用户名: 密码: 验证码:
频率步进雷达运动扩展目标速度估计与距离像抽取研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲合成高分辨体制雷达以其距离分辨力高、系统复杂性低、成本低、易于工程实现等优点而受到人们的广泛关注。本论文研究了以频率步进信号为工作波形的脉冲频率步进雷达的速度估计与距离像抽取问题,全文工作概括如下:
     第一章介绍了论文的研究背景和意义,概括了国内外关于速度估计和距离像抽取相关问题的研究历史与现状,并简要说明了论文的组织结构与章节安排。
     第二章首先介绍了脉冲频率步进信号及其改进信号的波形和数学表达式,这类信号的共同优点是在实现距离高分辨的同时,降低了处理机的接收带宽和实现难度;通过对静止点目标和静止扩展目标成像原理的推导,进一步讨论了过采样条件下的目标成像,指出了在过采样条件下要解决的信息冗余和速度估计问题;最后简要叙述了频域细化等方法对频率步进信号的处理。
     第三章研究了运动扩展目标的速度估计算法。首先分析了速度对高分辨距离像产生的影响——距离像移位和峰值发散;其次简要总结了现有的速度估计方法,提出了利用频率插值与FFT相结合估计目标速度的新算法,并对现有的正负调频法进行了改进;最后针对扩展目标过采样条件下IFFT后的回波数据矩阵,提出了两种速度估计方法——粗分辨速度估计法和高分辨速度估计法,并对两种方法进行了计算机仿真对比。
     第四章主要讨论了距离像抽取算法。首先对频率步进雷达系统参数进行了分析,指出在过采样条件下必须采用距离像抽取算法才能获取正确的一维距离像,并讨论了参数的宽紧约束条件对距离像抽取算法的要求;其次,针对静止目标,总结和分析了现有的几种距离像抽取算法的具体实现和抽取性能;最后,针对运动目标,分析了速度对距离像抽取算法产生的影响——假峰问题与散射点遗漏问题。速度的影响可以通过对抽取算法的改进得到解决,本章最后讨论了两种距离像抽取的改进算法。
     第五章对速度估计问题和距离像抽取问题进行了综合研究。首先简要叙述了频率步进雷达的信号处理流程及其主要信号处理部件。其次提出了两种高分辨距离像的获取方案:第一种为先进行速度补偿后进行距离像抽取的方案;第二种是先进行距离像抽取后进行速度补偿的方案。对两种方案的实现过程分别进行了详细讨论和计算机仿真,并对比分析了两种方案的性能及适用性。两种方案的提出使速度估计问题与距离像抽取问题得到了较好的统一。
     文末对全文进行了总结,并指出了下一步需要进行的工作和尚待解决的问题。
The synthetic high-range-resolution radar has drawn attentions due to its high-range-resolution, low system complexity, low cost and easy implementation. The work of this dissertation is focused on researches of stepped frequency radar including its velocity estimation and profile extraction problems. The main content of this dissertation is summarized as follows:
     Chapter 1 introduces the research background and the motivation of this dissertation and reviews the previous work including related research history and current status of velocity estimation and profile extraction. The arrangement of this dissertation is briefly introduced at last.
     Chapter 2 first introduces the waveforms and math expressions of the stepped frequency signal including its improving forms which can reduce bandwidth of the receiver and system complexity. Then, the imaging theories of the stepped frequency radar about both stationary point target and stationary extended target are deduced. Furthermore, the imaging theories in the condition of over-sampling are discussed. At last, some other signal processing methods for stepped frequency signal are introduced.
     The work of Chapter 3 is focused on the velocity estimation methods for moving targets. Firstly, effect of velocity on the high-range-resolution profile is discussed. Secondly, this chapter summarizes some velocity estimation methods and provokes a new velocity estimation method by using accurate frequency estimation and FFT. Furthermore, improves an already existing velocity estimation method. At last, two velocity abstraction methods are explored by aiming at the extended target.
     In Chapter 4, the profile extraction methods are analyzed. The system parameters and their effect on profile extraction methods are firstly discussed. By summarizing and contrasting some typical profile extraction methods, the effect of velocity on the extraction methods is revealed. In order to get rid of the effect, the traditional methods need to be improved. Then, two methods are discussed to revise the traditional methods.
     Chapter 5 mainly works on how to combine the velocity estimation methods and profile extraction methods together in order to get best high-range-resolution profiles. First of all, the signal processing flow and the main parts of the stepped frequency radar are analyzed. Then, two implementations are introduced to combine velocity estimation and profile extraction problems. Finally, the performance of the two implementations are discussed and contrasted.
     At last, a conclusion of this dissertation is made and some related problems to be solved and some works to be done are pointed out.
