机载/星载正侧视阵列雷达GMTI研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对正侧视阵列雷达(包括机载雷达和星载雷达)实现GMTI功能,开展了通道相位中心估计,通道幅度、相位误差盲均衡,SAR图像域杂波抑制和降维准最优处理,运动目标测速、定位以及重聚焦等关键技术研究。主要工作包括:
     1、在通道相位中心估计过程中,通过利用通道间场景杂波相位差异与多普勒频率的特定关系,结合相位解缠绕处理和整体最小二乘方法获得高精度的通道相位中心位置估计结果。在典型机载雷达参数配置下能够获得毫米级的沿航迹基线长度估计精度,满足运动目标速度估计对相位中心位置误差的要求。针对通道幅度、相位误差盲均衡问题,在获得场景距离-多普勒图像的基础上,结合功率挑选准则和回波相位矢量相关矩阵特征分解实现通道相位误差自适应补偿;然后基于相位挑选准则剔除潜在的目标样本,通过数据相关矩阵特征分解实现通道幅度响应特性估计和自适应补偿。理论分析并结合仿真实验和某机载实测数据处理表明该方法能够有效均衡通道响应误差,对运动目标信号污染具有稳健性。
     2、针对沿航迹多通道系统慢速运动目标检测问题,提出了基于广义特征空间分解的SAR图像域杂波抑制算法。理论分析证明了唯一最小广义特征值的存在性和对应特征矢量与杂波空间正交。该方法采用IIR(无限冲击响应)模型对场景杂波进行自适应预测相消,对图像配准误差和杂波起伏具有稳健性,能够有效检测出主瓣杂波区的慢速运动目标
     3、提出了一种基于SAR图像域和/差数据模型的杂波抑制降维准最优处理方法。在不损失场景信息前提下通过形成图像域和/差联合观察数据矢量达到降维处理目的。从统计意义上看:和通道包含了场景杂波在不同通道间的共同信息;差通道则包含了通道间的差异信息。对和/差通道数据进行自适应处理能够有效抑制场景杂波,并且能够保留运动目标在通道间的差异信息。理论分析和仿真数据处理表明降维准最优处理方法不仅在图像精确配准和均匀场景条件下性能良好;而且在存在图像配准误差或非均匀环境中其性能优于传统最优处理和传统全维非最优处理方法。
     4、针对不具有方位扫描能力的多通道SAR系统实现运动目标测速、定位功能,首先提出了一种修正的基于单次快拍模型的目标径向速度估计算法,能够有效减小慢速运动目标的测速方差,并且具有较低的运算复杂度。然后通过测量不同方位子驻留间目标径向距离的变化获得无模糊的目标径向速度粗估计;最后结合目标导向搜索类方法对目标径向速度进行精确估计,有效解决了速度测量的模糊问题。仿真结果和实测数据处理表明该方法比传统AMF和原始单次快拍方法具有更好的运动目标定位性能。针对运动目标重聚焦问题,我们有效融合平滑伪Wigner-Ville分布、图像边缘检测、Hough变换以及最小二乘聚类处理,以较低的运算复杂度获得运动目标回波多普勒中心频率和多普勒调频率的正确估计,能够对运动目标回波获得较好的聚焦处理性能。
This doctoral dissertation addresses the key techniques, such as phase center estimation, channel gain and phase response error calibration, clutter rejection and reduced-dimension processing, moving targets radial velocity estimation and location, targets re-focusing, for ground moving target indication with side-looking multi-channel radar systems. The main topics of this dissertation are listed as follows:
     1. For the purpose of phase center estimation and channel manifold calibration, a new algorithm which explores phase and amplitude relationshipe among along-track Doppler beam sharping (DBS) images is proposed. The channel manifold calibration procedure uses a power-based criterion to reject a weak clutter patch and/or target for covariance matrix estimation, on the other hand, a phase-based criterion to alleviate the strong target signal contamination problem. Thus the problem of target signal contamination can be alleviated observably. Finally, phase center among multi-channel are estimated based on fitting the linear relationship between unwrap phase of the clutter space steering vector and Doppler frequency adopting the total least square algorithm. The effectiveness for channel mismatch and phase center estimation where a millimeter estimation result can be achieved and the robustness for target signal contamination are confirmed by performance analysis and experimental data..
     2. Clutter rejection is the prime problem for ground moving target indication (GMTI). We focus on clutter inner undulating which influences the performance of moving target detection. A new algorithm based on generalized noise eigen-subspace which is in existence and orthogonal to clutter subspace is presented. The robustness for clutter inner undulating and synthetic aperture radar (SAR) images registration error is proved by subspace analysis and extensive simulation.
