天线空域极化特性及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面向复杂电磁环境下实战背景,充分挖掘和利用蕴含在电磁波和雷达天线中的极化信息,拓展和完善雷达极化理论,最大限度的利用雷达系统所获得的电磁信息,提高雷达系统在恶劣电磁环境下的生存和对抗能力,使之能够适应复杂多变的战场环境,已经成为雷达极化技术领域所面临的基础课题和紧迫任务。
     论文诠释了天线空域极化特性的内涵,建立了天线空域极化特性表征方法,系统分析了天线空域极化特性,并对天线空域极化特性在目标极化特性测量、抗有源干扰和真假目标鉴别等领域中的应用进行了富有成效的研究,有力拓展了雷达极化信息处理技术的外延,丰富了雷达极化理论的内涵。
     具体内容可分为理论研究和应用研究两个层面:
     在理论研究方面,以瞬态极化理论为基础,诠释了天线空域极化特性的内涵,建立了空域瞬态极化表征方法,揭示了天线极化特性在空间的演化、分布规律,不仅补充和完善了电磁波和天线极化理论,且为天线空域极化特性的刻画和应用提供了理论基础和有力工具。具体内容包括:①建立了天线空域极化特性的表征理论框架,包括天线空域极化特性内涵的诠释,天线空域极化特性的经典描述和天线空域瞬态极化特性的表征;②结合理论分析和计算机仿真,首次系统分析了各种线天线和面天线的空域极化特性,包括短偶极子、正交偶极子天线、环天线、螺旋天线、波导口辐射器、喇叭天线以及抛物面天线等,得到了一组有意义的结论;③针对实际干扰机天线和正馈抛物面天线,利用暗室测量数据,分析了天线极化特性在空间的分布情况,由于各种现实因素的影响,虽然基本规律与理论分析相符,但实际天线的空域极化特性比理论推导更为显著;在上述基础上,建立了四种典型的天线空域极化特性模型。天线空域极化特性的研究不仅证明了雷达天线空域极化特性的存在性,更揭示了天线极化特性在空间的内在变化规律,为其在极化测量、鉴别、抗干扰等领域中的应用奠定了理论基础和技术支撑。
     在应用研究方面,针对机械扫描体制雷达,论文力求通过分析雷达天线的空域极化特性,采用先进的信号与信息处理手段,充分挖掘雷达装备所固有的极化信息处理潜力,有效提升我防空雷达在复杂电磁环境下的抗干扰能力和目标识别能力。具体内容包括:①提出了一种利用天线空域极化特性估计来波信号极化状态的新方法,对算法的可行性、稳定性、有效性进行了理论分析,并结合计算机仿真,系统分析了各因素对算法性能的影响程度以及算法的适用范围和提高算法性能的主要途径;基于此极化矢量估计算法,提出了一种新颖的自适应极化滤波方法,并对该滤波器的干扰抑制效果进行了理论分析和仿真验证。②提出了两种基于天线空域极化特性的目标极化散射矩阵测量新方法,根据对接收回波信号处理方法上的差异,分别简称为“时域测量法”和“频域测量法”,结合暗室测量数据,对算法性能进行了理论分析和仿真验证;在此基础上,提出了一种新颖的固定转发式有源假目标极化鉴别方法,仿真实验验证了该方法的有效性。
     需要特别指出的是:论文提出的极化测量的思想与方法,突破了传统的分时极化测量和同时极化测量体制利用两个正交极化通道进行处理的思路,另辟蹊径地通过利用天线的空域极化特性,仅需一个极化通道即可完成来波极化状态估计和目标的极化散射矩阵测量;与美国等发达国家抛弃已有的装备、开发新体制极化雷达的技术路线相比,在性能上会存在一些固有的差距,但是,其优势在于它利用创新性手段,可望明显提升现役雷达的抗干扰和智能识别能力,将极大地缩短研制周期、降低成本,适合现阶段乃至未来很长一段时间内我国武器装备发展的特点。
Under battleground of the complicated electromagnetic(EM) environments, in order to fully exploit and utilize the polarization information of EM waves and radar antenna, that is, to let the radar system can adapt complicated and adverse battleground environments with intelligent survival and combat capability, improving the polarization theory and utilizing the EM information sufficiently are becoming a urgent mission in radar polarization information processing technique domain.
