微型生物听觉系统的定向机理及仿生声感应结构的设计和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声源定位在工程应用中具有重要的价值。常见的声源定位一般是通过若干个传声器单元组成的传声器阵列来实现的,各传声器单元对声激励产生响应而生成多个时间序列,并将其送至实现定位算法的运算单元中从而计算得到声源的位置。通常,传声器阵列中的各传声器单元之间均独立而不相互耦合,为获得足够的声场信息,必须保证传声器阵列具有一定的单元个数,此外,为保证定位的精度,传声器单元的间距也往往远大于传声器单元的距离精度,也即其间距要远大于系统采样周期与声波在介质中的传播速度的乘积。因此,传声器阵列的整体尺寸将比较庞大,结构也较为复杂。而在一些特殊的应用领域,如微型运载工具用高精度微型声纳、具有声源定位功能的感向助听器等中,需要声定位结构在保证定位精度的前提下,兼具微型化的特征。
     此外,在水声学领域中,常使用拖曳阵等阵列形式组成声纳系统,利用声波对海洋中存在的水下目标进行探测、识别和定位。为提高其测向精度,需要组成大的水听器基阵并加大其布置的间隔,因而基阵尺寸将比较庞大,在航行中容易遭到损坏,且需要安装相当多的航向感应器来修正基阵在航行中存在的较大的曲率。声纳基阵庞大的尺度带来的这些缺点提高了声纳系统实际运用的难度,因此减小基阵尺度对于声纳系统的应用具有重要的意义。
     上述应用领域对声定位系统的结构提出了特殊的要求,因而须寻找新的技术来满足使用需求。近年来,基于对各种动物,尤其是对具有优异声源定位能力的奥米亚棕寄生蝇等微型生物的听觉定向机理的探索及其仿生学研究,将有可能为上述应用领域提供较好的解决方案。本文的研究就是在这种背景下展开的。
     奥米亚棕蝇等微型动物的耳间距十分微小,却能凭借其构造独特的声感应系统对外界入射声源的方位作出准确的判断。这种优异的定位能力得益于其双耳间角质皮膜结构的一种机械耦合放大效应。本文的研究对象是奥米亚棕蝇的听觉系统及相应的仿生力学模型及实验模型,研究的目的是借鉴奥米亚棕蝇听觉系统的声定位机制,研究并提出一种新的仿生三维声定位方法,建立相应的力学模型和实验室模型,通过深入的理论和实验研究,最终建立一套仿生三维声感应结构的设计理论与方法体系。在此基础上,设计制造实验室模型装置并对其进行实验验证。通过本课题研究,为具有自主知识产权的微型仿生声传感与定位系统的研发和应用奠定基础。
     对于设计仿生声感应结构来说,利用何种定向机制来完成对声源方向角的估算,以及仿生结构本身应如何选取适当的力学参数来与所采取的定位机制相对应,是应当解决的首要问题。因此,本文在前人对奥米亚棕寄生蝇所进行的解剖学及生理学研究基础上,对其听觉器官的声定向机理及动力学特性进行了较为深入的分析研究,分析探讨了设计仿生声感应结构时可采用的定位机制,即通过测量耦合振膜结构两侧响应幅值差及相位差等信息来对声源方向角进行估测,并探讨了模型力学参数对于系统响应的影响。
     通过对仿生声感应结构可采用的定向机制所进行的探讨,提出了可用于三维空间内对声源方向角进行感测的仿生声感应结构的力学模型,并对该力学模型的动力学特性及其在不同的频率与方向的入射声激励下的响应特性进行了相应的分析和讨论,并分析了力学模型中关键参数对结构响应的影响及耦合结构对声激励幅值差和相位差的放大作用。分析结果表明,声激励的入射方向同三个振膜的响应之间存在着特定的关系,由此提出了一种通过检测并分析三个振膜的响应状况以估测声激励入射角度的方法。
     在前述理论分析的基础上,本文提出了仿生声感应结构的设计方案,该方案利用弹簧和绕固定轴旋转的刚性杆实现了振膜之间振动响应的耦合。随后,导出了该声感应结构的振动微分方程,分析了实际结构参数与力学模型参数之间的对应关系以及仿生声感应结构适合的频带范围及其灵敏度,为加工仿生三维声感应结构的实验室模型提供了依据。
     为验证上述理论分析方法,加工了实验模型,建立了相应的测试系统,并进行了实验。实验所测数据和根据实测数据进行的分析计算结果表明,本文的建模方法和理论分析是正确的。
Sound source localization is always of great value in many engineering applications. In these types of localization appliances, several microphone transducers are usually involved in the localization structures. Each of the time-domain response of these microphones under the incident sound stimulus is determined individually and sent to the arithmetic-logic sections immediately by which the localization systems could find out positions of the sound sources subsequently. The transducers used in microphone array are usually independent of each other, so the microphone array should have enough microphone transducers in order to obtain sufficient acoustic field information. Additionally, the minimum element spacing of the microphone array should be much greater than the distance accuray in order to ensure positioning accuracy, in other words, the minimum element spacing of the microphone array should be much larger than the product of sampling interval and sound velocity in the acoustic propagation medium. Therefore, these appliances always consist of many components, and the looseness of structures of them may narrow their practical applications. In some special application situations, such as micro sonar system used in miniature transportation vehicles and hearing aids capable of determining direction of the acoustic excitation, the