稀疏重构算法及其在信号处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信号稀疏广泛存在现实世界中,利用信号的稀疏特征通过少量的测量值重构稀疏信号,称为稀疏重构问题。该问题已经成功应用于稀疏信道估计、雷达信号处理、稀疏分量分析以及阵列信号处理中的DOA估计等领域,是信号处理领域中一个新的研究热点。本文针对稀疏重构算法及其在信号处理中的应用展开了研究,主要工作概括如下:
     1.针对不含噪单观测稀疏重构算法需要较多测量值和计算量较大的不足,提出了稳定收敛的近似l0范数最小化算法(SCAL0)和基于迭代支撑集检测的近似l0范数最小化算法(ISD-AL0),并分析了两种算法的收敛性。SCAL0算法利用了反正切函数近似l0范数,构造了快速收敛迭代格式近似l0范数表示信号的稀疏性,并建立近似l0范数的最小化问题,最后通过构造快速的不动点迭代格式求解该最优化问题以重构稀疏信号。ISD-AL0算法是对FCAL0算法的改进,提高了算法对少量测量值的适应能力。FCAL0算法和ISD-AL0算法需要较少的测量值,且所需计算量较小。相比AL0算法,ISD-AL0算法需要更少的测量值,但计算量有所增加。
     2.针对单观测含噪稀疏重构算法对噪声适应能力较弱的不足,提出了近似l0范数期望值最小化算法(EML0)和快速收敛的稳健近似l0范数最小化算法(FCRAL0)。对于已知噪声方差的单观测稀疏重构问题提出了EML0算法,提高了对噪声的适应能力;对于未知噪声特性的单观测稀疏重构问题提出了FCRAL0算法,理论证明了该算法的收敛性和稳定性,并应用于解决非均匀样本的频谱估计问题。
     3.针对现有概率类稀疏重构算法计算量较大的问题,提出了一种快速的贝叶斯稀疏重构算法(FBSR),并将该算法推广至复数域用于频谱估计。FBSR算法简化了基于拉普拉斯分布的贝叶斯模型,构造了快速的不动点迭代格式最大化联合概率估计超参数。FBSR算法减小了计算量,且具有较好的重构性能。与FCRAL0算法相比较,FBSR算法对噪声适应能力更强且不需要主观确定参数,但计算量有所增加。
     4.针对不含噪和含噪的多观测稀疏重构问题,分别提出了多观测近似l0范数最小化算法(M-AL0)和多观测稳健近似l0范数最小化算法(M-RAL0),然后将M-AL0算法扩展至复数域,用于阵列信号处理中的DOA估计。M-AL0算法利用了反正切函数近似l2,0范数,通过拉格朗日函数构造了快速收敛的不动点迭代格式,并证明了算法的收敛性。M-RAL0算法将含噪多观测稀疏重构问题看成多目标规划问题,通过参数法将该问题转化为无约束最优化问题,然后采用拟牛顿法求解。M-AL0算法和M-RAL0算法重构联合稀疏信号时,需要较少的测量值数量且计算量较小。与M-AL0算法相比较,M-RAL0算法对噪声有较强的适应能力。
Sparse signal is widely existed in realistic world, how to recover sparse signalusing a small quantity of measurements, is called sparse recovery problem. Thisproblem, which is successfully applied to sparse channel estimation, radar signalprocessing, sparse component analysis and DOA estimation in array signal processingetc, is a prosperous area in the signal processing domain. In this thesis, severalalgorithms are proposed for sparse recovery problem and their applications in signalprocessing are researched. The main research work and contributions are detailed asfollows:
     1. Approximatel0norm minimization algorithm (AL0) and iterative approximatel0norm minimization algorithm (ISD-AL0) are proposed for noiseless singlemeasurement sparse recovery problem, and convergence property of AL0and ISD-AL0are analyzed. In the first algorithm, the problem of approximatel0norm minimization isestablished with the sparsity enforced byl0norm, which is approximated by arctanfunction, then this minimization problem is solved by fast fixed point iterative methodto recover sparse signal. ISD-AL0is the improved version of AL0. This algorithmestimates the partial support set from the existing results to improve performance. Bothabove proposed algorithms need fewer measurements than existing methods, whileneeding the low computational cost. Compared with AL0, ISD-AL0needs much fewermeasurements, but needs more computational cost.
