双基地LFMCW雷达信号处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究双基地线性调频连续波(LFMCW)雷达的信号处理理论及系统关键技术,包括:
     1) 从双基地雷达几何结构和LFMCW信号特点出发,分析了双基地环境下的对称三角LFMCW信号特性,包括:具有速度和加速度的运动目标的回波信号、差拍信号、多普勒信号分析,以及在高斯白噪声环境下信号的最佳检测模型。
     2) 分析单基地对称三角LFMCW信号和双基地LFMCW信号模糊函数及特性,然后结合二者,导出双基地对称三角LFMCW雷达信号的模糊函数及特性;并分析了距离分辨率、速度分辨率,以及距离速度耦合特性。
     3) 针对单目标环境,提出了基于多项相位变换的双基地LFMCW雷达运动目标的速度和加速度估计方法;针对同一距离单元的多个目标环境,提出了一种修正的多项相位变换方法的双基地LFMCW运动目标的速度和加速度估计方法。通过仿真验证了这两种算法的有效性。
     4) 针对双基地LFMCW高斯色噪声环境下的速度和加速度估计问题,提出了一种通用离散Chirp—Fourier变换方法。此变换方法有效利用了色噪声的功率谱密度信息,使其在实际目标检测与参数估计中,其性能明显优于现有的离散Chirp—Fourier变换方法。另外推导了色高斯环境下的Chirp信号参数估计的CRB,为实际情况的参数估计方差提供较精确的下限。
     5) 提出了将LFMCW雷达差拍信号离散频谱增采样内插以提高雷达测距精度的方法。仿真结果表明,这种方法可以有效降低FFT固有频域采样间隔带来的测距误差,能够在整个频域轴上更准确地反映多个不同距离目标的差拍信号频谱特性,且运算量低。
     6) 对双基地LFMCW雷达的距离速度去耦合进行研究,提出了“MTD—频域配对法”的距离速度去耦合方案。仿真分析表明,该方法能简化目标环境,可实现各种复杂多目标环境下的目标检测与距离速度去耦合,实现目标速度、距离精确估计。
     7) 研究了双基地LFMCW雷达的一些关键技术,包括:
     多径效应分析、杂波与直达波抑制技术及方案;LFMCW的数字AGC设计方案。
This dissertation has completed the following research of signal processing theory and system key techniques for Bistatic Linear Frequency Modulation Continuous Wave (LFMCW) radar.
    1) From the geometry structure of Bistatic and the characteristic of LFMCW signal, the symmetrical triangle LFMCW signal applied in Bistatic radar is analyzed, which include the target echo signal, the beating signal of moving target with velocity and acceleration, as well as the signal optimal detection model in white Gaussian noise.
    2) The ambiguity function and its characteristic of monostatic symmetrical triangle and Bistatic single sweep frequency LFMCW signal are analyzed. By combining the above two signals, then the ambiguity function and its characteristic of Bistatic symmetrical triangle LFMCW signal is analyzed. The range resolution, velocity resolution and rang-velocity coupling characteristic are also derived and analyzed.
    3 ) Aiming at single target environment, a method of moving target's velocity and acceleration estimation using polynomial phase transform for Bistatic LFMCW radar is presented. Aiming at the velocity and acceleration estimation problem of multi-targets in the same range cell, a modified polynomial phase transform method is also presented. The simulation has tested the validity of the algorism.
    4) Aiming at the parameter estimation problem of velocity and acceleration of Bistatic LFMCW radar in color Gaussian noise, a general discrete Chirp-Fourier transform is presented. The algorithm efficiently makes use of the power spectrum information of color noise, which makes its capability obviously better than the existing discrete Chirp-Fourier transform in actual target detection and parameter estimation, In addition, the CRB of the chirp signal's parameter estimation under the condition of normal Gaussian noise is also derived, which can provide a precise lower bound for the variance of actual parameter estimation.
    5) A method of improving range precision of LFMCW radar based on frequency domain up-sampling-interpolating is presented. The simulation indicates that the
引文
[1] Nichola J.Whills.张祖稷,吴曼青等译.双基地雷达.机电部38所,1992.2.
    [2] 杨振起,张永顺等.双/多基地雷达系统.国防工业出版社,1998.3.