     3. A new reduced-dimensional method based on joint pixels sum-difference data for clutter rejection and GMTI is proposed. The reduced-dimensional joint pixels sum-difference data are obtained by the orthogonal projection of the joint pixels data of different synthetic aperture radar images generated by a multi-satellite radar system. In the sense of statistic expectation, the joint pixels sum-difference data contains the common and different information among SAR images. Then the objective of clutter cancellation and GMTI can be achieved by adaptive processing. Simulation results demonstrate that the performance loss induced by this method for homogeneous terrain with no co-registration error can be acceptable and better result can be achieved adopting this method in the case of heterogeneous terrain with a finite co-registration error.
     4. For the purpose of overcoming the contradiction between minimum detected velocity and maximum unambiguous velocity, a new target radial velocity estimation approach which is performed in tow stages is proposed. The coarse estimation procedure uses a track-based criterion to avert the unambiguous problem. Using modified single-snapshot multiple direction of arrival estimation method, a fine estimation of target radial velocity can be achieved in the signal fitting sense. Note that the last stage is carried out at determinate range-Doppler test cell to locate moving target by azimuth searching for that one fitting best to the moving target signal, thus the location performance would not be sacrificed in order to suppress clutter and/or interference and the high resolution radial velocity estimation can be achieved. Therefore, the proposed algorithm is computationally inexpensive. A preliminary result against an airborne experimental data demonstrates the effectiveness of the proposed method. Moreover, the moving target echoes is similar with linear frequency modulation (LFM) signal, so target moving parameters can be deduced by estimating chirp rate and initial frequency. We propose a method which using spatial-frequency joined weight WVD for cross-product terms suppressing at first, and taking edge detecting in image domain followed by applying Hough transformation for line detecting and eliminating cross-product terms at the most, then giving the target moving parameter estimation by using least square algorithm. Advantages of this approach are that cross-product terms are suppressed and accurate chirp rate estimates is obtained.
引文
[1]L.E.Brennan and I.S.Reed, Theory of adaptive radar, IEEE Trans on Aerosp Electron Syst, Vol. 9, Mar 1973, pp: 237-252
    [2]J. Ward, Space-Time Adaptive Processing for Airborne Radar Systems, Lincoln Lab, Mass, Inst Technol, Lexington, MA, Tech Rep 1015, DTIC AD-A293032, 1994
    [3]R. Klemm, Principles of Space-Time Adaptive Processing, London, U.K.: Inst Elect Eng, 2002
    [4]R. Klemm, Space-time adaptive processing: principles and applications, IEE Proc.-Radar Sonar Navigation and Avionics 9, London: IEE press, 1998
    [5]William L. Melvin, et al, Assessment of multichannel airborne radar measurements for analysis and design of space-time processing architectures and algorithms, IEEE National Radar Conference, Ann Arbor, Michigan, May 1996: 130-135
    [6]G. W. Titi, D. Marshall, The ARPA/NAVY mountaintop program-Adaptive signal processing for airborne early warning radar, Proc. ICASSP’96, Atlanta, GA, May 1996: 1165-1168
    [7]M. O. Little, W. P. Berry, Real-time multichannel airborne radar measurements, IEEE Proc. Int. Conf. Radar Syracuse, New York, 1997: 138-142
    [8]S. A. Hovanessian, Introduction to Synthetic Array and Imaging Radar, Artech House, Inc., 1980
    [9]杨士中,合成孔径雷达,国防工业出版社,1981
    [10]保铮,邢孟道,王彤,雷达成像技术,电子工业出版社,2005
    [11]A, Freeman, Simple MTI using Synthetic Aperture Radar, Proc IGARSS’84, 1984: 65-69
    [12]A. Freeman, A. Currie, Synthetic Aperture Radar Images of Moving Targets, GEC Journal of Research, Vol. 5, No. 2, 1987: 106-115
    [13]J. Moreira, Estimation the Residual Error of the Reflectivity Displacement Method for Aircraft Motion Error Extraction form SAR Raw Data, IEEE International Radar Conference, 1990: 70-75
