用户名: 密码: 验证码:
近程小扇区LFMCW雷达信号处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在雷达观测基线受限且波束不扫描的条件下,近程小扇区内多个独立运动目标的分辨、定位、跟踪和参数估计等,是雷达探测技术领域中亟待解决的理论问题,更是穿墙监测雷达、汽车防撞雷达等应用中需要突破的技术难点。
     多发多收定位原理可以解决波束不扫描条件下的方位分辨和测角难题;线性调频连续波(LFMCW)信号形式可以实现近程、无盲区、高分辨、高精度探测和距离信息获取。将这两方面结合,能够有效解决近程小扇区雷达面临的问题。
     本文研究多发多收LFMCW雷达体制,特别是信号处理方法与实现算法:
     1) 研究了多发多收LFMCW雷达体制的目标探测、定位原理,分析了定位定精度;并给出了系统设计方法和设计实例;提出了在高斯白噪声环境下,具有速度和加速度的运动目标信号的最佳检测模型。
     2) 研究并提出了简单和复杂目标环境中LFMCW雷达中一维距离像运动补偿算法。
     3) 导出了LFMCW雷达信号加速度模糊函数;得到了LFM信号加速度分辨力的拟合公式;并在恒定加速度状态下,导出了了系统的最佳积累时间准则。
     4) 研究并提出了加速动目标在LFMCW雷达的三种检测与参数估计的方法:提出了描述信号的时间-调频斜率分布,以及基于该分布Radon变换的信号检测和参数估计算法;研究了基于最大似然的信号检测和参数估计方法及快速算法;提出了分数阶傅立叶变换快速自适应搜索算法,并构建了相应的检测和参数估计方法。
     5) 提出了适用于近程小扇区雷达的多目标跟踪算法,该跟踪算法在强杂波背景下,仍能有效完成对多小间距目标跟踪。
Under limited observation baseline and without scanning beam, the ability for distinguishing multiple independent moving targets, parameters estimation, target tracking in the short-range narrow field of view (FOV), are not only urgent in the theory of radar detection, but also difficult in the application of the through-wall surveillance (TWS) and the anti-collision radar.
    The thesis proposed a radar mechanism adopting linear frequency-modulated continuous wave (LFMCW) and multi-transmitter and multi-receiver, took advantage of the simple structure, none range blind zone and high resolution in short range of LFMCW radar, avoided antenna scanning and realized high-resolution detection and precise orientation. Moreover, this thesis focused on the theory of signal processing and the method for implementing. The main content is listed as:
    1) The target locating principle and locating precision in the Multi transmitter and multi receiver LFMCW radar are studied. And the radar parameter and system are designed. The optimum detection model of moving target including velocity and acceleration, under the condition of Gaussian white noise, is proposed.
    2) The 1-D range profiles motion compensation algorithm is discussed in the simple and complicated target environment in LFMCW radar.
    3) The acceleration ambiguity function in LFMCW radar is proposed in the thesis first time, meanwile, the formula of acceleration resolution and the optimal accumulation time of LFM signal is presentened
    4) Three methods for accelerately moving target detection (MTD) and parameter estimation: they are a new distribution named time-frequency rate distribution, the fast algorithm based on maximum likelihood model and FRFT algorithm, and based on a these methods, the detection and parameter estimation algorithm for LFM signal are proposed.
    5) An algorithm for multi-target tracking in the short-range and narrow field view radar is proposed. It is available to track multiple targets even in the strong clutter and small distance from targets environments.
引文
[1] Rohling. H, Meinecke. M-M. Waveform design principles for automotive radar systems Radar, 2001 CIE International Conference on, Proceedings. 2001
    [2] Morenc. N. P. Lajiness. G. G. 76 GHz collision warning transceiver component requirements and current status, Intelligent Transportation System, 1997. ITSC 97. IEEE Conference on. 1997
    [3] Kok, D. Fu, J. S. Signal processing for automotive radar. Radar Conference, 2005 IEEE International. 2005
    [4] Folster. F, Rohling, H, Lubbert, U. An automotive radar network based on 77 GHz FMCW sensors., Radar Conference, 2005 IEEE International, 2005
    [5] A. Hoess et al., RadarNet Conference eMobility, Gothenburg, Sweden, May 2001
    [6] A. Hoess et al., Design and realization of a novel, synchronized 77 GHz radar network for automotive use 2002 IMS Workshop on circuit and antenna technologies for automotive radars, Seattle, USA, June 3, 2002
    [7] H. -J. Siweris; Semiconductor solutions for low cost millimeter-wave automotive radar frontends 2002 IMS Workshop on circuit and antenna technologies for automotive radars, Seattle, USA, June 3, 2002
    [8] Hermann Rohling, Ernst Lissel. 77GHz Radar Sensor for Car Application. Radar Conference, 1995., Record of the IEEE 1995 International, 8-11 May 1995
    [9] 张建辉等.编码步进调频连续波信号在汽车防撞雷达中的应用.电子学报,2000,15(2):943~946
    [10] David D. Li et al.. Millimeter-Wave FMCW/Monopulse Radar Front-End for Automotive Applications. Microwave Symposium Digest, 1999 IEEE MTT-S International, Volume: 1, 1999
    [11] Sung Tae Choi, Yong Hoon Kim. 24GHz monopulse FMCW radar with heterodyne receiver for automotive applications. ITS World Congress, Seoul, octobre 1998.