    [3] 丁鹭飞.双/多基地雷达反隐身.反隐身技术研讨会论文集.西安,1993.12.
    [4] 郦能敬.雷达反对抗的新领域—反隐身于抗辐射导弹.电子学报.1987.Vol.15.No.2.2~14.
    [5] 黄康培.飞行器隐身技术评述.系统工程与电子技术.1984.No.1.
    [6] 刘志文,柯有安.雷达反隐身的若搞问题与技术途径.现代雷达.1992.No.3.
    [7] 毛士艺,林品兴,李少洪.极弱信号检测的若干途径.反隐身技术研讨会论文集.北京,1993,10,64~70.
    [8] 黄为倬.情报雷达反隐身飞机技术的综合讨论.北京,1993,10,1~30.
    [9] D. Moraitis, S. alland. Effect of radar frequency on detection of shaped(low RCS) targets. IEEE Radar'85, 159~162.
    [10] Glaser J. I. Bistatic RCS of Complex Objects Near Forward Scatter. IEEE trans. V. AES-21-1985, 70~80.
    [11] A. B. Blyakhman, A. G. Ryndyk, S. B. Sidorov. Forward Scattering Radar Moving Object Coordinate Measurement. The Record of the IEEE 2000 International7-12 May 2000, 678~682
    [12] A. B. Blyakhman, I. A. Runova. Forward Scattering Bistatic Radar. PIERS Workshop on Advances in Radar Methods, Italy, Iuly 1998, 107~113.
    [13] Garbacz R J, Moffett D L. An Experiment study of Bistatic scattering from some small. Absorber~coated. Metal shapes, proc. IRE, 1961, 49(7), 1184~1192.
    [14] Glaser J. I. Some Results in the Bistatic Radar Cross Section of Complex Objects. Proceeding of the IEEE, 1989, Vol. 77(5).
    [15] 李红兵.俄罗斯新型雷达动态.雷达与电子战,1999.1,14~16.
    [16] Griffiths, H. D Long, N. R. W. Television~Based Bistatic Radar. IEE Proceedings, Part F: Communications, Radar and Signal Processing, 1986, Vol 133(7), 649~657.
    [17] 魏崇毓,徐善驾,王东进,TR~R~2多站雷达系统的近程应用分析与仿真.电子学 报.1999,Vol 27(12), 56-60.
    [18] Jackson, M. C. The Geometry of Bistatic Systems. IEE Proceedings, 133,Dec. 1986, 604-612.
    [19] T.Tsao, M.Slamani, P.Varshney, D.Weiner, H.Schwarzlander, S.Borek, Ambiguity Function for a Bistatic Radar. Aerospace and Electronic Systems, IEEE Transactions on, Volume 33 Issue 3, July 1997, 1041-1051.
    [20] Blyakhman, A.B.; Runova, I.A.. Forward scattering radiolocation Bistatic RCS and target detection. Radar Conference, 1999. The Record of the 1999 IEEE, 20-22 April 1999,203-208.
    [21] Nashashibi, A.Y.; Ulaby, F.T. Detection of targets above rough surfaces using millimeter-wave Bistatic radars. Antennas and Propagation Society International Symposium, 2003. IEEE Volume 3,22-27 June 2003 ,424 - 427
    [22] Ulaby, F.T.; Van Deventer, T.E.; East, J.R.; Haddock, T.F.; Coluzzi, M.E. Millimeter-wave Bistatic scattering from ground and vegetation targets Geoscience and Remote Sensing. IEEE Transactions on Vol.26(3), May 1988 ,229 - 243.
    [24] McAllister, C.A. Signal processing considerations for an application of Bistatic radar. IEEE Region 5 Conference, 1988: 'Spanning the Peaks of Electrotechnology'21-23 March 1983,45-49.
    [25] Boyle, R.J.; Wasylkiwskyj, W. Comparison of monostatic and Bistatic bearing estimation performance for low RCS targets. Aerospace and Electronic Systems, IEEE Transactions on Volume 30(3) July 1994, 962 - 968.
    
    [26] A.GStove, Modern FMCW Radar — Techniques and Applications Conference Proceedings-1st European Radar Conference, EuRAD, 2004, 149-152.