     A completely new concept of spatial polarization charscteristics(SPC) of antenna is proposed in this thesis. The connotation and representation methods of SPC are constructed. Thereby, using the SPC of antenna, the target’s polarization characteristic measurement, anti-active jamming and decoy discrimination have been studied. The radar polarization information processing technology is extended and the polarization theory is enriched.
     The main contributions of the thesis are as follows:
     In theory, with the guidance of instantaneous polarization theory, the SPC of antennas have been studied, which is not only the extension and evolution of polarization theory but also provides theoretical basis and powerful tools for the application of antenna’s SPC. The main contents include three aspects: (1) The representation framework of antenna’s SPC are established including the connotation, classical description and spatial instantaneous polarization characteristics. (2) Combining with theoretical derivation and computer simulation, system analysis is done for the SPC of various radar antennas such as short-dipole, orthogonal-dipole, coil antenna, helix antenna, waveguide radiator, horn antenna, parabolic antenna etc. for the first time. Then, some meaningful conclusions are presented. (3) Utilizing the microwave dark room measured data, the SPC of a practical jammer antenna and a parabolic antenna are analyzed. The variation of actual antennas’polarization in space is more obviously than theoretical results although is consistent in essential. On the basis of this, four typical SPC models for antenna are established. This work not only proves the existence but also reveals the internal evolution rule of antenna’s SPC. It provides theoretical foundations and technical supports for the application of antenna’s SPC such as polarimetric scattering matrix(PSM) measurement, polarization decoy discrimination and interference suppression.
     In application, aiming at mechanical scanning radar system, using radar antenna’s SPC and advanced signal processing methods, the thesis made an effort to improving the anti-jamming and target identification abilities of air defense radar in complex EM environment by exploiting the polarization information in radar equipments utmost. The main achievements include two aspects: (1) A novel method for estimating the polarization state of incoming EM wave is put forward by using the SPC of antenna. Firstly, the algorithm performance is analyzed theoretically such as the feasibility, stability and validity. Then, the influence factors, the application field and the main improving way of the algorithm are analyzed by computer simulation. Finally, in order to suppressing the noise jamming, a new method of adaptive polarization filtering is designed. Performance of this polarization filter has been analyzed theoretically and tested by simulation. (2) Based on the SPC of antenna, two novel PSM measurement methods are proposed. According to the differences in the signal processing method of the received echo, the two algorithms are named as‘time-domain PSM measurement’and‘frequency-domain PSM measurement’respectively. Combined with microwave dark room measurement data, performance of the two algorithms has been analyzed. Then, the distinguishing of fixed-repeater active decoy in polarization field is researched. The validity of the polarization discrimination method has been tested.
     The most significant point is the idea and method, which is brought out based on the SPC of radar antenna, is a breakthrough compared with the traditional PSM methods. Not need two orthogonal polarization channels, the PSM measurement can be implemented using just one polarization channel. Compared with abandoning the current equipments and developing entirely new radar systems in U.S. and other developed countries, although there is some inherent difference in performance, the innovative means can greatly reduce the development time and production cost. Adapt to the weapon equipments development characteristics of our country at present and for a long time in the future, the methods will improve the anti-jamming and intelligent recognition abilities greatly.
引文
[1]庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用.北京:国防工业出版社, 1999.1.
    [2]黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社. 2005.3
    [3]王雪松.宽带极化信息处理的研究[博士学位论文].长沙:国防科技大学研究生院. 1999.5.
    [4] Dino Giuli. Polarization diversity in radars. Proc. of IEEE, 1986,74(2):245-269.