    [12] Jerry D. Woll. Monopulse Doppler Radar for Vehicle Application. Intelligent Vehicles '95 Symposium., Proceedings of the, 25-26 Sep 1995
    [13] Li Yang et al.. Time Division Multiplexing Antenna Array using Difference Analysis with Single Transmit/Receive Channel for Automotive Application. Infrared and Millimeter Waves, 2000. Conference Digest. 2000 25th International Conference on, 2000
    [14] A. G.. Stove, Modem FMCW Radar—Techniques and Applications Conference Proceedings-1st European Radar Conference, EuRAD, 2004, 149~152.
    [15] Barrick D. E., FM/CW radar signals and digital processing, NOAA Technical Report ERL 283-WPL 26. 1973.
    [16] Lin, Kaihui; Wang, Yuanxun Ethan. Real~time DSP for Reflected Power Cancellation in FMCW Radars. IEEE 60th Vehicular Technology Conference, VTC2004~Fall: Wireless Technologies for Global Security, 2004, 3905~3907.
    [17] Qi, Guoqing. High Accuracy Range Estimation of FMCW Level Radar Based on the Phase of the Zero~padded FFT. 2004 7th International Conference on Signal Processing Proceedings (ICSP'04), 2004, 2078~2081.
    [18] Grosche, Robert. Model Mismatch and Systematic Errors in an Optical FMCW Distance Measurement System. WSEAS Transactions on Electronics, v 2, n 1, January, 2005, 12~16.
    [19] A. G. Stove. Linear FMCW Radar Techniques. IEE Proceedings, Part F: Radar and Signal Processing, Oct, 1992, Vol 139(5) 343-350.
    [20] 杨建宇.LFMCW雷达信号模糊函数分析.信号处理,2002,Vol.18(1)1,39~42.
    [21] 徐涛,金昶明,孙晓玮,夏冠群.一种采用变周期调频连续波雷达的多目标识别方法.电子学报,2002,Vol.30(6)861~863
    [22] 杨建宇,凌太兵,等.LFMCW雷达运动目标检测与速度距离去耦合.电子信息学报,2004,Vol.26(2),169~173.
    [23] 杨建宇.LFMCW雷达理论与实现:[电子科技大学博士论文],成都:电子科技大学电子工程学院 1991
    [24] 凌太兵.LFMCW雷达运动目标检测与距离速度去耦合:[电子科技大学硕士论文],成都:电子科技大学电子工程学院 2003.
    [25] 贺峻.LFMCW雷达动目标回波距离—速度去耦合方法研究:[电子科技大学硕士论文],成都:电子科技大学电子工程学院 2000.
    [26] 杨建宇.LFMCW雷达的等效正交双通道性能.电子学报,1993,No.9,76~80.
    [27] Wojtkiewiez A, Rytel-Andrianik R. Optimal detection and estimation in FMCW radar[J]. Microwaves, Radar and Wireless Communications, 2002., vol. 3: 778-781
    [28] Wojtkiewicz A, Rytel-Andrianik R. A New Estimation For Target Range, Velocity And Acceleration In FMCW Radar, Proc. Int. Confon Signal and Electronic System 2000, Poland.
    [29] 刘宝,刘军民.FMCW雷达快速高精度测距算法.电子测量与仪器学报 2001年03期.
    [30] 刘国岁,孙光民等.连续波雷达及其信号处理技术.现代雷达.1995年12月第6期,20~36.