     2. Expectation Minimization of approximatel0norm algorithm (EML0) androbust approximatel0norm minimization algorithm (RAL0) are proposed for noisysingle measurement sparse recovery problem, and RAL0is extended to complexnumber field for frequency spectrum estimation. The basic idea of EML0algorithm isthat sparse signal is recovered by minimizing the expectation of approximatel0norm.We simplify the expectation model by statistical character of noise and it can be solvedby steepest descent method. For the RAL0algorithm,l0norm is firstly approximatelyexpressed by arctan function. Then the model of sparse recovery problem in the presentof noise is constructed based on approximatel0norm, and this model is solved byquasi-Newton method to estimate sparse signal.The two proposed algorithms are morerobust to noise than existing algorithms, while needing fewer measurements and lowercomputational cost. Compared with RAL0, EML0has a little better performance, but itneeds to know statistical characteristics of noise.
     3. The Bayesian sparse recovery algorithm (FBSR) is proposed for noisy singlemeasurement sparse recovery problem, and FBSR is extended to complex number field for frequency spectrum estimation. For the FBSR algorithm, The Bayesian model,basedon the Laplace priors, is constructed, and a fast fixed point algorithm is established toestimate hyperparameter by maximizing the joint distribution. Compared with RAL0,FBSR is more robust to noisy and it does not require the user to make any difficultselection of parameters, but it needs more computational cost. Compare with classicalsparse Bayesian learning (SBL), FBSR needs fewer measurements and lesscomputational cost.
     4. Multiple measurements approximatel0norm minimization algorithm (M-AL0)is propose for noiseless multiple measurements sparse recovery problem, and Multiplemeasurements robust approximatel0norm minimization algorithm (M-AL0) isproposed for noisy multiple measurements sparse recovery problem. Besides, M-RAL0is extended to complex number field for DOA estimation. For the M-AL0algorithm,l2,0norm is approximated by arctan function, and multiple measurements sparserecovery problem is cast as multiple measurements approximatel2,0norm minimi-zation problem. then a fast fixed algorithm, derived by Lagrangian function, isestablished to recover joint sparse signal. For the M-RAL0algorithms, noisy multiplemeasurements approximatel2,0norm minimization problem is constructed by appro-ximatel2,0norm, and quasi-Newton method is used to solve this problem. M-AL0andM-RAL0need fewer measurements and less computational cost than the exsitedalgorthms. Compared with M-AL0, M-RAL0is more robust to noise.
引文
[1] E. J. Candes. Compressive sampling [C]. Proceedings of the InternationalCongress of Mathematics, Madrid, Spain.2006,3:1433-1452
    [2] D. L. Donoho. Compressed Sensing [J]. IEEE Transactions on InformationTheory,2006,52(4):1289-1306
    [3] R. Baraniuk. A lecture on compressed sensing [J]. IEEE Signal ProcessingMagazine,2007,24(4):118-124.
    [4] E. J. Candes, J. Romberg, T. Tao. Robust uncertainty principle: Exact signalreconstruction from highly incomplete frequency information [J]. IEEETransactions on Information Theory,2006,52(2):489-509
    [5]张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,51(6):628-633.
    [6] M. Elad, A. M. Bruckstein. A generalized uncertainty principle and sparserepresentation in pairs of bases [J]. IEEE Transactions on Information Theory,2002,48:2558-2567.
    [7] S. Cotter, B. Rao. Sparse channel estimmion via matching pursuit withapplication to equalization [J]. IEEE Transactions on Communication,2002,50:374-377.
    [8] Y. Liu, K. Borah. Estimation of time-varying frequency selective channels usinga matching pursuit technique [J]. IEEE Transactions on Communication,2008,35:941-946.
    [9] M. R. Raghavendra, K. Giridhar. Improving channel estimation in OFDMsystems for sparse multipath channels [J]. IEEE Transactions on SignalProcessing,2005,12(1):52-55.
    [10] Deva, K. Borah. Estimation of fading channels with a parallel matching pursuitstructure [J]. IEEE Transactions on Communication,2004,21:5320-5324.
    [11]梁彦.基于MP算法的信道估计研究[D].南京理工大学硕士论文,2004.
    [12] R. Baraniuk, P. Steeghs. Compressive radar imaging [C]. IEEE RadarConference,2007:13-17.