    [14]S. Barbarossa and A. Farina, A Novel Procedure for Detecting and Focusing Moving Objects with SAR Based on the Wigner-Ville Distribution, IEEE International Conference, 1990: 44-50
    [15]S. Barbarossa, Detection and Imaging of Moving Objects with Synthetic Aperture Radar, Part I: Optional Detection and Parameter Estimation Theory, IEE Proc.-f, No. 1, 1992: 79-88
    [16]S. Barbarossa and A. Farina, Detection and Imaging of Moving Objects with Synthetic Aperture Radar, Part II: Joint Time-Frequency Analysis by Wigner-Ville Distribution, IEE Proc.-f, No. 1, 1992: 89-97
    [17]S. Barbarossa and A. Farina, Space-Time-Frequency Processing of Synthetic Aperture Radar Signals, IEEE Trans on Aerosp Electron Syst, Vol. 30, No. 2, April 1994: 341-358
    [18]J. H. G. Ender, The airborne experimental multi-channel SAR system AER-II, in Proc EUSAR Conf, Germany, 1996: 49-52
    [19]J.H.G Ender, Signal processing for multi-channel SAR applied to the experimental SAR system AER, Intern. Radar Conf. Paris May 1994
    [20]J. H. G. Ender, Space-time processing for multichannel synthetic aperture radar, Electronics & Communication Engineering Journal, February 1999: 29-38
    [21]J. H. G. Ender, A. R. Brenner, PAMIR-a Wideband Phased Array SAR/MTI System, EUSAR’02, Cologne, June 2002
    [22]A. R. Brenner, J. H. G. Ender, First experimental results achieved with the new very wideband SAR system PAMIR, EUSAR’02, Cologne, June 2002
    [23]A. R. Brenner, J. H. G. Ender, Demonstration of advanced reconnaissance techniques with the airborne SAR/GMTI sensor PAMIR, IEE Proc.-Radar Sonar Navigation, Vol. 153, No. 2, April 2006: 152-162
    [24]Iwashashi, Tsutomu Tanaka, Hirokazu, Satellite technology for environmental observation, Mitsubishi Electric Advance, Vol. 74, No. 3, 1996: 8-10
    [25]L. J. Cantafio, Space-based radar handbook, Boston: Artech House, 1989
    [26]Lo Martin W, Satellite-constellation design, Computing in Science & Engineering, Vol. 1, No. 1, 1989: 58-66
    [27]Folta, David, Newman, et al, Design and implementation of satellite formations and constellations, Advance in the Astronautical Sciences, Vol. 100, No. 1, 1998: 57-70
    [28]G. Canavan, D. Thompson, I. Bekey, Distributed Space Systems, New World Vistas, Air and Space Power for the 21st Century, United States Air Force, 1996
    [29]Maurice W. Long, Airborne early warning system concepts, Boston: Artech House, 1992
    [30]M. Skolnik, Radar handbook, McGraw-Hill. New York, 2ndEd, 1990
    [31]D. Curtis Schleher, MTI and pulsed Doppler radar, Boston: Artech House, 1991
    [32]Wang, H.S.C., Mainlobe Clutter Cancellation by DPCA for Space-Based Radars, Aerospace Applications Conference, 1991. Digest, 1992 IEEE, 3-8 Feb 1991: 1-128
    [33]Lightstone L, Faubert D, Remple G, Multiple phase center DPCA for airborne radar, IEEE National Radar Conference, 1991: 36-40
    [34]Richardson P. G, Relationships between DPCA and adaptive space-time processing techniques for clutter suppression, IEEE International Radar Conference, Paris’94: 295-300
    [35]Nohara T. J, Comparison of DPCA and STAP for space-based radar, IEEE International Radar Conference, 1995: 113-119
    [36]Chen Jianwen, Wang Yongliang, Huang Fukan, et al, Research on multiple phase center multiple delay taps DPCA for airborne radar, International Conference on Computational Electromagnetics and Its Applications, Beijing, China, 1999: 1-4
    [37]陈建文,机载雷达空时自适应处理方法研究,博士学位论文,国防科技大学,2000.3
    [38]I. S. Reed, J. D. Mallett, L. E. Brennan, Rapid convergence rate in adaptive arrays, IEEE Trans on Aerosp Electron Syst, Vol. 10, No. 6, 1974: 853-863
    [39]Zheng Bao, Guisheng Liao, et al, Adaptive Spatial-temporal Processing for Airborne Radars, Chinese Journal of Electronics, Vol. 2, No. 1, 1993: 1-7
    [40]廖桂生,保铮,许志勇,机载雷达空时二维自适应处理框架及其应用,中国科学(E 辑),Vol. 27, No. 4, 1997: 336-341
    [41]廖桂生,保铮,张玉洪,机载雷达时-空二维部分联合自适应处理,电子科学学刊,Vol. 15, No. 6, 1993
    [42]廖桂生,相控阵天线 AEW 雷达时-空二维自适应处理,博士学位论文,西安电子科技大学,1992
    [43]王彤,机载雷达简易 STAP 方法及其应用,博士学位论文,西安电子科技大学,2001
    [44]王永良,新一代机载预警雷达的空时二维自适应处理,博士学位论文,西安电子科技大学,1994
    [45]吴仁彪,机载相控阵雷达时空二维自适应滤波的理论与实现,博士学位论文,西安电子科技大学,1993
    [46]张良,机载相控阵雷达降维 STAP 研究,博士学位论文,西安电子科技大学,1999
    [47]Klemm R, Adaptive clutter suppression for airborne phased array radars, IEE Proc. F & H, No. 1, 1983: 125-132