    [31] 陈祝明,丁义元,向敬成.LFMCW的噪声性能分析.电子科技大学学报,1999,Vol.28(6),28~31.
    [32] 杨建宇.LFMCW接收机性能分析.系统工程与电子技术,2001.
    [33] 史林,张琳.调频连续波雷达频谱配对信号处理方法.西安电子科技大学学报(自然科学版).2003 Vol.30(4),534~538
    [34] 陈祝明,丁义元,向敬成.提高LFMCW雷达测距精度的最大值估值算法.系统工程与电子技术,1999,Vol.21(6),39~42.
    [35] 张立志,汪学刚,向敬成.LFMCW雷达动目标显示.信号处理,2000,Vol.16(3),262~266.
    [36] Yang Jianyu,Huang Shunji. Moving Target Indication of linear FMCW Radar for clutter rejection. Int. Sym. On Noise and Clutter Rejection in Radars and Imaging Sensors, Kyoto, Japan, 1989, 585~589.
    [37] I Raveh, D Mendlovic. New properties of the Radon transform of the cross wigner/ambiguity distribution function. IEEE Trans on signal Processing, 1999, Vol47(7): 2077~2080.
    [38] T J Abatzoglou. Fast maximum likelihood joint estimation of frequency and frequency rate [J]. IEEE Trans. Aerosp. Electronic. Syst, 1986, AES~22(6): 708~715.
    [39] Shimon Peleg, Benjamin Friedlander. The discrete polynomial~phase transform. IEEE Trans on Signal Processing, 1995, Vol43(8): 1901~1914.
    [40] Legg J. A., Gray D. A. Performance bounds for polynomial phase parameter estimation with nonuniform and random sampling schemes[J]. IEEE Transactions on Signal Processing. 2000, 2, 48(2): 331~337.
    [41] M S Wang, A k Chan, C K Chui. Linear frequency~modulated signal detection using radon~ambiguity transform. IEEE Trans on signal Processing, 1998, Vol. 46(3): 571~586.
    [42] X G Xia. Discrete chirp~Fourier transform and its application to chirp rate estimation. IEEE Trans on signal Processing, 2000, Vol. 48(11): 3122~3133.
    [43] 孙泓波,郭欣,等.修正离散Chirp~Fourier变换及其在SAR运动目标检测中的应用.电子学报,2003,Vol.31(1):25~28.
    [44] Zhang, Rongquan; Yang, Jianyu; Xiong, Jintao. Novel method of parameter estimation for moving target in millimeter~wave short~range linear FMCW radar. 2004 7th International Conference on Signal Processing Proceedings, ICSP, 2004 7th International Conference on Signal Processing Proceedings, ICSP, 2004, 1985~1988.
    [45] Zhang, Rongquan; Yang, Jianyu; Xiong, Jintao. LFMCW radar multi~target acceleration and velocity estimation method. 2004 7th International Conference on Signal Processing Proceedings, ICSP, 2004 7th International Conference on Signal Processing Proceedings, ICSP, 2004, 1989~1992.
    [46] T K Bhattacharya. Time-frequency based detection scheme for missile warning system [A]. IEE radar 97 conferrence [C]. Edindurg: IEE, 1997. 539-543.
    [47] 保铮,雷达信号的长时间积累,第七届全国雷达会议录,南京 1999
    [48] Woodward P M. Probability and Information Theory with Application to Radar. London: Pergamon Press, 1964
    [49] 赵宏钟,付强,周剑雄.雷达信号的加速度分辨力分析及应用,电子学报,2003,6:958-961.
    [50] Griffiths, H. D., New ideas in FM radar, Electronics & Communication Engineering Journal, Volume: 2, Issue: 5, Oct. 1990.
    [51] M. Musa, and S. Salous, Ambiguity elimination in HF FMCW radar systems, IEE Proceedings-Radar, Sonar Navig., Vol. 147, No. 4, August 2000.
    [52] Trunk G. V., Kim M. W, Multiple Target Ambiguity Resolution, Radar Conference, 1994., Record of the 1994 IEEE National, 29-31 March 1994.
    [53] 张容权 杨建宇等.基于多项相位变换的线性FMCW雷达目标加速度和速度估计方法.电子学报,2005,33(3):452-455
    [54] Barbarossa. Detection and imaging of moving objects with synthetic aperture radar, part 2: Joint time-frequency analysis by Wigner-Ville distribution[J], IEE Proc. Pt. F. 1992, 39(1): 89-98
    [55] Barbarossa. Detection and imaging of moving objects with synthetic aperture radar, part Ⅰ: optimal detection and parameter estimation theory[J], lEE Proc. Pt. F. 1992, 39(1): 79-88
    [56] J. M. Francos and B. Friedlander, "Bounds for estimation of multicomponent signals with random amplitude and deterministic phase," IEEE Trans. Signal Processing, 1995, vol. 43(5), 1161~1172.