引文
[1] M.I.Skolnik. Introduction to Radar systems(3ed)[M].McGraw-Hill,2007
    [2] D.R.Wehner. High Resolution Radar(2ed)[M].Artech House,1995
    [3] D.K.Barton. Radar System Analysis and Modeling[M].Artech House,2005
    [4] B.R.Mahafza,A.Z.Elsherbeni.Matlab Simulations for Radar System Design[M]. Chapman&Hall/CRC CRC Press LLC,2004
    [5] Abraham Paulose. High Radar Range Resolution with The Step Frequency Waveform[D]. Naval Postgraduate School,1994
    [6] G.S.Gill. Step Frequency High PRF Waveform Design[D]. Naval Postgraduate School,1996
    [7] Yu-Bin Ma. Velocity Compensation in Stepped Frequency Radar[D]. Naval Postgraduate School,1995
    [8] Zhou jianxiong,Zhao hongzhong, Fu qiang. A HRR Profile Stitching Algorithm Based on Circular Shifting and Envelope Weighting[C].RADAR 2004 - International Conference on Radar Systems,2004,France
    [9]丁鹭飞,耿富录。雷达原理(第三版)[M]。西安电子科技大学出版社,2002
    [10]姜启源,谢金星,叶俊。数学模型(第三版)[M]。高等教育出版社,2003
    [11]张焕颖,张守宏,李强。调频步进雷达目标抽取算法及系统参数设计[J]。电子学报,2007,35(6):1153:1158
    [12]苏宏艳,龙腾,何佩琨,侯孝民。运动目标环境下的调频步进信号目标抽取算法[J]。电子与信息学报,2006,28(5):915:918
    [13]李天昀,葛临东。两种快速频域细化分析方法的研究[J]。系统工程与电子技术,2004,26(6):731:733
    [14]齐国清。集中基于FFT的频率估计方法精度分析[J]。振动工程学报,2006,19(1):86:92
    [15]张东坡,刘兴钊。基于NDFT的步进频率雷达信号处理[J]。雷达科学与技术,2004,2(5):289:292
    [16]李星爽,何佩琨。频率步进雷达中波形分析法精确测距的研究[J]。现代雷达,2005,27(8):7:9
    [17]穆雪华,刘峥。步进频率雷达目标距离像拼接技术研究[J]。制导与引信,2003,24(2):6:12
    [18]王飞,龙腾。一种新的步进频率雷达信号目标抽取算法[J]。弹箭与制导学报,2006,26(2):135:137
    [19]刘峥,张守宏。跳频脉冲ISAR成像运动补偿的最小波形熵方法[J]。西安电子科技大学学报(自然科学版),2000,27(6):691:695
    [20]刘峥,张守宏。跳频脉冲雷达目标的运动速度参数估计[J]。信号处理,2000,16(2):97:100
    [21]沈吉,林德福,祁载康。IFFT步长对步进频率毫米波导引头动目标辨识的影响研究[J]。弹箭与制导学报,2001,21(4):21:26
    [22]李耽,龙腾。步进频率雷达目标去冗余算法[J],电子学报,2000,28(6):60-63
    [23]龙腾,李耽,吴琼之。频率雷达雷达参数设计与目标抽取算法[J],系统工程与电子技术,2001,23(6):26-31
    [24]毛二可,龙腾,韩月秋。频率步进雷达数字信号处理[J],航空学报,2001,22(增):20-21
    [25]韩文勇。脉冲频率步进雷达运动目标高距离分辨率一维成像[D]。中国科学技术大学硕士学位论文,2000,06,01
    [26]陈金。毫米波频率步进导引头的信号处理[D]。南京理工大学硕士学位论文,2004,07,01
    [27]靳凯。步进频率雷达关键技术研究及信号波形改进[D]。中国科学技术大学硕士学位论文,2004,05,01
    [28]贺志毅。合成宽带毫米波雷达导引头的理论即实现[D]。航天科工集团第二研究员二十五所博士学位论文,2002,09,01
    [29]张直中。雷达信号的选择与处理[M]。国防工业出版社,1979
    [30]何国瑜,卢才成,洪家才,邓晖。电磁散射的计算和测量[M]。北京航空航天大学出版社,2006
    [31]黄德双。高分辨雷达智能信号处理技术[M]。机械工业出版社,2001
    [32]刘峥。脉冲合成高分辨雷达目标运动补偿与成像[D]。西安电子科技大学博士学位论文,2000,05,01
    [33]刘长羽。毫米波雷达导引头告诉目标运动补偿研究[D]。哈尔滨工业大学硕士学位论文,2003,07,01
    [34]黄培康,殷红成,许小剑。雷达目标特性[M]。电子工业出版社,2005
    [35] C.C.Chen,Andrews.H.C. Target motion-induced radar imaging[J]. IEEE Transation on Aerospace and Electronic Systems,AES-16,1 Jan.1980:2-14
    [36] Attia,E.H. Self-cohering airbonre distributed arrays using the robust minimum variance algorithm[J]. IEEE AP-S Digest,1986:60 3-606
    [37] Haywood,B.and Evans,R.J. Motion compensation for ISAR imaging[C]. Australian Symposium on Signal Processing and Application, Adelaide, 1989:112-117
    [38] Eerland,K.K. Application of inverse synthetic aperture radar on aircraft[C].Proceeding of the International Conference on Radar, France, 1984:618-623
    [39]蒋楠稚,王毛路,李少洪等.频率步进脉冲距离高分辨一维成像速度补偿分析[J].电子科学学刊,1999,21(5):665-670
    [40] Berizzi.F and Corsini.G. Aotufocusing of Inverse Synthetic Aperture Radar image using contrast optimization[J]. IEEE Trans.On AES,Vol.32,No.3, 1996:1185-1191
    [41] Berizzi.F and Corsini.G. Focusing of two-dimensional ISAR images of objects by contrast maximization[C]. In Proceeding of 22nd European Microwave Conference,Vo1.2,Finland,1992:951-956
    [42] Abatzoglou T.J and Gheen G.O. Maximum likelihood motion compensation of a wideband linear FM radar waveform[C]. IEEE Signal,Systems and Computers Conference Record,Vol.1, 1996:481-485
    [43] Abatzoglou T.J and Gheen G.O. Range, radical velocity and acceleration MLE using radar LFM pulse train[J].IEEE Trans.On AES,Vol.34,No.4, 1998:1070– 1084
    [44] Lei Wen,Long Teng,Han Yueqiu. Moving targets imaging for Stepped frequency radar[C].Proceedings of ICSP 2000,Beijing,2000:1851-1855

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700