    [13]汪雄良,冉承其,王正明.基于紧致字典的基追踪方法在SAR图像超分辨中的应用[J].电子学报,2006,34(6):996-1001.
    [14] K. R. Varshney, M. Cetin, J. W. Fisher, A. S. Willsky. Sparse representation instructured dictionaries with application to synthetic aperture radar [J]. IEEETransactions on Signal Processing,2008,56(8):3548-3561.
    [15] M. Herman, T. Strohmer. High-Resolution Radar via Compressed Sensing [J].IEEE Transactions on Signal Processing,2009,57(6):2275-2284.
    [16]张文吉.电磁逆散射成像方法及压缩感知理论在成像中的应用[D].中国科学院电子学研究所博士学位论文,2010.
    [17] L. Yun, H. Wen, T. Weixian. Compressed sensing technique for circular SARimaging [C]. Processing of2009IET International Radar Conference,2009:676-679.
    [18] R. Neff, A. Zakhor. Very low bit-rate video coding based on matching pursuits[J]. IEEE Transaction on Circuits System,1997,7(1):158-171.
    [19] M. N. Do, M. Vetterli. The contourlet transform: an efficient directional multi-resolution image representation [J]. IEEE Transaction on Image Processing,2005,14(12):2091-2106.
    [20] V. Delisavljevic, B. Beferull-lozano, M. Vetterli, P. L. Dragotti. Directionlets:anisotropic multi-directional representation with separable filtering [J]. IEEETransactions on Image Processing,2006,15(7):1916-1933.
    [21] S. Durand, J. Froment. Reconstruction of wavelet coefficients using totalvariation minimization [J]. SIAM Journal on Scientific Computing,2003,24(5):1754-1767.
    [22] S. Sailee, P. Olshausen, A. Bruno. Image denoising using learned overcompleterepresentations [C].IEEE International Conference on Image Processing,2003:381-384
    [23] P. Georgiev, F. Theis, A. Cichocki. Sparse component analysis and blind sourceseparation of underdetermined mixtures [J]. IEEE Transaction on NeuralNetworks,2005,16(4):992-996.
    [24] Y. Q. Li, A. Cichocki, S. Amari. Analysis of sparse representation and blindsource separation [J]. Neural Computation,2004,16:1193-1234.
    [25] Y. Q. Li, S. Amari, A. Cichocki. Underdetermined blind source separation basedon sparse representation [J]. IEEE Transactions on Signal Processing,2006,54(2):423-437.
    [26] T. W. Lee, M. S. Lewicki, M. Girolami. Blind source separation of more sourcesthan mixtures using overcomplete representations [J]. IEEE Signal ProcessingLetters,1999,6(4):87-90.
    [27] P. Stoica; P. Babu, J. Li. SPICE: A sparse covariance-based estimation methodfor array processing [J]. IEEE Transactions on Signal Process,2011,59(2):629-638.
    [28] Z. M. Liu, Z. T. Huang, Y.Y. Zhou. Direction-of-Arrival estimation of widebandsignals via covariance matrix sparse representation [J]. IEEE Transactions onSignal Processing,2011,59(9):4256-4270.
    [29] J. Wang, L. Chen, Z. Yin. Array signal MP decomposition and its preliminaryapplications to DOA estimation [C].The Second International Conference onInte-lligent Computing, kunming China,2006:775-778.
    [30] G. Pando, T. Fabian, C. Andrzej. Blind source separation and sparse componentanalysis of overcomplete mixtures [C]. IEEE International Conference onAcoustics, Speech, and Signal Processing, Montreal, Canada,2004:17-21.
    [31] Y. Li, A. Cichocki, S. Amari. Sparse component analysis for blind sourceseparation with less sensors than sources [C]. IEEE International Conference onAcoustics, Speech, and Signal Processing, Nara, Japan,2003:89-94.
    [32] E. J. Candes, T. Tao. Decoding by linear programming [J]. IEEE Transactions onInformation Theory,2005,51(12):4203-4215.
    [33] D. L. Donoho, M. Elad, V. Temlyakov. Stable recovery of sparse overcompleterepresentations in the presence of noise [J]. IEEE Transactions on InformationTheory,2006,52(1):6-18.
    [34] T. T. Cai, G. Xu, J. Zhang. On recovery of sparse signal vial1minimization [J].IEEE Transactions on Information Theory,2009,51(12):4203-4215.