    [48]Klemm R, Adaptive airborne MTI: an auxiliary channel approach, IEE Proc. F, Vol.雷达信号处理重点实验室 134, No. 3, 1987: 269-276
    [49]Brennan L E, Piwinski D J, Standaher F M, Comparison of space-time adaptive processing approaches using experimental airborne radar data, IEEE International Radar Conference, Massachusetts, USA, 1993: 176-181
    [50]Wang H, Cai L, On adaptive spatial-temporal processing for airborne surveillance radar systems, IEEE Trans on Aerosp Electron Syst, Vol. 30, No. 3, 1994: 660-670
    [51]R. Dipietro, Extended factored space-time processing for airborne radar systems, Proceedings of the 26th Asilomar Conference on Signals, Systems and Computing, Pacific Grove, CA, October, 1992: 425-430
    [52]王永良,吴志文,彭应宁,适于非均匀杂波环境的空时自适应处理方法,电子学报,Vol. 27, No. 9, 1999: 63-66
    [53]Brown R D, Wicks M C, Zhang Y, et al, A space-time adaptive processing approach for improved performance and affordability, IEEE International Radar Conference, 1996: 321-326
    [54]Goldstein J S, Kogon S M, Reed I S, et al, Partially adaptive radar signal processing: the cross-spectral approach, Proceedings of the 29th Asilomar Conference on Signals, Systems and Computing, Pacific Grove, CA, November, 1995: 1383-1387
    [55]Goldstein J S, Reed I S, Reduced rank adaptive filtering, IEEE Trans on SP, Vol. 45, No. 2, 1997: 493-496
    [56]Goldstein J S, Reed I S, Theory of partially adaptive Radar, IEEE Trans on Aerosp Electron Syst, Vol. 33, No. 4, 1997: 1309-1325
    [57]Goldstein J. S, Reed I S, Zulch P A, et al, A multistage STAP CFAR detection technique, IEEE International Radar Conference, Dallas, USA, May 1998: 111-116
    [58]Goldstein J S, Reed I S, Scharf L L, A multistage representation of the Wiener filter based on orthogonal projections, IEEE Trans on IT, Vol. 44, No. 7, 1998: 2943-2959
    [59]Goldstein J S, Reed I S, Zulch P A, Multistage partially adaptive STAP CFAR detection algorithm, IEEE Trans on Aerosp Electron Syst, Vol. 35, No. 2, 1999: 645-661
    [60]Richmond C D, Statistical performance analysis of the adaptive sidelobe blanker detection algorithm, Proceedings of the 31th Asilomar Conference on Signals, Systems and Computing, Pacific Grove, CA, November, 1997: 872-876
    [61]Melvin W L, Wicks M C, Improving practical space-time adaptive radar, IEEE International Radar Conference, Syracuse, New York, May 1997: 48-53
    [62]Rabideau D J, Steinhardt A O, Improving the performance of adaptive arrays in non-stationary environments through data-adaptive training, Proceedings of the 30th Asilomar Conference on Signals, Systems and Computing, Pacific Grove, CA, November, 1996: 75-79
    [63]Rabideau D J, Steinhardt A O, Improved adaptive clutter cancellation through data-adaptive training, IEEE Trans on Aerosp Electron Syst, Vol. 35, No. 3, 1999: 879-891
    [64]Melvin W L, Space-time adaptive radar performance in heterogeneous clutter, IEEE Trans on Aerosp Electron Syst, Vol. 36, No. 2, 2000: 621-633
    [65]Adve R S, Wicks M C, Hale T B, et al, Ground moving target indication using knowledge based space time adaptive processing, IEEE International Radar Conference, May 2000: 735-740
    [66]Borsari G K, Mitigating effects on STAP processing caused by an inclined array, IEEE International Conference, Dallas, USA, May 1998: 135-140
    [67]Braham H, Michels J H, Zhang Y, Bistatic STAP performance analysis in radar applications, IEEE International Conference, 2001: 198-203
    [68]Klemm R, Ambiguities in bistatic STAP radar, IEEE International Geoscience and Remote Sensing Symposium, 2000: 1009-1011
    [69]Klemm R, Comparison between monstatic and bistatic antenna configurations for STAP, IEEE Trans on Aerosp Electron Syst, Vol. 36, No. 2, 2000: 596-608
    [70]Kogon S M, Zatman M A, Bistatic STAP for airborne radar systems, ASAP Workshop, MIT Lincoln Laboratory, Lexington, 2001
    [71]Kreyenkamp O, Klemm R, Doppler compensation in forward-looking STAP radar, IEE Proc.-Radar, Sonar, Navigation, Vol. 148, No. 5, 2001: 253-258
    [72]Lapierre F D, Droogenbroeck M V, Verly J G, New methods for handing the range dependence of the clutter spectrum in non-sidelooking monostatic STAP radars, ICASSP, April 2003: V73-V76