    [57] G. Zhou, G. B. Giannakis, and A. Swami. On polynomial phase signals with time~varying amplitudes. IEEE Trans. Signal Processing, 1996, vol. 44(4), 848~861.
    [58] 黄克骥,田达,陈天麒.基于任意阵列形式的LFM信号参数估计.电波科学学报.2003,18(3):346-351
    [59] M. Z. Ikram, K. Abed-Meraim, etc. Estimating the parameters of chirp signals: an interative approach[J]. IEEE Transaction on Signal processing. 1998, 46(12): 3436-3441
    [60] S. Shamsunder, G. B. Giannakis, and B. Friedlander. Estimating random amplitude polynomial phase signals: A cyclostationary approach. IEEE Trans. Signal Processing, vol. 43(2), 492~505.
    [61] Namias V. The fractional Fourier transform and its application in quantum mechanics[J]. J Inst Appl Math. 1980, 25: 241-265
    [62] Almeida L B. The fractional Fourier transform and time-frequency representations[J]. IEE Transaction on Signal processing. 1994, 42(11): 3084-3091
    [63] Ozaktas H M, Arikan O, Kutay M A, et al.. Digital computation of the fractional Fourier transform[J]. IEEE Transaction on Signal processing. 1996, 44(9): 2141-2150
    [64] B. Friedlander and J. M. Francos. Estimation of amplitude and phase parameters of multicomponent signals. IEEE Trans. Signal Processing, 1995, Vol. 43(4), 917~926.
    [65] Djuric P and Kay S. Parameter estimation of chirp signals. IEEE Trans. Signal Processing, 1990, 38(11): 2118-2126.
    [66] TAO J, Steinberg B D. Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique. IEEE Trans. on antennas and propagation, 1988, 36(4): 543-556
    [67] Peleg S and Porat B. Linear FM signal parameter estimation from discrete-time observations. IEEE Trans. Aerosp. Electron. Syst., 1991, 27(4): 607-614
    [68] 李英祥,肖先赐.低信噪比下线性调频信号检测与参数估计.系统工程与电子技术,2002,Vol.24,No.8,43~46.
    [69] R. Kumaresan and S. Verma. On estimating the parameters of chirp signals using rank reduction techniques, in Proc. 21st Asilomar Conf., Pacific Grove, CA, 1987, 555~558.
    [70] S. Peleg and B. Porat. Estimation and classification of polynomialphase signals. IEEE Trans. Inform. Theory, 1991, Vol. 37(3), 422~430.
    [71] B. Porat. Digital Processing of Random Signals: Theory & Methods. Englewood Cliffs, NJ: Prentice~Hall, 1994.
    [72] R. F. Dwyer. Fourth-order spectra of Gaussian amplitude modulated sinusoids. J. Acoust. Soc. Amer, 1991, Vol. 90(8), 918~926.
    [73] A. Swami, "Multiplicative noise models: Parameter estimation using cumulants," Signal Process., 1994, Vol. 36(4), 355~373.
    [74] G. Zhou and G. B. Giannakis, "On estimating random amplitude modulated harmonics using higher~order spectra," IEEE J. Oceanic Eng., 1994, Vol. 19(10), 529~539.
    [75] Guotong Zhou; Giannakis, G. B. Harmonics in multiplicative and additive noise: Performance analysis of cyclic estimators. IEEE Trans. Signal Processing, 1995, Vol. 43(6), 1445~1460.
    [76] O. Besson and P. Stoica. Sinusoidal signals with random amplitude: Least~squares estimators and their statistical analysis. IEEE Trans. Signal Processing, 1995, Vol. 43(11), 2733~2744.
    [77] M. Ghogho, A. K. Nandi, and A. Swami. Cram'er~Rao bounds and parameter estimation for random amplitude phase modulated signals, in Proc. ICASSP, Phoenix, AZ, Mar. 1999, 1577~1580.