    [35] J. A. Tropp, A. C. Gilbert. Signal recovery from random measurements viaorthogonal matching pursuit [J]. IEEE Transactions on Information Theory,2007,53(12):4655-4666.
    [36] Y. C. Pati, R. Rezaifar. Orthogonal matching pursuit: rccursive functionapproximation with application to wavelet decomposition [C].27th AsilomarConference on Signals, Systems and Computation,1993,1:40-44
    [37] S. Mallat, Z. Zhang. Matching Pursuit with Time-frequency Dictionaries [J].IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
    [38] S. Cotter, B. Rao. Sparse channel estimation via matching pursuit withapplication to equalization [J]. IEEE Transactions on Communications,2002,50(3):374-377.
    [39] J. Tropp. Greed is good: algorithmic results for sparse approximation [J]. IEEETransactions on Information Theory,2004,50(10):2231-2242.
    [40] L. Rebollo, D. Lowe. Optimized orthogonal matching pursuit approach [J]. IEEESignal Processing Letters,2002,4(9):137-140.
    [41] D. Needell, R. Vershynin. Uniform uncertainty principle and signal recovery viaregularized orthogonal matching pursuit [J]. Foundations of ComputationalMathematics,2009,9:317–334.
    [42] D. Needel, J. Tropp. CoSaMP: Iterative signal recovery from incomplete andinaccurate samples [J]. Applied and Computational Harmonic Analysis,2009,26:301-321.
    [43] W. Dai, O. Milenkovic. Subspace pursuit for compressive sensing signalreconstruction [J]. IEEE Transactions on Signal Processing,2009,55(5):2230-2249
    [44] B. Varadarajan, S. Khudanpur, D. Tran. Stepwise Optimal Subspace Pursuit forImproving Sparse Recovery [J]. IEEE Signal Processing Letters,2011,18(1):27-30.
    [45] J. Tropp, A. Gilbert. Signal recovery from random measurements via orthogonalmatching pursuit [J]. IEEE Transactions on Information Theory,2007,53(12):4655–4666.
    [46] M. Davenport, B. Wakin. Analysis of orthogonal matching pursuit using therestricted isometry property [J]. IEEE Transactions on Information Theory,201056(9):4395-4401.
    [47] T. T. Cai, L. Wang. Orthogonal matching pursuit for sparse signal recovery withnoise [J]. IEEE Transactions on Information Theory,2011,57(7):4680-4688
    [48] D. Donoho, X. Huo. Uncertainty principles and ideal atomic decomposition [J].IEEE Transactions on Information Theory,2001,47(7):2845–2862.
    [49] S. S. Chen, D. L. Donoho, M. A. Saunders. Atomic decomposition by basispursuit [J]. SIAM Journal Scientific Computing,1999,20(1):33-61
    [50] B. K. Natarajan. Sparse approximate solutions to linear systems [J]. SIAMJournal Scientific Computing,1995,24(2):227-234.
    [51] T. T. Cai, L. Wang, G. Xu. Stable recovery of sparse signals and an oracleinequality [J]. IEEE Transactions on Information Theory,2010,56(7):3516-3522.
    [52] T. T. Cai, L. Wang, G. Xu. Shifting inequality and recovery of sparse Signals [J].IEEE Transactions on Signal Processing,2010,58(3):1300-1308
    [53] E. J. Candes, J. Romberg, T. Tao. Stable signal recovery from incomplete andinaccurate measurements [J]. Communications on Pure and AppliedMathematics,2006,59:1207-1223.
    [54] E. J. Candes, J. Romberg, T. Tao. Robust uncertainty principles: exact signalreconstruction from highly incomplete frequency information [J]. IEEE Tran-sactions on Information Theory,2006,52(3):489-509.
    [55] J. Tropp. Just relax: convex programming methods for identifying sparse signalsin noise [J]. IEEE Transactions on Information Theory,2006,52(3):1030–1051.
    [56] E. J. Candes, T. Tao. The Dantzig selector: Statistical estimation when p is muchlarger than n (with discussion)[J]. Annals of Statistics,2007,35:2313-2351.
    [57] P. Bickel, Y. Ritov. Simultaneous analysis of Lasso and Dantzig selector [J].Annals of Statistics,2009,37(4):1705–1732.