    [73]Lapierre F D, Verly J G, Droogenbroeck M V, New solutions to the problem of range dependence in bistatic STAP radars, IEEE International Radar Conference, Huntsville, Alabama, May 2003: 452-459
    [74]Melvin W L, Himed B, Davis M, Doubly adaptive bistatic clutter filtering, IEEE International Radar Conference, Huntsville, Alabama, May 2003: 171-178
    [75]Zatman M, Circular array STAP, IEEE International Radar Conference, Boston, MA, April 1999: 108-113
    [76]Borsari G K, Steinhardt A O, Cost-efficient training strategies for space-time adaptive processing algorithm, Proceedings of the 29th Asilomar conference on Signals,Systems and Computing, Pacific Grove, CA, 1995: 650-654
    [77]Stephen M Kogon, Adaptive weight training for post-Doppler STAP algorithms in non-homogeneous clutter, IEE Proc.-Radar, Sonar, Navigation and Avionics Series 14, Chapter 11
    [78]Chen P, On testing the equality of covariance matrices under singularity, Report for AFOSR Summer Faculty Research Program, Rome Laboratory, Rome, NY, August 1994
    [79]Chen P, Partitioning procedure in radar signal processing problems, Final Report for AFOSR Summer Faculty Research Program, Rome Laboratory, Rome, NY, August 1994
    [80]Melvin W L, Wicks M C, Brown R D, Assessment of multichannel airborne radar measurements for analysis and design of space-time processing architecture and algorithms, IEEE International Radar Conference, Ano Arbor, MI, May 1996: 130-135
    [81]Wang Y L, Chen J W, Bao Z, et al, Robust space-time adaptive processing for airborne radar on non-homogeneous clutters environments, IEEE Trans on Aerosp Electron Syst, Vol. 39, No. 1, 2003: 70-81
    [82]Sarkar T K, Sangruji N, An adaptive nulling system for a narrow-band signal with a look-direction constraint utilizing the conjugate gradient method, IEEE Trans on AP. Vol. 37, No. 7, 1989: 940-944
    [83]Sarkar T K, Park s, Koh J, et al, A deterministic least square approach to adaptive antennas, Digital Signal Processing-Rev. J, 1996: 185-194
    [84]Sarkar T K, Wang H, Park S, et al, A deterministic least square approach to space-time adaptive processing, IEEE Trans on AP, Vol. 49, No. 1, 2001: 91-103
    [85]Sarkar T K, Koh J, Adve R S, et al, A pragmatic approach to adaptive antennas, IEEE Antennas Propagation Magazine, Vol. 42, No. 2, 2000: 39-55
    [86]Weiner D D, Capraro G T, Wicks M C, An approach for utilizing known terrain and land feature data in estimation of the clutter covariance matrix, IEEE International Radar Conference, Dallas, USA, May 1998: 381-386
    [87]Antonik P, Schuman H K, Melvin W L, et al, Implementation of knowledge-based control for space-time adaptive processing, Proceedings of Radar 97, Edinburgh, United Kingdom, October 1997: 478-482
    [88]Antonik P, Schuman H K, Li P, et al, Knowledge-based space-time adaptive processing, IEEE National Radar Conference, Syracuse, NY, May 1997: 372-377
    [89]Melvin W L, Wicks M C, Antonik P, et al, Knowledge-based space-time adaptive processing for airborne early warning radar, IEEE Aerosp Electron Syst Magazine, Vol.13, No. 4, April 1998: 37-42
    [90]Bergin J S, Techau P M, Melvin W L, et al, GMTI STAP in target-rich environments: site-specific analysis, Proceedings of the IEEE Radar Conference, Long Beach, CA, April 2002: 391-396
    [91]王万林,非均匀环境下的相控阵机载雷达 STAP 研究,博士学位论文,西安电子科技大学,2004
    [92]Melvin W L, Callahan M J, Wicks M C, Bistatic STAP: application to airborne radar, Proceedings of the IEEE Radar Conference, Long Beach, CA, April 2002: 1-7
    [93]B. Himed, Y Zhang, A Hajjari, STAP with angel-Doppler compensation for bistatic airborne radars, Proceedings of the IEEE Radar Conference, Long Beach, CA, April 2002: 311-317
    [94]张贤达,保铮,非平稳信号分析与处理,国防工业出版社,2001
    [95]G C Sharp, S W Lee, D K Wee, ICP registration using invariant features, IEEE Trans on Pattern Analysis and Machine Intelligence, Vol. 24, No. 1, 2002: 90-102
    [96]宁蔚,机载/星载雷达地面运动目标检测方法研究,博士学位论文,西安电子科技大学,2005
    [97]Friedlander, B., Porat, B., VSAR: A high resolution radar system for detection of moving targets, IEE Proceeding-Radar, Sonar Navigation, Vol. 144, No. 4, 1997: 205-218
    [98] Friedlander, B., Porat, B., VSAR: A high resolution radar system for ocean imaging, IEEE Trans on Aerosp Electron Syst, Vol. 34, No. 3, 1998: 755-776