transducer system should be designed to accomplish the purpose of localizing the sound source by a relatively compact structure. These types of application situations demand new technologies to satisfy the requirements. In recent years, studies on orientation mechanisms of the auditory systems and research of bionic structures of subminiature creatures, especially of the parasitoid fly Ormia Ochracea which has a remarkable ability to detect the direction of the incident sound stimulus despite of its tiny body size, may provide preferable solutions for these types of applications. This present dissertation was completed under this background.
     The acoustic sensory organs of the parasitoid Ormia Ochracea, the mechanical and the experimental of bionic acoustic sensing device are taken as the research object to find feasible orientation mechanisms which can be used for reference to design reliable and practical acoustic sensing devices and put forward the estimating method of direction angles of sound stimulus.
     Orientation mechanisms for the estimation of direction angles of sound stimulus and parameter selection of mechanical model are very important for designing the bionic acoustic sensing device. Based on the previous research on anatomy and physiology of the parasitoid fly Ormia Ochracea, the orientation mechanisms and dynamic characteristics of its acoustic sensory organs are discussed further, which are beneficial for bionics research on acoustic sensing devices.
     On the basis of this discusses on the orientation mechanisms of the biomimetic structure, the mechanical models for the purpose of estimating the direction angles of sound stimulus in the plane or in half-space. The vibration performances and response characteristics under different incident frequencies or incident angles are analyzed respectively. The analysis of this structure’s dynamic behavior shows that the incident angles of the sound have special relationship to the responses of this instrument, and the incident angles can be estimated by detecting and processing the vibration responses of the three elastic diaphragms.
     According to the localization mechanism and theoretical analyses mentioned above, an acoustic sensing device used mechanically coupled diaphragms is designed, which consists of three springs and rigid bars to accomplish the purpose of coupling between vibration responses of the diaphragms. Vibration differential equations of the acoustic sensing device and the relationship of parameters of the experimental structure and parameters of the mechanical model are established and the sensitivity of vibration responses to strength of the sound stimulus is analyzed simultaneously, these works provide the basis for the manufacture of experimental acoustic sensing device.
     In the last part of this paper, experiments on bionic acoustic sensing device are conducted after the test system has been established. The measured data and the analyses based on the measured data demonstrate that the modeling methods and theoretical study in this dissertation are correct.