    [58] R. Chartrand, V. Staneva. Restricted isometry properties and nonconvex com-pressive sensing [J]. Inverse Problems,2008,24(3):20-35.
    [59] R. Chartrand. Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters,2007,14(10):707–710.
    [60] H. Mohimani, M. Babaie-Zadeh, C. Jutten. A fast approach for overcompletesparse decomposition based on smoothedl0norm [J]. IEEE Transactions onSignal Processing,2009,57(1):289-301.
    [61] Y. Zhang, N. Kingsbury. Fastl0-based sparse signal recovery [J]. MachineLearning for Signal Processing,2010,29(1):403-408.
    [62] M. Hyder, K. Mahata. An Improved Smoothedl0Approximation Algorithm forSparse Representation [J]. IEEE Transactions on Signal Processing,2010,58(4):2194-2205
    [63] M. Hyder, K. Mahata. An approximatel0norm minimization algorithm forcompressed sensing [C]. IEEE International Conference on Acoustics, Speech,and Signal Processing (ICASSP),2009,3365-3368.
    [64] H. Mohimani, M. Zadeh, C. Jutten. A fast approach for overcomplete sparsedecomposition based on smoothedl0norm [J]. IEEE Transactions on SignalProcessing,2009,57(1):289-301.
    [65] Y. Li, S. Amari. Two Conditions for Equivalence of0-Norm Solution and1-Norm Solution in Sparse Representation [J]. IEEE Transactions on NeuralNetworks,2010,21(7):1189-1196.
    [66] D. L. Donoho. For most large underdetermined systems of linear equations theminimall1-norm solution is also the sparsest solution [J]. Communications onPure and Applied Mathematics,2006,59(6):797-829.
    [67] J. F. Murray, K. Delgado. An improved FOCUSS-based learning algorithm forsolving sparse linear inverse problems [C]. IEEE Conference Record of theThirty-Fifth Asilomar Conference,2001,1:347-351.
    [68] D. Wipf, S. Nagarajan. Iterative reweightedl1andl2methods for findingsparse solutions [J]. IEEE Journal of Selected Topics in Signal Processing,2010,4(2):317-329
    [69] R. Chartrand, W. Yin. Iteratively reweighted algorithms for compressive sensing
    [C]. IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP), Nevada, U.S.A.,2008:3869-3872.
    [70] P. Rodríguez, B. Wohlberg. An iterative reweighted norm algorithm for totalvariation regularization [J]. IEEE Signal Processing Letters,2007,14(12):948-951.
    [71] N. Mourad, J. Reilly. Minimizing Nonconvex Functions for Sparse VectorReconstruction [J]. IEEE Transactions on Signal Processing,2010,58(7):3485-3496
    [72] I. Gorodnitsky, B. Rao. Sparse signal reconstructions from limited data usingFOCUSS: A re-weighted minimum norm algorithm [J]. IEEE Transactions onSignal Processing,1997,45(3):600-616.
    [73] C. Miosso, R. Borries, M. Argaez, L. Velazquez. Compressive sensing recon-struction with prior information by iteratively reweighted least-squares [J]. IEEETransactions on Signal Processing,2009,57(6):2424-2431.
    [74] K. Delgado, B. Rao. FOCUSS-based dictionary learning algorithms [J]. WaveletApplication Signal Image Processing, Bellingham,2000,41(19):459-473.
    [75] R. Wolke, H. Schwetlick. Iteritevely reweighted least squares: Algorithms, con-vergence analysis, and numerical comparisons [J]. SIAM Journal on ScientificComputing,1988,9(5):907-921.
    [76] R. Wolke. Iteratively reweighted least squares: A comparison of several singlestep algorithms for linear models [J]. BIT numerical mathematics,1992,32(3):506-524.
    [77] M. E. Tipping. Sparse Bayesian learning and the relevance vector machine [J].Journal of Machine Learning Research,2001,1:211-244.
    [78] M. E. Tipping. The relevance vector machine [J]. Advances in NeuralInformation Processing Systems,2000,12:652-658.
    [79] D. P. Wipf, B. D. Rao. Sparse Bayesian learning for basis selection [J]. IEEETransactions on Signal Processing,2004,52(8):2153-2164.
    [80] D. Baron, S. Sarvotham, R. G. Baraniuk. Bayesian compressive sensing viabelief propagation [J]. IEEE Transactions on Signal Processing,2009,20(3):85-98.