    [99] Stephen J, Frasier, Dual-Beam Interferometry for Ocean Surface Current Vector Mapping, IEEE Transaction on GRS, Vol. 39, No. 2, 2001: 401-414
    [100]C H Gierull, Statistical Analysis of Multilook SAR Interferograms for CFAR Detection of Ground Moving Targets, IEEE Trans on GRS, Vol. 42, No. 4, 2004: 691-701
    [101]C H Gierull, Statistics of Multilook SAR Interferograms for CFAR Detection of Ground Moving Targets, in Proc.-EUSAR Conference, Cologne, Germany, 2002: 625-628
    [102]E Yadin, Evaluation of noise and clutter induced relocation errors, Proceedings of IEEE International Radar Conference, Alexandria Virginia, 1995: 650-655
    [103]E Yadin, A performance evaluation mode for a two port interferometer SAR-MTI, Proceeding of IEEE National Radar Conference, Ann Arbor, Michigan, 1996: 261-266
    [104]J V Toporkov, D Perkovic, G Farquharson, et al, Sea surface velocity vector retrieval using dual-beam interferometry: First demonstration, IEEE Trans on GRS,Vol. 43, No. 11, 2005: 2494-2502
    [105]Entzminger J N, Fowler C A, Kenneally W J, Joint STARS and GMTI: past, present and future, IEEE Trans on Aerosp Electron Syst, Vol. 35, No. 2, 1999
    [106]A Roth, TerraSAR-X Science Plan, Munich, Germany, DLR Oberpfaffenhofen, 2004
    [107]M Suess, S Riegger, W Pitz, et al, TerraSAR-X: Design and performance, in Proc.-EUSAR, Cologne, Germany, Jun 2002: 49-52
    [108]J. Mittermayer, H Runge, Conceptual studies for exploiting the TerraSAR-X dual receive antenna, in Proc.-IGARSS, Toulouse, France, 2003: 2140-2142
    [109]R Romeiser, H Breit, M Eineder, et al, On the suitability of TerraSAR-X split antenna mode for current measurements by along-track iinterferometry, in Proc.-IGARSS, Toulouse, France, 2003: 1320-1322
    [110]H. Runge, M Eineder, G Palubinskas, et al, Traffic monitoring with TerraSAR-X, in Proc.-IRS, Berlin, Germany, 2005: 629-634
    [111]R Romeiser, H Runge, Theoretical evaluation of several possible along-track InSAR modes of TerraSAR-X for Ocean Current Measurements, IEEE Trans on GRS, Vol. 45, No. 1, 2007: 21-35
    [112]Livingstone C, The addition of MTI modes to commercial SAR satellites, Proc.- of 10th CASI Conference on Astronautics, Ottawa, Canada, 1998: 26-28
    [113]Luscombe A, the Radarsat Project, IEEE Canadian Review, 1995
    [114]SAR-GMTI processing with Canada’s Radarsat2 Satellite, IEEE, 2000
    [115]李景文,合成孔径雷达动目标检测与成像,博士学位论文,北京航空航天大学,1999
    [116]郑明洁,合成孔径雷达动目标检测和成像研究,博士学位论文,中国科学院电子学研究所,2003
    [117]郑明洁,杨汝良,基于 DPCA 和干涉技术的 SAR 动目标检测,电子与信息学报,Vol. 25, No. 11, 2003: 1525-1530
    [118]Burns, McLaughlin, Martin, TechSat 21: Formation design, control, and simulation, IEEE Aerospace Conference Proceedings, 2007: 19-25
    [119]A Das, R Cobb, M Stallard, TechSat 21: A revolutionary concept in distributed space based sensing, Proc.-AIAA Defense and Civil Space Programs Conference, Huntsville, AL, 1998: 5255-5263
    [120]Sedwick, R J Kong, E M C Miller, Exploiting orbital dynamics and micropropulsion for aperture synthesis using distributed satellite systems-Applications to TechSat21, Proc,- AIAA Defense and Civil Space Programs Conference, Huntsville, AL, 1998: 5289-5296
    [121]Kong, E M C Miller, David W, Minimum energy trajectories for TechSat 21 earth orbiting clusters, AIAA Space 2001-Conference and Exposition, Albuquerque, NM, Aug. 28-30, 2001: 4769-4781
    [122]M Martin, M Stallard, Distributed satellite missions and technologies-the TechSat 21 program, Proc.-AIAA Space Technology Conference and Exposition, Albuquerque, NM, 1999: 4476-4479
    [123]M Martin, P Klupar, S Kilberg, et al, TechSat 21 and revolutionizing space missions using microsatellites, Proc.-15th AIAA Conference on Small Satellites, Utah, USA, 2001: 4139-4145
    [124]Y Jones King, J Garnhan, R Blackledge, et al, Space-based Radar for the next century, NATO IRIS Proceedings, Quebec City, Quebec, Canada, 1998
    [125]F J Agee, Y J King, J F Janni, et al, An innovative approach to satellite technology, Symposia on Space Based Observation Technologies, Samos, Greece, 2000
    [126]Massonnet, The interferometric cartwheel: A constellation of passive satellites to produce radar images to be coherently combined, International Journal of Remote Sensing, Vol. 22, No. 12, 2001: 2413-2430
