基于TTP准则的目标任务性能评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着焦平面探测器技术的发展,空间离散欠采样、系统放大率和背景杂波等已成为限制热成像系统性能的重要因素,导致基于约翰逊准则的传统性能模型无法准确预测新型红外传感器的目标任务性能。因此,有必要提出全新的性能评估模型或方法以适应新型红外成像系统的评估要求。
     为解决该问题,本文首先以目标任务性能(TTP)准则为理论基础,阐述了基于NVThermIP模型的现场性能预测思想。其次,将欠采样造成的信号混叠等效为模糊和噪声两种不同的量化模型,通过与试验测试数据进行比较,分析了两种模型预测性能的精度,实现了采样特性对NVThermIP模型的修正;并讨论和分析了系统固有因素-系统放大率和对比度增强对系统对比度阈值函数的作用特性,给出了仿真结果。最后,引入杂波功率谱密度模型,建立了基于背景杂波的系统对比度阈值函数,分析了背景杂波存在时目标鉴别概率与作用距离之间的关系。
With the development of focal plane array technology, the spatial under-sampling, system magnification, background clutter have become main factors that limit the performance of thermal imaging systems. The above restrictions lead to poor performance prediction for new type of IR imager by using traditional performance based on Johnson criteria. Therefore, it is necessary to propose novel performance model or method to satisfy the performance prediction of new type of infrared imaging sensors.
     To solve this problem, this paper first presents NVThermIP performance prediction model based on the targeting tasks performance (TTP) criteria. Further, the impact of sampling on NVThermIP predicting performance is studied,and the spatial sampling aliasing is equivalent to be blur and noise of infrared image, respectively. Comparison experimental results show that these two models have different prediction accuracy, and the modification of sampling to NVThermIP model are implemented. Next, the effect of the system magnification and contrast enhancement on the contrast threshold function is discussed and analyzed. Finally, the contrast threshold function of infrared imaging system is established at the presence of background clutter. The relationship between the discrimination probability and range is determined.
引文
[1]胡方明,王晓蕊,张建奇.运动效应和背景杂波对红外成像系统性能评估的修正.红外与毫米波学报. 2004, 2, Vol.23 (1).
    [2]彭焕良.热成像技术发展综述.激光与红外. 1997, 6. 131-136.
    [3]彭新红,吴常泳,陈雨良,采样成像系统的性能评估.红外与毫米波学报. 2001第20卷,第6期447-480.
    [4]金伟其,王吉晖等.红外成像系统性能评价技术的新进展.红外与激光工程. 2009,2, Vol.38 No.1. 7-13.
    [5] BIJL P ,VALETON J M. TOD: a New method to characterize electro-optical system performance [C]//Proceedings of SPIE, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing IX,1998,3377:182-193.
    [6] BIJL P,VALETEON J M,DEJONG A N.TOD predicts target acquisition performance and scanning thermal imaging [C]//Proceedings of SPIE, Infrared Imaging Systems: Design,Analysis, Modeling, and Testing XI,2000,4030:96-103.
    [7] WITTENSTEIN W.Thermal range model TRM3[C]//Proceedings of SPIE, Infrared Technology and Applications XXIV, 1998,3436:413-424.
    [8] Piet Bijl and J.M.Valeton. Guidelines for accurate TOD measurement. SPIE. 1999, Vol.3701. 14-25.
    [9] Bijl Piet, Valeton and J. Mathieu. Validation of the new triangle orientation discrimination method and ACQUIRE model predictions using observer performance date for ship targets. Opt. Eng. 1998, Vol.37(7). 1984-1994.
    [10] Piet Bijl, M. Hogervorst and Valeton. TOD, NVTherm and TRM3 model calculations: a comparison. SPIE. 2002, Vol.4719. 51-62.
    [11] Ronald G. Driggers and Van Hodgkin. Minimum Resolvable Temperature Difference Measurements on undersampled Imagers.in Infrared Imaging Systems XIV. SPIE. 2003, Vol.5076. 179-189.
    [12] Richard H. Vollmerhausen, Eddie Jacobs and Ronald G.Driggers.New metric for predicting target acquisition. Opt. Eng. 2004, Vol.43(11). 2806-2818.
    [13] Eddie Jacobs, Ronald G.Driggers, et al. NVThermIP modeling of super-resolution algorithms. SPIE. 2005, Vol.5784.125-135.
    [14] P. Bijl and Maarten A.Hogervors. NVThermIP vs TOD: matching the Target Acquisition range criteria. SPIE. 2007, Vol.6543.
    [15] R. H. Vollmerhausen, E. Jacobs, J. Hixson, and M.Friedman, The targeting task performance (TTP) metric: a new model for predicting target acquisitionperformance, Tech. Rep. 20 April 2004.
    [16]杨宜禾,岳敏,周维真.红外系统(第二版),北京,国防工业出版社,1995.205-208.
    [17] P. G. J. Barten, Formula for the contrast sensitivity of the human eye, Proc. SPIE 2004. Vol .5294, 231-238.
    [18] P. Barten, Contrast Sensitivity of the Human Eye and its Effects on Image Quality, SPIE Press, Bellingham,WA, 1999.
    [19] James A. Ratches, Richard H. Vollmerhausen, and Ronald G. Driggers, "Target Acquisition Performance Modeling of Infrared Imaging Systems: Past, Present, and Future," IEEE Sensors Journal, Invited paper to the Inaugural Edition, June 2001.Vol 1, No 1.