    [27] Lin, Kaihui; Wang, Yuanxun Ethan. Real-time DSP for Reflected Power Cancellation in FMCW Radars. IEEE 60th Vehicular Technology Conference, VTC2004~Fall: Wireless Technologies for Global Security, 2004,3905-3907.
    [28] Qi, Guoqing. High Accuracy Range Estimation of FMCW Level Radar Based on the Phase of the Zero-padded FFT. 2004 7th International Conference on Signal Processing Proceedings (ICSP'04), 2004,2078-2081.
    [29] Grosche, Robert. Model Mismatch and Systematic Errors in an Optical FMCW Distance Measurement System. WSEAS Transactions on Electronics, v2, n1, January, 2005, 12~16.
    [30] Du, Yuming; Yang, Jianyu; Xiong, Jintao. Novel Method for Ambiguity Elimination in the Linear FMCW Radar. 2004 7th International Conference on Signal Processing Proceedings (ICSP'04), 2004, 2066~2069.
    [31] A. G. Stove. Linear FMCW Radar Techniques. IEE Proceedings, Part F: Radar and Signal Processing, Oct, 1992, Vol 139(5) 343-350.
    [32] 杨建字.LFMCW雷达信号模糊函数分析.信号处理,2002,Vol.18(1)1,39~42.
    [33] 杨建宇,凌太兵,等.LFMCW雷达运动目标检测与速度距离去耦合.电子信息学报,2004,Vol.26(2),169~173.
    [34] A. Wojtkiewicz, R. Rytel~Andrianik A New Estimation For Target Range, Velocity And Acceleration In FMCW Radar, Proc. Int. Confon Signal and Electronic System 2000, Poland.
    [35] 刘宝,刘军民.FMCW雷达快速高精度测距算法.电子测量与仪器学报 2001年03期.
    [36] 李玉柏,彭启琮.基于多相分解滤波器实现的局部频率细化.电子测量与仪器学报 2000年03期.
    [37] 杨建宇.LFMCW雷达理论与实现:[电子科技大学博士论文],成都:电子科技大学电子工程学院 1991
    [38] 刘国岁,孙光民等.连续波雷达及其信号处理技术.现代雷达.1995年12月第6期,20~36.
    [39] 陈祝明,丁义元,向敬成.LFMCW的噪声性能分析.电子科技大学学报,1999,Vol.28(6),28~31.
    [40] 杨建宇.LFMCW接收机性能分析.系统工程与电子技术,2001.
    [41] 徐涛,金昶明,孙晓玮,夏冠群.一种采用变周期调频连续波雷达的多目标识别方法.电子学报,2002,Vol.30(6)861~863
    [42] 史林,张琳.调频连续波雷达频谱配对信号处理方法.西安电子科技大学学报(自然科学版).2003 Vol.30(4),534~538
    [43] 凌太兵.LFMCW雷达运动目标检测与距离速度去耦合:[电子科技大学硕士论文],成都:电子科技大学电子工程学院 2003.
    [44] 贺峻.LFMCW雷达动目标回波距离—速度去耦合方法研究:[电子科技大学硕士论文],成都:电子科技大学电子工程学院 2000.
    [45] 杨建宇.LEMCW雷达的等效正交双通道性能.电子学报,1993,No.9,76~80.
    [46] 陈祝明,丁义元,向敬成.提高LFMCW雷达测距精度的最大值估值算法.系统工程与电子技术,1999,Vol.21(6),39~42.
    [47] 张立志,汪学刚,向敬成.LFMCW雷达动目标显示.信号处理,2000,Vol.16(3),262~266.
    [48] Yang Jianya, Huang Shunji. Moving Target Indication of linear FMCW Radar for clutter rejection. Int. Sym. On Noise and Clutter Rejection in Radars and Imaging Sensors, Kyoto, Japan, 1989, 585~589.
    [49] I Raveh, D Mendlovic. New properties of the Radon transform of the cross wigner/ambiguity distribution function. IEEE Trans on signal Processing, 1999, Vol. 47(7): 2077~2080.
    [50] A. Wojtkiewicz, R. Rytel~Andrianik. Optimal detection and estimation in FMCW radar. 14th International Conference on Microwaves, Radar and Wireless Communications. MIKON: IEEE press, 2002, 778~781.