    [127]Massonnet, Capabilities and limitations of the interferometric cartwheel, IEEE Trans on GRS, Vol. 39, No. 3, 2001: 506-520
    [128]Zink Manfred, Krieger Gerhard, Amiot Thierry, Interferometric performance of a cartwheel constellation for TerraSAR-L, European Space Agency, 2004: 269-275
    [129]Ramongassie D, Phalippou L, Thouvenot E, et al, Preliminary design of the payload for the interferometric cartwheel, International Geoscience and Remote Sensing Symposium (IGARSS), 2000: 1004-1006
    [130]Mittermayer Josef, Krieger Gerhard, Moreira Alberto, et al, Interferometric performance estimation for the interferometric cartwheel in combination with a transmitting SAR-satellite, International Geoscience and Remote Sensing Symposium (IGARSS), 2001: 2955-2957
    [131]H Fiedler, G Krieger, F Jochim, et al, Analysis of bi-static configurations for spaceborne SAR interferometry, EUSAR2002, Cologne, Germany, 2002: 29-33
    [132]G Krieger, A Moreira, Multi-static SAR satellite formations: Potentials and challenges, Proceeding of IGARSS2005, Seoul, Korea, 2005: 689-694
    [133]G Krieger, H Fiedler, J Mittermayer, et al, Analysis of multi-static configurations for spaceborne SAR interferometry, IEE Proc.-Radar, Sonar and Navigation, Vol. 150,No. 3, 2003: 87-96
    [134]Schwerdt Marco, Hounam David, Brautigam Benjamin, et al, TerraSAR-X: Calibration concept of a multiple mode high resolution SAR, International Geoscience and Remote Sensing Symposium (IGARSS), 2005: 4874-4877
    [135]Moreira Alberto, Krieger Gerhard, Hajnsek Irena, et al, TanDEM-X: A TerraSAR-X add-on satellite for single-pass SAR interferometry, International Geoscience and Remote Sensing Symposium (IGARSS), 2004: 1000-1003
    [136]Garnham John, Wainwright Ross, Burns Rich, Enabling research and development for flight demonstration of sparse aperture sensing, AIAA Space Conference and Exposition, Albuquerque, NM, 2001: 4552-4561
    [137]Marais Karen, Sedwick Raymond J, Cluster design for scanned pattern interferometric radar, AIAA Space Conference and Exposition, Albuquerque, NM, 2001: 4654-4660
    [138]N A Goodman, J M Stiles, Resolution and synthetic aperture characterization of sparse radar arrays, IEEE Trans on Aerosp Electron Syst, Vol. 39, No. 3, 2003: 921-935
    [139]Steyskal H, Schindler J K, Franchi P, et al, Pattern synthesis for TechSat21-a distributed space based radar system, 2001: 725-732
    [140]李真芳,分布式小卫星 SAR-InSAR-GMTI 的处理方法,博士学位论文,西安电子科技大学,2006
    [141]何峰,梁甸农,用星载寄生式 SAR 提高空间二维分辨率的信号处理,电子学报,Vol. 33, No. 6, 2005: 1128-1131
    [142]文竹,周荫清,陈杰,分布式小卫星 SAR 回波信号精确仿真方法研究,宇航学报,Vol. 27, No. 5, 2006: 909-914
    [143]雷万明,刘光炎,黄顺吉,分布式卫星 SAR 的波束形成和多视处理成像,电子与信息学报,Vol. 24, No. 11, 2002: 1620-1626
    [144]闫鸿慧,王岩飞,利用频谱合成实现分布式卫星 SAR 高距离分辨力成像,电子与信息学报,Vol. 27, No. 6, 2005: 928-931
    [145]穆冬,干涉合成孔径雷达成像技术研究,博士学位论文,南京航空航天大学,2001
    [146]李真芳,形孟道,王彤,保铮,分布式小卫星 SAR 实现全孔径分辨率的信号处理,电子学报,Vol. 31, No. 12, 2003: 1800-1803
    [147]何峰,梁甸农,董臻,适于大斜视的星载双基地 SAR 波数域成像算法,电子学报,Vol. 33, No. 6, 2005: 1011-1014
    [148]Zhengfang Li, Hongyang Wang, Tao Su, et al, Generation of wide-swath andhigh-resolution SAR images form multichannel small spaceborne SAR systems, IEEE Geoscience and Remote Sensing Letters, Vol. 2, No. 1, 2006: 82-86
    [149]周荫清,徐华平,陈杰,分布式小卫星合成孔径雷达研究进展,电子学报,Vol. 31, No. 12A, 2003: 1939-1945
    [150]Zhengfang Li, Zheng Bao, Hongyang Wang, Performance improvement of constellation SAR systems using signal processing techniques, IEEE Trans on Aerosp Electron Syst, Vol. 42, No. 2, 2006: 436-452
    [151]王彤,保铮,廖桂生,天基分布式雷达 GMTI 方法,电子学报,Vol. 33, No. 3, 2006: 399-403
    [152]杨凤凤,郭汉伟,二单元 DPCA 在机载相控阵雷达 AMTI 中的应用,现代雷达,Vol. 26, No. 3, 2004: 18-20
    [153]孙娜,周荫清,李景文,基于 DPCA 技术的星载 SAR/GMTI 处理方法,电子与信息学报,Vol. 27, No. 10, 2005: 1564-1568
    [154]李真芳,保铮,王彤,分布式小卫星系统地面运动目标检测方法,电子学报,Vol. 33, No. 9, 2005: 1664-1666
    [155]Ouyang Shan; Bao Zheng; Liao Guisheng, Adaptive minor component extraction with modular structure, IEEE Trans on Signal Processing, Vol. 49, No. 9, 2001: 2127-2137
    [156]廖桂生,保铮,张玉洪,机载雷达时—空二维自适应信号处理──广义功率倒置法,电子学报,Vol. 22, No. 7, 1994: 106-108
    [157]欧阳缮,保铮,廖桂生,基于逆 QR 分解的机载雷达空时二维自适应处理算法,电子学报,Vol. 27, No. 9, 1999:94-96.