引文
[1] S. J. Schreiber, F. Doepp, E. Spruth, U. A. Kopp, J. M. Valdueza. Ultrasonographic measurement of cerebral blood flow, cerebral circulation time and cerebral blood volume in vascular and Alzheimer's dementia[J]. Journal of Neurology, 2005, Vol.252(10): 1171-1177
    [2]严珍珍,张怀,杨长春,石耀霖.汶川大地震地震波传播的谱元法数值模拟研究.中国科学D辑:地球科学, 2009, 39(4):393~402
    [3] Jouni S, Tomberg et al. Analysis of ultrasonic correlation flowmeters for pulp suspension, IEEE Trans.On Sonics and Ultrasonic, Vol.Su-30, No.4, July,1983:264-269
    [4] Kim, Suhwan Ku, Bonhwa; Hong, Wooyoung; Ko, Hanseok. Performance comparison of target localization for active sonar systems. IEEE Transactions on Aerospace and Electronic Systems, v 44, n 4, 2008:1371-1380
    [5] Chan Y.T, Niezgoda G.H, Morton S.P. Passive sonar detection and localization by matched velocity filtering. IEEE Journal of Oceanic Engineering, v 20, n 3,1995:179-189
    [6]孙建伟,谭惠民.被动声目标定位与跟踪的实验研究.北京理工大学学报1999.12,19 (6):764-768
    [7]栗苹,施聚生,崔占忠.被动声定位系统的设计与应用.北京理工大学学报1994.10,14 (S1):80-85
    [8] Soderman P.T and Noble S.C. A Directional Microphone Array for Acoustic Studies of Wind Tunnel Models. AIAA paper 74-640, AIAA Aerodynamic Testing Conference, 8th, Bethesda , Md, July 8-10. 1974
    [9] Billingsley.J, Kinns.R. The Acoustic Telescope. Journal of Sound and Vibration,1976, 48(4):458-510
    [10] Kinns B. Binaural source location. Journal of Sound and Vibration, 1976,44(2): 275-528
    [11] Fischer M.J, Harper-Bourne M.m and Glegg S.A.L. Jet Engine Noise Source Location: The Polar Correlation Techniques. Journal of Sound and Vibration, 1977(51): 23-54
    [12] Blacodon D, Caplot M and Elias G. Source Location Techniques for Impulsive Multiple Sources. Journal of Aircraft, 1989, 26(2): 154-156
    [13] B.Barsikow.Experiment with various configurations of microphone arrays used to locate sound sources on railway trains operated by the DB AG J.Sound and Vib.,1996,193(1):283-293
    [14] Brooks T.F, Marcolini M.A and Pope D.S. A Directional Array Approach for The Measurement of Rotor Noise Source Distributions with Controlled Spatial Resolution. Journal of Sound and Vibration, 1987, 112(1): 192-197
    [15] Mosher M. Phased Array for Aeroacoustics Testing: Theoretical Development. AIAA paper 96-1713. 2nd AIAA/CEAS Aeroacoustics Conference, State College, Pa. 1996
    [16] Watts M.E, Mosher M and Barnes M.J. The Microphone Array Phased Processing System (MAPPS). AIAA paper 96-1714. 2nd AIAA/CEAS Aeroacoustics Conference, State College, Pa. 1996
    [17] Piet J-F and Elias G. Airframe Noise Source Localization Using a Microphone Array. AIAA paper 97-1643-cp. 3rd AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia. 1997
    [18] Davy R and Remy H. Airframe Noise Characteristics of a 1/11 Scale Airbus Model. AIAA paper 98-2335. 4th AIAA/CEAS Aeroacoustics Conference, Toulouse, France.1998
    [19] Hayes J.A, Horne W.C, Soderman P.T and Bent P.H. Airframe Noise Characteristics of a 4.7% Scale DC-10 Model. AIAA paper 97-1594-cp. 3rd AIAA/CEAS Aeroacoustics Conference, Atlanta, Georgia. 1997
    [20] J.M.Rigelsford,A.Tennant.A 64 element acoustic volumetric array.Applied Acoustics,2000,6l:469.475
    [21] Michelsen, A., et al., Hearing and Sound Communication in Small Animals: Evolutionary Adaptations to the Laws of Physics, in The Evolutionary Biology of Hearing, Edited by D. B. Webster, R. R. Fay, and A. N. Popper, Springer-Verlag, New York, 1992, pp. 61-77.