    [20] Salem, Eddie Jacobs, Richard Moore, et al. Effect of band-limit noise on human observer performance. SPIE. 2007. Vol.6543.
    [21] Ronald G. Driggers, Eddie L. Jacobs, Richard H. Vollmerhausen,"Current Infrared Target Acquisition Approach for Military Sensor Design and Wargaming, "Proc. of SPIE 2006.Vol. 6207 620709-1,.
    [22] CDR Keith Krapels, CDR Ronald G. Driggers, CDR Paul Larson,"Small Craft ID Criteria (N50/V50) for Short Wave Infrared Sensors in Maritime Security"Proc. of SPIE 2008.Vol. 6941 694108-1,
    [23] Jonathan G. Hixson , Eddie L. Jacobs, Richard H. Vollmerhausen,“Target detection cycle criteria when using the Targeting Task Performance Metric”Proc. of SPIE 2004.Vol. 5612,275-283.
    [24] R. Vollmerhausen and A. L. Robinson, Modeling target acquisition tasks associated with security and surveillance, Appl.Opt. 2007.46, 4209-4221,
    [25] R. H. Vollmerhausen, S. Moyer, K. Krapels, R. G. Driggers, J. G. Hixson, and A. L. Robinson, Predicting the probability of facial identification using a specific object model, Appl. Opt. 2008. 47, 751-759.
    [26] S. Moyer and N. Devitt, Resolvable Cycle Criteria for Identifying Personnel Based on Clothing and Armament Variations, Proc. of SPIE, 2005. 5784, 12,
    [27] Steve Moyer, and Nicole Devitt,“Resolvable Cycle Criteria for Identifying Personnel Based on Clothing and Armament Variations”,Proc. of SPIE .2005.Vol. 5784. 60-71.
    [28] Ronald G. Driggers, Probability of identification cycle criterion(N50/N90)for underwater mine target acquisition, Optical Engineering March 2007.46(3) 033201-033206.
    [29] G. C. Holst, Imaging system performance based upon Fλ/d, Optical Engineering, 2007.Vol. 46.
    [30] Gerald C. Holst,"What causes sampling artifacts?" Proc. of SPIE.2008.Vol. 6941 694102-1.
    [31] S. K. Moyer, R. G. Driggers, R. H. Vollmerhausen, and K. A. Krapels, Target identification performance as a function of spurious response; aliasing with respect to the half sample rate, Proc. SPIE .2001.4372, 51-61.
    [32] Stephen Burks, Jeff Olson, James Stevens,"A means for calculating the optics MTF of an under-sampled IR imaging system",Proc. of SPIE .2008.Vol. 6941 694111-1.
    [33] Richard H. Vollmerhausen,Ronald G. Driggers, Predicting range performance of sampled imagers by treating aliased signal as target-dependent noise. J. Opt. Soc. Am. 8/August 2008.A/Vol. 25.
    [34] S. Burks, J. Reynolds, J. Hixson, B. Teaney, R. Vollmerhausen, Electronic zoom functionality in under-sampled imaging systems, in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE.2006. 6543.
    [35] Brian P. Teaney, Jonathan Fanning, Effect of image magnification on target acquisition performance Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIX, edited by Gerald C. Holst, Proc. of SPIE .2008.Vol. 6941.
    [36] Brian P. Teaney, Jonathan G. Hixson, Bill Blecha. Modeling the effects of high contrast and saturated images on target acquisition performance. Proc.of SPIE.2007. Vol. 6543 65430X-1.
    [37] Jonathan G. Hixson, Brian Teaney, Eddie L. Jacobs .Modeling the effects of image contrast on thermal target acquisition performance. Proc. of SPIE.2006.Vol. 6207 62070H-1.
    [38] D. Sadot, N. S. Kopeika, and S. R. Rotman,"Target acquisition modeling for contrast-limited imaging:effects of atmospheric blur and image restoration", J. Opt. Soc. Am. 11/November 1995.A/Vol. 12, No. 2401-2414.
    [39] Eli Peli,"Contrast sensitivity function and image discrimination",J. Opt. Soc. Am. 2/February 2001.A/ Vol. 18, No.283-293.
    [40]张建奇,何国经,刘德连等.背景杂波对红外成像系统性能的影响.红外与激光工程. 2008.8.Vol.37,No.4. 565-568.
    [41]王晓蕊,张建奇.基于机器视觉的红外成像系统探测器性能评估.红外与毫米波学报. 2003.Vol.22(4): 273-276.
    [42]常洪花,张建奇,基于人眼视觉的红外背景杂波量化技术.红外技术. 2004年第5期,13-18页.
    [43]张健,李华,李斌等“人在回路”红外成像系统目标获取性能模型.红外与激光工程. 2009.4, Vol.38 No.2. 117-120.
    [44]王晓蕊.红外成像系统性能模型及现场性能预测.西安电子科技大学硕士学位论文. 2003. 1.
    [45] Hong-hua Chang, Jian-qi Zhang, Xiao-rui Wang, Yong Li, Background clutter and detection-based staring IR seeker performance evaluation , Proc.SPIE. 2004.5640,381-390.
    [46] Xiangzhi Bai,Fugen Zhoua,Ting Jina, Infrared small target detection and tracking under the conditions of dim target intensity and clutter background Proc. of SPIE 2007.Vol. 6786 67862M-1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700