    [158]董瑞军,保铮,廖桂生,STAP 结构自适应方法,电子学报,Vol. 29, No. 3, 2001: 397-399
    [159]宁蔚,廖桂生,双基机载雷达对地杂波的背面效应及其在 GMTI 中的应用,电子学报,Vol. 33, No. 12, 2005: 2242-2245
    [160]Zhang Liang, Bao Zheng, Liao Guisheng, A study of reduced-rank STAP, Journal of Electronics, Vol. 17, No. 4, 2000: 289-296
    [161]陈伯孝,陈多芳,张红梅,张守宏,双/多基地综合脉冲孔径地波雷达的信道化接收技术,电子学报,Vol. 34, No. 9, 2006: 1566-1570
    [162]赵永波,刘茂仓,张守宏,综合脉冲与孔径雷达的距离与方位耦合栅瓣现象及其克服方法,电子与信息学报,Vol. 23, No. 4, 2001: 360-364
    [163]Weiss A.J and Friedlander B, Eigen-structure Methods for Direction Finding with Sensor Gain and Phase Uncertainties, Circuits Systems Signal Process. 1990. No.3: 271-300.
    [164]Weiss A.J .and Friedlander B, Almost Blind Steering Vector Estimation Using Second Order Moments, IEEE Trans on Signal Processing, Vol. 44, No. 2, 1996: 1024-1027
    [165]Weiss A.J .and Friedlander B, DOA and Steering Vector Estimation Using a Partially Calibrated Array, IEEE Trans on Aerospace and Electronic Systems, Vol. 32, No. 3, 1996: 1047-1057
    [166]C M S See, Sensor array calibration in the presence of mutual coupling and unknown sensor gains and phases, Electronics Letters, Vol. 30, No. 5, 1994: 373-374
    [167]C M S See, Method for array calibration in high-resolution sensor array processing, IEE Proc.-Radar, Sonar, Navigation, Vol. 142, No. 3, 1995: 90-96
    [168]Hee-Young Park, Chungyong Lee, Hong-Goo Kang, Dae-Hee Youn, Generalization of the subspace-based array shape estimations, IEEE Journal of Oceanic Engineering, Vol. 29, No. 3, 2004: 847-856
    [169]刘颖,王洪洋,廖桂生等,分布式小卫星系统误差估计的新方法,宇航学报,Vol. 24, No. 1, 2007: 233-237
    [170]Zhenfang Li, Zheng Bao, et al, Image Autocoregistration and InSAR Interferogram Estimation Using Joint Subspace Projection, IEEE Transaction on GRS, Vol. 44, No. 2, 2006: 288-297.
    [171]Li Z F, Bao Z, Yang F F. Ground Moving Target Detection and Location based on SAR Images for Distributed Spaceborne SAR. Science in China Series F, Vol. 48, No. 5, 2005: 632-646
    [172]M Soumekh, Signal Subspace Fusing of Uncalibrated Sensors with Application in SAR and Diagnostic Medicine, IEEE Trans on Image Processing, Vol. 8, No. 1, 1999: 127-137
    [173]M Soumekh, Moving target detection and imaging using an X band along-track monopulse SAR, IEEE Trans on Aerospace and Electronic Systems, Vol. 38, Issue. 1, 2002: 315-333
    [174]K I Ranney, M Soumekh, Signal subspace change detection in averaged multilook SAR imagery, IEEE Trans on GRS, Vol. 44, No. 1, 2006: 201-212
    [175]R P Perry, R C Dipietro and R L Fante, SAR Imaging of Moving Targets, IEEE Trans on Aeros and Elect Sys, 1999,35(1):188-200
    [176]Bill M. Radich, Kevin M. Buchley, Single-Snapshot DOA Estimation and Source Number Detection, IEEE Signal Processing Letters, Vol. 4, No. 4, 1997: 109-111
    [177]Rife D, Boorstyn R., Single Tone Parameter Estimation from Discrete-Time Observations, IEEE Transaction on Information Theory, Vol. 20, No. 5, 1974: 591-598

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700