    [78] A. D. Dandawat'e and G. B. Giannakis. Asympotic theory of kth~order cyclic moment and cumulant statistics. IEEE Trans. Inform. Theory, 1995, Vol. 41(1), 216~232,
    [79] M. Z. Ikram, K. Abed~Meraim, and Y. Hua. Fast quadratic phase transform for estimating the parameters of multicomponent chirp signals. Digital Signal Process., Rev. J., 1997, Vol. 7, 127~135.
    [80] A. Ouldali and M. Benidir. Distinction between polynomial phase signals with constant amplitude and random amplitude, in Proc. ICASSP, Munich, Germany, Apr. 21~24, 1997, 3653~3656.
    [81] T. Hasan. Nonlinear time series regression for a class of amplitude modulated cosinusoids. J. Time Series Anal. 1982, Vol. 3, No. 2, 109~122.
    [82] P. Me Cullagh. Tensor Methods in Statistics. London, U. K.: Chapman & Hall, 1987.
    [83] O. Besson and P. Stoica. Two subspace~based methods for frequency estimation of sinusoidal signals with random amplitude. Proc. Inst. Elect. Eng., Radar, Sonar, Navigation, 1997, Vol. 144(8), 169~176.
    [84] G. Zhou and A. Swami. Performance analysis for a class of amplitude modulated polynomial phase signals, in Proc. ICASSP, Detroit, MI, May 1995, 1593~1596.
    [85] O. Besson and P. Stoica. Nonlinear least~squares approach to frequency estimation and detection for sinusoidal signals with arbitrary envelope. Digital Signal Process., Rev. J., 1999, Vol. 9, No. 1, 45~56.
    [86] M. Ghogho, A. Swami, and A. Nandi, Non~linear least squares estimation for harmonics in multiplicative and additive noise, in Proc. 9th IEEE SSAP Workshop, Portland, OR, Sept. 1998, 407~410.
    [87] KIM, Y. H., and LEE, M. S.: 'Accurate tracking of multiple targets for millimeter-wave automotive radar in heavy cluttered environment'. The second international symposium on wireless personal multimedia communications, Amsterdam, The Netherlands, 1999, pp. 106-111
    [88] BAR-SHALOM, Y., and FORTMANN, T. E.: 'Tracking and data association' (Academic Press, 1988)
    [89] LEUNG, H., HU, Z., and BLANCHETTE, M.: 'Evaluation of multiple radar target trackers in stressful environments', IEEE Trans. Aerosp. Electron. Syst., 1999, 35, (2), pp. 663-674
    [90] ROECKER, J. A.: 'A class of near optimal JPDA algorithms', IEEE Trans. Aerosp. Electron. Syst., 1994, 30, (2), pp. 504-510
    [91] FISHER, J. L., and"CASASENT, D. k;'.'$ast JPDA multitarget tracking algorithm', Appl. Opt., 1989, 28, (2), pp. 371-376
    [92] ROECKER, J. A.: 'Approximate joint probabilistic data association algorithms', Proc. SPIE-Int. Soc. Opt. Eng., 1993, 1954, pp. 331-340
    [93] 蒋铁珍,武虎等.毫米波汽车防撞雷达恒虚警率门限设定方法.红外毫米波学报,2005,24(3):217~220
    [94] 廖传锦,柴毅等.汽车防撞系统中目标跟踪与防撞决策研究.中国公路学报,2004,17(2):113~118
    [95] IEEE Standard Radar Definitions. IEEE Std, 686~1982, October 15, 1982.
    [96] Steven M.Kay.Fundamentals 0f stafisdcal signal processing.北京:电子工业出版社.2003.
    [97] A.V奥本海姆、R.W谢弗、J.R.巴克.刘树棠、黄建国译.离散时间信号处理.西安交通大学出版社,2001.
    [98] Sanjit k. Mitra, Digital Signal Processing Mcgraw-Hill, 2001.
    [99] 张明友.信号与系统分析.电子科技大学出版社,1990.
    [100] 林茂庸,柯有安.雷达信号理论.国防工业出版社,1984
    [101] Donghai Li; Yongjun Zhao; Tao Zhang; Zhenxing Wang. High-precision measurement of radar carrier frequency. Radar, 2001 CIE International Conference on, Proceedings 15~18 Oct. 2001, 241~243.
    [102] D. R. Wehner. High Resolution Radar, Imaging, Artech House, 1987
    [103] Scolnik M. L., Radar handbook. McGram~Hill. New York. 1990.
    [104] 丁鹭飞.雷达原理.电子工业出版社,1984:304~316.
    [105] 向敬成,张明友.雷达系统.电子工业出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700