    [22] Robert D, Amoroso J, Hoy R.R. The evolutionary convergence of hearing in a parasitoid fly and its cricket host. Science, 1992, 258:1135-1137
    [23] Adamo S.A, Robert D., Perez J., Hoy R.R. The response of an insect parasitoid, Ormia ochracea (Tachinidae), to the uncertainty of larval success during infestation. Behav Ecol Sociobiol, 1995, 36:111-118
    [24] Cade, W., Acoustically Orienting Parasitiods: Fly Phonotaxis to Cricket Song, Science, 1975, 190: 1313
    [25] Mangold J.R. Attraction of Euphasiopterix ochracea, Corethrella sp. and gryllids to broadcast songs of the southern mole cricker, Fla Entomol, 1978, 61:57-61
    [26] Dan Ellis. Speech & Audio Processing & Recognition . Columbia University Department of Electrical Engineering, Spring 2006
    [27] Nobili R., Mammano F., Ashmore J. how well do We understand the cochlear Trends Neurosci., 1998,21:159~167
    [28] Robles L., Ruggero M.A. Mechanics of the mammalian cochlea.Physiol. Rev.,2001, 81:1305-1352
    [29]马大猷等著.声学手册,科学出版社, 2004
    [30] Gimseong K., Dara K., Heary E.H., Rickye S.H. Passive sound localization abilityof the big brown bat (Eptesicus fuscus)[J]. Hear. Res., 1998, (119): 37-48
    [31] J.A. Simmons, M.B. Fenton, and M.J. O'Farrell. Echolocation and pursuit of prey by bats. Science. 1979: Vol. 203. no. 4375, pp.16-21
    [32] Alan D G. Hearing in bats : An overview. In: Popper A N ,Fay R R ed. Hearing by Bats. New York : Springer-Verlag ,1995. 1~30.
    [33] Simmons J.A., Kick S.A., Lawrence B.D. Acuity of horizontal angle discrimination by the echolocating bat, Eptesicus fuscus. J Comp Physiol A, 1983, 153:321~330.
    [34] J.A. Simmons, S.A. Kick, B.D. Lawrence, C. Hale, C. Bard and B. Escudié. Acuity of horizontal angle discrimination by the echolocating bat, Eptesicus fuscus. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 1983, 153(3):321-330
    [35] J.F. Olsen and N. Suga. Combination-sensitive neurons in the medial geniculate body of the mustached bat: encoding of target range information. Journal of Neurophysiology, 1991, 65(6):1275-1296
    [36] N. Suga, J.A. Simmons and P.H. Jen. Peripheral specialization for fine analysis of doppler-shifted echoes in the auditory system of the "CF-FM" bat Pteronotus parnellii. Journal of Experimental Biology, 1975, 63(1):161-192
    [37]沈均贤.螽斯声管系统对方向听觉的影响.科学通报. 1990:1584-1586
    [38]沈均贤.硕螽(Deracantha onos)听觉中间神经元的方向灵敏度.生物物理学报, 1987, 3(1):1-5
    [39] Nahirney P.C. et al. What the buzz was all about: superfast song muscles rattle the tymbals of male periodical cicadas. FASEB J. 2006;20:2117-2026
    [40]陈去恶,蚱蝉的听器和发生器的研究,昆虫学报, 1958, 8(4):361-370
    [41]冯德修,蒋金昌.蚱蝉的发声器结构:中纵隔膜.昆虫学报, 1988, 31(4):351-357
    [42]蒋锦昌等.黑蚱蝉发声结构和功能.声学学报, 12(1):38-46
    [43] Arnaud P.H.(1978) A host-parasite catelog of North American Tachinidae (Diptera).Misc pub 1319,USDA
    [44] Walker T.J., Phonotaxis in female Ormia ochracea (Diptera:Fachinidae), a parasitoid of field crickets. J Insect Beha., 1992, 6:389-409
    [45] Robert D., Willi U. The histological architecture of the auditory organs in the parasitoid fly Ormia Ochracea. Cell tissue Res, 2000, 301:447-457
    [46] Robert, D., et al., The tympanal Hearing Organ of the Parasitoid Fly Ormia Ochracea (Diptera, Tachinidae, Ormiini), Cell Tissue Res., 1994, 275: 63-78.
    [47] D. Robert, R.S. Edgecomb, M.P. Read, R.R. Hoy. Tympanal hearing in tachinid flies (Diptera, Tachinidae, Ormiini): the comparative morphology of an innovation. Cell Tissue Res (1996) 284:435–448
    [48] Fullard J.H., Yack J.E. The evolutionary biology of insect hearing. Trends Ecol. Evol., 1993, 7:248-252
    [49] Young D., Hill K.G., Structure and finction of the auditory system of the Cicada Crystosoma saundersii, J. Comp. Physiol, 1977, 117:23-45
    [50] Morchen, A., et al., Latency Shift in Insect Auditory Fibers, Naturwissenshaften, 1978, 65:657.