    [51] T J Abatzoglou. Fast maximum likelihood joint estimation of frequency and frequency rate[J]. IEEE Trans. Aerosp. Electronic. Syst, 1986, AES~22(6): 708~715.
    [52] Shimon Peleg, Benjamin Friedlander. The discrete polynomial~phase transform. IEEE Trans on Signal Processing, 1995, Vol43(8): 1901~1914.
    [53] I Raveh, D Mendlovic. New properties of the Radon transform of the cross wigner/ambiguity distribution function. IEEE Trans on signal Processing, 1999, Vol47(7): 2077~2080.
    [54] M S Wang, A k Chan, C K Chui. Linear frequency~modulated signal detection using radon~ambiguity transform. IEEE Trans on signal Processing, 1998, Vol. 46(3): 571~586.
    [55] X G Xia. Discrete chirp~Fourier transform and its application to chirp rate estimation. IEEE Trans on signal Processing, 2000, Vol. 48(11): 3122~3133.
    [56] 孙泓波,郭欣,等.修正离散Chirp~Fourier变换及其在SAR运动目标检测中的应用.电子学报,2003,Vol.31(1):25~28.
    [57] Zhang, Rongquan; Yang, Jianyu; Xiong, Jintao. Novel method of parameter estimation for moving target in millimeter~wave short~range linear FMCW radar. 2004 7th International Conference on Signal Processing Proceedings, ICSP, 2004 7th International Conference on Signal Processing Proceedings, ICSP, 2004, 1985~1988.
    [58] Zhang, Rongquan; Yang, Jianyu; Xiong, Jintao. LFMCW radar multi-target acceleration and velocity estimation method. 2004 7th International Conference on Signal Processing Proceedings, ICSP, 2004 7th International Conference on Signal Processing Proceedings, ICSP, 2004, 1989~1992.
    [59] 李英祥,肖先赐.低信噪比下线性调频信号检测与参数估计.系统工程与电子技术,2002,Vol.24,No.8,43~46.
    [60] R. Kumaresan and S. Verma. On estimating the parameters of chirp signals using rank reduction techniques, in Proc. 21st Asilomar Conf., Pacific Grove, CA, 1987, 555~558.
    [61] P. Djuric and S. M. Kay. Parameter estimation of chirp signals. IEEE Trans. Acoust., Speech, Signal Processing, 1990, Vol. 38(12), 2118~2126.
    [62] S. Peleg and B. Porat. Linear FM signal parameter estimation from discrete~time observations. IEEE Trans. Aerosp. Electron. Syst., 1991, Vol27(6), 607~616.
    [63] S. Peleg and B. Porat. Estimation and classification of potynomialphase signals. IEEE Trans. Inform. Theory, 1991, Vol. 37(3), 422~430.
    [64] B. Porat. Digital Processing of Random Signals: Theory & Methods. Englewood Cliffs, NJ: Prentice~Hall, 1994.
    [65] S. Peleg and B. Friedlander. The discrete polynomial~phase transform. IEEE Trans. Signal Processing, 1995, Vol. 43(8), 1901~1914.
    [66] R. F. Dwyer. Fourth~order spectra of Gaussian amplitude modulated sinusoids. J. Acoust. Soc. Amer, 1991, Vol. 90(8), 918~926.
    [67] A. Swami, "Multiplicative noise models: Parameter estimation using cumulants," Signal Process., 1994, Vol. 36(4), 355~373.
    [68] G. Zhou and G. B. Giannakis, "On estimating random amplitude modulated harmonics using higher~order spectra," IEEE J. Oceanic Eng., 1994, Vol. 19(10), 529~539.
    [69] Guotong Zhou; Giannakis, G. B. Harmonics in multiplicative and additive noise: Performance analysis of cyclic estimators. IEEE Trans. Signal Processing, 1995,Vol.43(6), 1445-1460.
    [70] O. Besson and P. Stoica. Sinusoidal signals with random amplitude: Least-squares estimators and their statistical analysis. IEEE Trans. Signal Processing, 1995, Vol.43(11), 2733-2744.