    [81] D. P.Wipf, B. D. Rao, S. Nagarajan. Latent variable Bayesian models forpromoting sparsity [J]. IEEE Transactions on Information Theory,2011,57(9),6236-6255.
    [82] S. D. Babacan, M. Rafael, K. Aggelos. Bayesian compressive sensing usinglaplace priors [J]. IEEE Transactions on Signal Processing,2010,19(1):53-63
    [83] S. Ji, Y. Xue, L. Carin. Bayesian compressive sensing [J]. IEEE Transactions onSignal Processing,2008,56(6):2346–2356..
    [84] M. Tipping, A. Faul. Fast marginal likelihood maximisation for sparse Bayesianmodels [C].9th International Workshop on Artificial Intelligence statistics.2003:3-6.
    [85] A. Faul, M. Tipping. Analysis of sparse Bayesian learning [J]. Advance NeuralInformation Processing System,2002,14:383–389.
    [86] X. Tan, J. Li. Computationally Efficient Sparse Bayesian Learning via BeliefPropagation [J]. IEEE Transactions on Signal Processing,2010,58(4):2010-2021.
    [87] S. Cotter, B. Rao, K. Engan, K. Delgado. Sparse solutions to linear inverseproblems with multiple measurement vectors [J]. IEEE Transactions on SignalProcessing,2005,53(7):2477–2488.
    [88] J. Chen, X. Huo. Sparse representations for multiple measurement vectors(MMV) in an over-complete dictionary [C]. IEEE International Conference onAcoustics, Speech, and Signal Processing (ICASSP),2005,4:257-260.
    [89] J. Chen, X. Huo. Theoretical results on sparse representations of multiple-measurement vectors [J]. IEEE Transactions on Signal Processing,2006,54(12):4634-4643
    [90] E. Berg, M. P. Friedlander. Theoretical and empirical results for recovery frommultiple measurements [J]. IEEE Transactions on Signal Processing,2010,56(5):2516-2527
    [91] J. Tropp. Algorithms for simultaneous sparse approximation: part II: Convexrelaxation [J]. Signal Processing,2006,86(3):589–602.
    [92] D. P. Wipf, B. D. Rao. An empirical Bayesian strategy for solving thesimultaneous sparse approximation problem [J]. IEEE Transactions on SignalProcessing,2007,55(7):3704-3716.
    [93] M. M. Hyder, K. Mahata. A Robust Algorithm for Joint-Sparse Recovery [J].IEEE Signal Processing Letters,2009,16(12):1091-1093.
    [94] R. Zdunek, A. Cichocki. Improved M-FOCUSS Algorithm With overlappingblocks for locally smooth sparse signals [J]. IEEE Transactions on SignalProcessing,2008,56(10):4752-4761.
    [95] M. Mishali, Y. Eldar. Reduce and boost: recovering arbitrary sets of jointlysparse vectors [J]. IEEE Transactions on Signal Processing,2008,56(10):4692-4702.
    [96] P. Babu, P. Stoica. Spectral analysis of non-uniformly sampled data-a review [J].Digital Signal Processing,2010,20:359-378.
    [97] S. Baisch, G. Bokelmann. Spectral analysis with incomplete time series: anexample from seismology [J]. Computation Geoscience,1999,25:739-750.
    [98] A. Liew, J. Xian, S. Wu, D. Smith, H. Yan. Spectral estimation in unevenlysampled space of periodically expressed microarray time series data [J]. BMCBioinformatics,2007,8:137-156.
    [99] J. D. Scargle. Studies in astronomical time series analysis. II. Statistical aspectsof spectral analysis of unevenly spaced data [J]. Astrophysical Journal,1982,263:835–853.
    [100] M. Schulz, K. Stattegger. Spectrum: Spectral analysis of unevenly spacedpaleoclimatic time series [J]. Computational Geoscience,1997,23(9):929-945.
    [101] N.R. Lomb. Least-squares frequency analysis of unequally spaced data [J].Astro-physical Space Science,1976,39(1):10-33.
    [102] R. J. Martin. Irregularly sampled signals: Theories and techniques for analysis[D]. Ph.D. thesis, University College London,1998.
    [103] R. J. Martin. Autoregression and irregular sampling: spectral estimation [J].Signal Processing,1999,77:139-157.