    [51] Fletcher N.H., Thwaites S. Acoustical analysis of the auditory system of the cricket Telepgryllus commodus (Walker). J Acoust. Soc. Am., 1979, 66:350-357
    [52] Michelsen A. Physics of Directional Hearing in the Cricket Gryllus Bimaculatus. J. Comp. Physiol., 1994, 175:153-164
    [53] Miles, R. N., Robert D., Hoy R.R., Mechanically Coupled Ears for Directional Hearing in the Parasitoid Fly Ormia Ochrecea, J. Acoust. Soc. Am., 1995, 98: 3059-3070.
    [54] Mason A.C., Oshinsky M.L., Hoy R.R. Hyperacute directional hearing in a microscale auditory system. Nature, 2001, 410:686-690
    [55] Oshinsky M.L., Hoy R.R. Physiology of the auditory afferents in an acousticparasitoid fly. The Journal of Neuroscience, 2002, 22: 7254-7263
    [56]塔娜,饶柱石.奥米亚寄生蝇声源定位系统力学模型研究.振动与冲击, 2006, 25(s):16-716
    [57] Ta Na, Rao Z.S. Wang Q.S. Directional Hearing Mechanism in Acoustic System of the Parasitoid Fly. Proceedings of the Second International Conference on Dynamics, Vibration and Control, 2006, Paper No.152-202
    [58] Gross L. Intensive Training Reveals Plasticity in the Adult Auditory System. PLoS Biol 2006, 4(4): e104.
    [59] Benyus J.M. Biomimicry: Innovation Inspired by Nature. New York: William Morrow and Company, 1998
    [60]杜家纬,仿生梦幻.郑州:河南科学技术出版社,2000,1-37
    [61]杜家纬,生命科学与仿生学.生命科学, 2004, 16 (5):317-322
    [62]钦俊德.动物的运动.广州:暨南大学出版社, 2000 (5)
    [63]马瑞燕,杜家纬.昆虫的触角感器.昆虫知识, 2000, 37(3): 179-183
    [64] Lennart Agren. Flagellar sensilla of two species of Andrena (hymenoptera: Andrenidae). International Journal of Insect Morphology and Embryology, 1978, 7(1):73-79
    [65]张孝松,基于蜻蜓翅翼的仿生微扑翼飞行器的有限元分析.哈尔并工业大学硕士学位论文, 2006
    [66]刘难白.蝴蝶与苍蝇的功劳——趣话空间仿生学.知识就是力量, 1996, 6:8-8
    [67]张传溪,许文华.资源昆虫.上海:上海科学技术出版社, 1990
    [68]路甬祥,仿生学的意义与发展,科学中国人, 2004 (4):24
    [69]杜家纬,二十一世纪仿生学对我国高新技术产业的影响.第220次仿生学的科学意义与前沿香山科学会议资料.北京:2003. 2~5
    [70]孙毅,仿生学研究的若干新进展.科技情报开发与经济, 2006, 16 (11):143-144
    [71]张秀丽,郑俊浩,陈恳.机器人仿生学研究综述.机器人, 2002, 24 (2):188-192
    [72]杜家纬.动植物功能性结构与分子仿生.科学中国人, 2004 (4):33-34
    [73]刘军考,陈在礼,陈维山等.水下机器人新型仿鱼鳍推进器.机器人, 2002, 22 (5):427-432
    [74] Babenko V.V., Korobov V.L., Moroz V.V. Bionics Principles in Hydrodynamics of Automotive Unmanned underwater vehicles. OCEANS 2000 MTS/IEEE Conference and Exhibition 2000, (3):2031-2036
    [75] H. Date, Y. HoShi, M. Sampei. Locomotion control of a snake-like robot based on dynamic manipulability. Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000, 2236-2241
    [76] F. Matsuno and K. Mogi, Redundancy Controllable System and Control of Snake Robots Based on Kinematic Model. 39th IEEE Conference on Decision and Control, 2000, pp. 4791-4796.