    [71] M. Ghogho, A. K. Nandi, and A. Swami. Cram'er~Rao bounds and parameter estimation for random amplitude phase modulated signals, in Proc. ICASSP, Phoenix, AZ,Mar. 1999,1577-1580.
    [72] A. D. Dandawat'e and G. B. Giannakis. Asympotic theory of kth-order cyclic moment and cumulant statistics. IEEE Trans. Inform. Theory, 1995,Vol.41(1), 216-232,
    [73] M. Z. Ikram, K. Abed-Meraim, and Y. Hua. Fast quadratic phase transform for estimating the parameters of multicomponent chirp signals. Digital Signal Process., Rev. J., 1997,Vol.7, 127-135.
    [74] A. Ouldali and M. Benidir. Distinction between polynomial phase signals with constant amplitude and random amplitude. in Proc. ICASSP, Munich, Germany, Apr. 21-24, 1997,3653-3656.
    [75] T. Hasan. Nonlinear time series regression for a class of amplitude modulated cosinusoids. J. Time Series Anal. 1982,Vol.3, No.2,109-122.
    
    [76] P. Mc Cullagh. Tensor Methods in Statistics. London, U.K.: Chapman & Hall, 1987.
    [77] O. Besson and P. Stoica. Two subspace-based methods for frequency estimation of sinusoidal signals with random amplitude. Proc. Inst. Elect. Eng., Radar, Sonar, Navigation, 1997, Vol. 144(8), 169-176.
    [78] G. Zhou t'and A. Swami. Performance analysis for a class of amplitude modulated polynomial phase signals. in Proc. ICASSP, Detroit, M, May 1995, 1593-1596.
    [79] O. Besson and P. Stoica. Nonlinear least-squares approach to frequency estimation and detection for sinusoidal signals with arbitrary envelope. Digital Signal Process., Rev. J., 1999,Vol.9, No. 1, 45-56.
    [80] M. Ghogho, A. Swami, and A. Nandi, Non-linear least squares estimation for harmonics in multiplicative and additive noise. in Proc. 9~(th) IEEE SSAP Workshop, Portland, OR, Sept. 1998,407-410.
    
    [81] B. Friedlander and J. M. Francos. Estimation of amplitude and phase parameters of multicomponent signals. IEEE Trans. Signal Processing, 1995,Vol.43(4), 917-926.
    [82] G. Zhou, G. B. Giannakis, and A. Swami. On polynomial phase signals with time-varying amplitudes. IEEE Trans. Signal Processing, 1996, vol. 44(4), 848~861.
    [83] J. M. Francos and B. Friedlander, "Bounds for estimation of multicomponent signals with random amplitude and deterministic phase, " IEEE Trans. Signal Processing, 1995, vol. 43 (5), 1161-1172.
    [84] S. Shamsunder, G. B. Giannakis, and B. Friedlander. Estimating random amplitude polynomial phase signals: A cyclostationary approach. IEEE Trans. Signal Processing, vol. 43(2), 492~505.
    [85] IEEE Standard Radar Definitions. IEEE Std, 686~1982, October 15, 1982.
    [86] Steven M. Kay. Fundamentals of statistical signal processing. 北京:电子工业出版社.2003.
    [87] A.V.奥本海姆、R.W.谢弗、J.R.巴克.刘树棠、黄建国译.离散时间信号处理.西安交通大学出版社,2001.
    [88] Sanjit k. Mitra, Digital Signal Processing Mcgraw-Hill, 2001.
    [89] 张明友.信号与系统分析.电子科技大学出版社,1990.
    [90] 林茂庸,柯有安.雷达信号理论.国防工业出版社,1984
    [91] Donghai Li; Yongiun Zhao; Tao Zhang; Zhenxing Wang. High-precision measurement of radar carrier frequency. Radar, 2001 CIE International Conference on, Proceedings 15~18 Oct. 2001, 241~243.
    [92] D. R. Wehner. High Resolution Radar, Imaging, Artech House, 1987
    [93] Scolnik M. L., Radar handbook. McGram~Hill. New York. 1990.
    [94] 丁鹭飞.雷达原理.电子工业出版社,1984:304~316.
    [95] 向敬成,张明友.雷达系统.电子工业出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700