    [104] M. Xue, L. Xu, J. Li. IAA spectral estimation: fast implementation using theGohberg–Semencul factorization [J]. IEEE Transactions on Signal Processing,2011,59(7):3251-3261
    [105] P. Stoica, J. Li, H. He. Spectral analysis of non-uniformly sampled data: A newapproach versus the periodogram [J]. IEEE Transactions on Signal Processing,2009,57(3):843-858.
    [106] G. Glentis, A. Jakobsson. Fast algorithms for iterative adaptive approach spectralestimation techniques [C]. IEEE International Conference on Acoustics, Speech,and Signal Processing (ICASSP),2011:4252-4255
    [107] N. Butt, A. Jakobsson. Coherence spectrum estimation from nonuniformlysampled sequences [J]. IEEE Signal Processing Letters,2010,17(4):339-342.
    [108] G. O. Glentis, A. Jakobsson. Time-Recursive IAA Spectral Estimation [J]. IEEESignal Processing Letters,2011,18(2):111-114.
    [109] P. Stoica, J. Li, J. Ling. Missing data recovery via a nonparametric iterativeadaptive approach [J]. IEEE Signal Processing Letters,2009,16(4):241-244.
    [110] S. Bourguignon, H. Carfantan, J. Idier. A sparsity-based method for theestimation of spectral lines from irregularly sampled data [J]. IEEE Journal ofSelected Topics in Signal Processing,2007,1(4):575-585.
    [111] M. M. Hyder, K. Mahata. Anl0norm based method for frequency estimationfrom irregularly sampled data [C]. IEEE International Conference on Acoustics,Speech, and Signal Processing (ICASSP),2010,4022-4025
    [112] M. M. Hyder, K. Mahata. Coherent spectral analysis of asynchronously sampledsignals [J]. IEEE Signal Processing Letters,2011,18(2):126-129
    [113] H. Trees. Optimum array processing. Part IV of detection, estimation, andmodulation theory [M]. New York,2002.
    [114]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法[M].北京:清华大学出版社,2004.
    [115] J. Capon. High-resolution frequency-wave number spectrum analysis [J].Proceedings of the IEEE,1969,57(8):1408-1418.
    [116] S. P. Applebaum. Adaptive arrays [J]. IEEE Transactions on Antennas andPropagation,1976,24(9):585-598.
    [117] R. O. Schmidt. Multiple emitter location and signal parameter estimation [J].IEEE Transactions on Antennas and Propagation,1986,34(2):276-280.
    [118] R. Roy, T. Kailath. ESPRIT-Estimation of signal parameters via rotationalinvariance techniques [J]. IEEE Transactions on Acoustics, Speech and SignalProcessing,1989,37(7):984-995.
    [119] G. Xu, S. D. Silverstein. Beamspace ESPRIT [J]. IEEE Transactions on SignalProcessing,1994,42(2):349-356.
    [120] F. M. Han, X. D. Zhang. An ESPRIT-like algorithm for coherent DOAestimation [J]. IEEE Antennas and Wireless Propagation Letters,2005,4:443-446
    [121] A. J. Barabell. Improving the resolution performance of eigenstructure-baseddirection-finding algorithms [C]. IEEE Transactions on Acoustics, Speech andSignal Processing, Boston, USA,1983:336-339.
    [122] P. Stoica, A. Nehorai. MUSIC, maximum likelihood, and Cramer-Rao bound [J].IEEE Transactions on Acoustics, Speech, and Signal Processing,1989,37(5):720-741.
    [123] P. Stoica, A. Nehorai. MUSIC, maximum likelihood, and Cramer-Rao bound:Further results and comparisons [J]. IEEE Transactions on Acoustics, Speech,and Signal Processing,1990,38(12):2140-2150.
    [124] J. F. Bohme. Estimation of source parameters by maximum likelihood andnonlinear regression [C]. IEEE International Conference on Acoustics, Speech,and Signal Processing (ICASSP),1984:731-734.
    [125] A. G. Jaffer. Maximum likelihood direction finding of stochastic sources: Aseparable solution [C]. IEEE International Conference on Acoustics, Speech, andSignal Processing (ICASSP), Fullerton, USA,1988:2893-2896.
    [126] R. J. Kenefic. Maximum likelihood estimation of the parameters of a plane wavetone at an equispaced linear array [J]. IEEE Transactions on Acoustics, Speech,and Signal Processing,1988,36(1):128-130.