    [77]吕恬生,王翔宇.蛇的爬行运动实验和运动中蛇体曲线的动态模拟.上海交通大学学报, 1998, 32 (1):131-135
    [78]崔显世,颜国正,陈寅等.一个微小型仿蛇机器人样机的研究.机器人, 1999, 21, (2):156-160
    [79] Hiroshi Y., Wenwei Yu, Jun Hakura. Morpho-functional machine: design of an amoebae model on the vibratng potential method. Robotics and Automomous System, 1999, 28:217-236
    [80] Keith Kotay, Daniela Rus. Locomotion versatility through self-reconfiguring. Robotics and Automomous System, 1999, 26:217-232
    [81]杨亲民.智能材料的研究与开发.功能材料, 1999, 30 (6):575-581
    [82]李明东,马培荪,马建旭等.形状记忆合金丝驱动的仿生转动关节臂.上海交通大学学报. 1999, 33 (19):1284-1287
    [83] Tsai R.H., Sheu B.J., Berger T.W., Huang R. One step closer to a bionic brain. IEEE Circuits and Devices Magazine, 1997, 13:34-40
    [84] M.V. Srinivasan, J.S. Chahl, K. Weber. Robot navigation inspired by principles of insect vision. Robotics and Autonomous System, 1999, 26:203-216
    [85] V. A. Walker, H. Peremans, and J. C. T. Hallam. One tone, two ears, three dimensions: A robotic investigation of pinnae movements used by rhinolophid and hipposiderid bats. J. Acoust. Soc. Am. 1998, Volume 104, Issue 1, pp. 569-579
    [86]张玲,何伟,蒋阳.一种适合于机器人仿生皮肤传感器的性能研究.机器人, 1999 , 21 (4):309-311
    [87] Bradley G. Brewer, Ranu Jung. Sensitivity analysis of a hybrid neural network for locomotor control in the lamprey. Biomedical Engineering, IEEE conf. 1997:353-356
    [88] Rao D.H., Kamat H.V. Artificial neural networks for the emulation of human locomotion patterns. Engineering in Medicine and Biology Society, 1995, IEEE Conf., 2880-2881
    [89] Avis H. Cohen, M. Anthony Lewis. Sensorimotor Integration in Lampreys and Robot I: CPG Principles. Proc. AMAM, Aug.2000
    [90] Avis H. Cohen, M. Anthony Lewis. Sensorimotor Integration in Lampreys and Robot II: CPG Hardware Circuit for Controlling a Running. Proc. AMAM, Aug.2000
    [91] Miles, R.N.; Su, Q.; Cui, W.; Shetye, M.; Degertekin, F.L.; Bicen, B.; Garcia, C.; Jones, S.; Hall, N. A low-noise differential microphone inspired by the ears of the parasitoid fly Ormia ochracea [J]. Journal of the Acoustical Society of America. 2009, v 125, n 4, p 2013-2026
    [92] Miles R.N. Novel Biologically-inspired directional microphones [J]. Echo, 2007, 17(2)
    [93] CUI Weili, Bicen B, Hall N, Jones S.A, Degertekin F.L, Miles R.N. Optical sensing in a directional MEMS microphone inspired by the ears of the parasitoid fly, Ormiaochracea [C], IEEE, MEMS2006, Istanbul, Turkey, 2006: 22-26
    [94] Saito A, Ono N, Ando S. Micro gimbal diaphragm for sound source localization with mimicking Ormia Ochracea [C]. Proceedings of the 41st SICE Annual Conference, Aug.5-7, 2002, Osaka, pp.1640-1643
    [95] Zhong Chen, Miao Yu. Dynamic analysis of a biology-inspired miniature directional microphone[C]. Proceedings of SPIE - The International Society for Optical Engineering, 2007, v 6523(652302):1-11
    [96] Haijun Liu, Zhong Chen, Miao Yu. Biology-inspired acoustic sensors for sound source localization. Proc. SPIE, Vol. 6932, 69322Y (2008)
    [97] Akcakaya, Murat, Nehorai, Arye. Performance analysis of the Ormia ochracea's coupled ears [J]. Journal of the Acoustical Society of America. 2008, 124(4)2100-2105
    [98] Robert D., Miles R.N, Hoy R.R. Tympanal mechanics in the parasitoid fly Ormia ochracea: intertympanal coupling during mechanical vibration [J]. J comp Physiol A, 1998; 183:443-452.
    [99]何蕴增,邹广平等.螺旋弹簧的非线性理论及实验研究.工程力学, 1997, 14(1):56-61
    [100]杜功焕,朱哲民,龚秀芬.声学基础.南京:南京大学出版社, 2001
    [101]胡海岩.应用非线性动力学.北京:航空工业出版社, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700