J].宇航学报,2011,Vol32(4):775–780.
    [32] S.W Lee, J Kim, Y.J Lee. Protecting Signal Integrity Against Atomic ClockAnomalies on Board GNSS Satellites[J]. IEEE Transactions on Instrumentation andMeasurment,2011, Vol60(7):2738-2745.
    [33]Y.J.Heo,J.Cho,B.Heo. Detection of GPS Clock Jump Using Teager EnergyOperator[C]. Proceedings of Precision Electromagnetic Measurements (CPEM)Conference,2010:474–475.
    [34]E.Nunzi,P.Carbone,P.Tavella. Fault Detection in Atomic Clock FrequencyStandards Affected by Mean and Variance Changes and By an Additive PeriodicComponent:the GLRT Approach[C]. Proceedings of IEEE Instrumentation andMeasurement Technology Conference,2008:1594–1597.
    [35]E.Nunzi,P. Carbone. Monitoring Signal Integrity of Atomic Clocks by Means ofthe GLRT[J],Metrologia,Vol45(2008):103–107.
    [36]E.Nunzi,D. Ippolito. A Novel Theoretical Analysis of Fault Detection for Atomicclock[C]. Proceedings of IEEE Advanced Methods for Uncertainty Estimation inMeasurement Conference,2009:85–88.
    [37]E.Nunzi, G.Barchi, U.Bartoccini.Methods and Tools for Frequency JumpDetection[C]. Proceedings of IEEE Advanced Methods for Uncertainty Estimation inMeasurement Conference,2009:109–112.
    [38]E.Nunzi,G. Saltanocchi. Real-time Detection of Anomalies for atomic clock inSpace by Means of The GLRT[C]. Proceedings of24thEuropean Frequency and TimeForum,2010.
    [39]Galleani L,Tavella P. Detection of Atomic Clock Frequency Jumps With theKalman Filter[J]. IEEE Transaction on Ultrasonics Ferroelectrics and FrequencyControl,2012,Vol59(3):504–509.
    [40]Sesia I, Tavella P.Application of the Dynamic Allan Variance for theCharacterization of Space Clock Behavior[J]. IEEE Transactions on Aerospace andElectronic System,2011,Vol47(2):884–895.
    [41]Galleani L.The Dynamic Allan Variance III: Confidence and DetectionSurfaces[J]. IEEE Transaction on Ultrasonics Ferroelectrics and Frequency Control,2011.Vol(58):1550–1558.
    [42]Rodriguez PI,Garcia S C. Inter–Satellite Links for Satellite Autonomous IntegrityMonitoring[J]. Advances in Space Research,2011,Vol47(1):197–212.
    [43]Galleani,Tavella P. Using the Kalman Filter to Detect FrequencyJumps in AtomicClocks[C]. Proceedings of2011Joint Conference of the IEEE InternationalFrequency Control and the European Frequency and Time Forum (FCS),2011:1–3.
    [44]Farina M,Galleani L,Tavella P,Bittanti S. A Control Theory Approach to ClockSteering Techniques[J].IEEE Transaction on Ultrasonics Ferroelectrics and FrequencyControl,2010,Vol57(10):2257–2270.
    [45]Galleani L. The Dynamic Allan Variance II:A Fast Computational Algorithm[J].IEEE Transaction on Ultrasonics Ferroelectrics and Frequency Control,2010,Vol57(1):182–188.
    [46]Galleani L,Tavella P. Time and the Kalman Filter[J]. IEEE Control Ssystems,2010,Vol30(2):44–65.
    [47]Galleani L,Tavella P. An Algorithm for the Detection of Frequency Jumps inSpace Clocks[C]. Proceedings of42nd Annual PTTI,2010:503–508.
    [48]Galleani L,Tavella P. Detection and Identification of Atomic Clock Anomalies[J].METROLOGIA,2009,Vol45:127–133.
    [49]Galleani L.Detection of Changes in Clock Noise Using the Time–frequencySpectrum. In:METROLOGIA,2008,Vol45:143–153.
    [50]Sesia I,Galleani L. Implementation of the Dynamic Allan Variance for theGalileo System Test Bed V2. Proceedings of IEEE EFTF–FCS,2007:946–949.
    [51]Qinghua Wang,Pascal Rochat. An Anomaly Clock Detection Algorithm for a,Robust Clock Ensemble.41th Annual Precise Time and Time Interval (PTTI)Meeting,2009:121–130.
    [52]郭海荣.导航卫星卫星钟时频特性分析理论与方法研究[D].解放军信息工程大学博士论文,2006.
    [53]牛飞.GNSS完好性增强理论与方法研究[D].解放军信息工程大学博士论文,2008.
    [54]王淑芳,孙妍.卫星自主完好性监测技术[J].测绘学院学报.2005,Vol22(4):266–268.
    [55]赵娜,胡彩波,赵伟,刘春霞.卫星钟及其性能监测与故障处理[J].无线电工程.2012,Vol42(4):30–33.
    [56]黄新明,龚航,朱祥维等.基于Kalman滤波器的卫星钟实时异常监测算法[J].宇航计测技术[J].2011,Vol31(5):6–11.
    [57]Xinming Huang, Hang Gong, Wenke Yang, Xiangwei Zhu. An ItegrityMonitoring Algorithm for Satellite Clock Based on Test Statics[C]. Proceedings ofChina Satellite Navigation Conference,2012:515–526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700