    [127] D. Model, M. Zibulevsky. Signal reconstruction in sensor arrays using sparserepresentations [J]. Signal Processing,2006,86:624-638.
    [128] D. Malioutov, M. Cetin, A. S. Willsky. A sparse signal reconstructionperspective for source localization with sensor arrays [J]. IEEE Transactions onSignal Processing,2005,53(8):3010-3022.
    [129] G. Z. Karabulut, T. Kurt, A. Yongacoglu. Estimation of directions of arrival bymatching pursuit (EDAMP)[J]. EURASIP Journal on Wireless Communicationsand Networking,2005,2:197-205.
    [130] S. F. Cotter. Multiple snapshot matching pursuit for direction of arrival (DOA)estimation [C].15th European Signal Processing Conference, Poznan, Poland,2007:247-251.
    [131] M. M Hyder, K. Mahata. Direction-of-arrival estimation using a mixedl2,0norm approximation [J]. IEEE Transactions on Signal Processing,2010,58(9):4646-4655.
    [132] K. Sun, Y. Liu. Adaptive sparse representation for source localization withgain/phase errors [J]. Sensors,2011,11:4780-4793.
    [133] C. Zheng, G. Li. An approach of DOA estimation using noise subspace weightedL1minimization [C]. IEEE International Conference on Acoustics, Speech, andSignal Processing (ICASSP),2011:2856-2859.
    [134] J. Yin, T. Chen. Direction-of-arrival estimation using a sparse representation ofarray covariance vectors [J]. IEEE Transactions on Signal Processing,2011,59(9):4489-4493.
    [135] A. Panahi, M. Viberg. Fast LASSO based DOA tracking [C].4th IEEE Inter-national Workshop on Computational Advances in Multi-Sensor AdaptiveProcessing,2011:397-400.
    [136] X. Xu, X. Wei, Z. Ye. DOA estimation based on sparse signal recovery utilizingweightedl1-norm penalty [J]. IEEE Signal Processing Letters,2012,19(3):155-158.
    [137] H. B. Lee, Wengrovitz. Theoretical resolution-threshold curve for the MUSICalgorithm [C]. IEEE International Conference on Acoustics, Speech, and SignalProcessing (ICASSP), Waltham, USA,1991:3313-3316.
    [138] C. G. Zhou, F. Haber, D. L. Jaggard. The resolution threshold of MUSIC withunknown spatially colored noise [J]. IEEE Transactions on Signal Processing,1993,41(1):511-516.
    [139] L. Chang, C. C. Yeh. Resolution threshold for coherent sources using smoothedeigenstructure methods [J]. IEE Proceedings-F,1991,138(5):470-478.
    [140] D. W. Tufts, A. C. Kot, R. J. Vaccaro. The threshold analysis of SVD-basedalgorithms[C]. IEEE International Conference on Acoustics, Speech, and SignalProcessing (ICASSP), Kingston, USA,1988:2416-2419.
    [141] A. J. Weiss, B. Friedlander. Effects of modeling errors on the resolutionthreshold of the MUSIC algorithm [J]. IEEE Transactions on Signal Processing,1994,42(6):1519-1526.
    [142] E. J. Candas, M. Waldn.An introduction to compressive sampling [J].IEEEsignal Processing Magazine,2008,25(2):21-30.
    [143] Y. Wang, W. Yin. Sparse signal reconstruction via iterative support detection [J].SIAM Journal on Imaging Sciences,2010,3(3):462-491
    [144] H. Krim, M. Viberg. Two decades of array signal processing research: Theparametric approach [J]. IEEE Signal Processing Magazine,1996(7):67-94.
    [145]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [146]傅英定,成孝予,唐应辉.最优化理论与方法[M].北京:国防工业出版社,2004.
    [147]邓乃扬.无约束最优化方法[M].北京:科学出版社,1981.
    [148]薛毅.最优化原理与方法[M].北京:北京工业大学出版社,2001.
    [149]邓乃扬,诸梅芳.最优化方法[M].沈阳:辽宁教育出版社,1987.
    [150] S. Boyd, L. Vandenberghe. Convex optimization [M]. New York: CambridgeUniversity Press,2009.
    [151]封建湖,车刚明,聂玉峰.数值分析原理.北京:科学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700