    [5] W M Boerner. Direct and inverse methods in radar polarimetry. Netherlands: Kluwer Academic Publishers. 1992.
    [6]李永祯.瞬态极化统计特性与处理的研究[博士学位论文].长沙:国防科技大学研究生院. 2004.12.
    [7] [美]Mott H(著),林昌禄(译).天线和雷达中的极化.成都:电子科技大学出版社. 1989.7.
    [8]王涛.弹道中段目标极化域特征提取与识别[博士学位论文].长沙:国防科技大学研究生院. 2006.10.
    [9] Dino Giuli, Facheris L, Fossi M. Simultaneous scattering matrix measurement through signal coding. Proceedings of IEEE 1990 International Radar Conference. Arlington, VA, USA: 258-262.
    [10] Dino Giuli, Fossi M. Radar target scattering matrix measurement through orthogonal signals. IEE Proc.-F, 1993, 140 (4): 233-242.
    [11] A J Poelman. Virtual polarisation adaptation: A method for increasing the detection capability of a radar system through polarisation-vector processing. Proc. IEE, Pt. F, 1981, 128(5): 261-270.
    [12] A J Poelman, Guy J R F. Multinotch logic-product polarisation suppression filters: A typical design example and its performance in a rain clutter environment. Proc. IEE, Pt. F, 1984, 131(4): 383-396.
    [13] A J Poelman. Polarisation-vector translation in radar systems. IEE Proceedings, 1983, 130(2): 161-165.
    [14] A J Poelman, J R F Guy. Nonlinear polarization-vector translation in radar systems: a promissing concept for Real-time polarization-vector signal processing via a single-notch polarization suppression filter. IEE Proceedings, 1984,131(5): 451-464.
    [15] A J Poelman, C J Hilgers. Effectiveness of multinotch logic-product polarisationfilters in radar for countering rain clutter. IEE proceedings-F, 1991,138(5): 427-436.
    [16] A J Poelman. Cross correlation of orthogonally polarized backscatter components. IEEE trans. on AES, 1976, 12(12): 647-682.
    [17] D. P. Stapor. Optimal receive antenna polarization in the presence of interference and noise. IEEE trans. on AP, 1995, 43(5): 473-477.
    [18] Wang Xuesong, Zhuang Zhaowen, Xiao Shunping. Nonlinear programming modeling and solution of radar target polarization enhancement. Progress in Natural Science, 2000,10(1):62-67
    [19]张国毅.高频地波雷达极化抗干扰技术研究[博士学位论文].哈尔滨:哈尔滨工业大学研究生院, 2002.10.
    [20]徐振海.极化敏感阵列信号处理研究[博士学位论文].长沙:国防科技大学研究生院, 2004.6.
    [21]王雪松,代大海,徐振海等.极化滤波器的性能评估与选择.自然科学进展,2004,14(4): 442-448.
    [22] WANG Xue-song,CHANG Yu-liang,DAI Da-hai,et al. Band characteristics of SINR polarization filter. IEEE trans. on AP, 2007,55(4): 1148-1154.
    [23]施龙飞.雷达极化抗干扰技术研究[博士学位论文].长沙:国防科技大学研究生院. 2007.9.
    [24] L. M. Novak, M. B. Sechtin, and M. J. Cardullo. Studies of target detection algorithms that use polarimetric radar data. IEEE Trans. AES, 1989,25(2): 150-165.
    [25] L. M. Novak, M. C. Burl, and W. W. Irving. Optimal polarimetric processing for enhanced target detection. IEEE Trans. AES, 1993, 29(1): 234-243.
    [26] A. D. Maio. Polarimetric adaptive detection of range-distributed targets. IEEE Trans. SP, 2002, 50(9): 2152-2158.
    [27] David A.Garren, Anne C.Odom, Michael K.Osborn, et al. Full-polarization matched-illumination for target detection and identification. IEEE trans. on AES, 2002, 38(3): 824-835.
    [28]王雪松,李永祯,徐振海等.高分辨雷达信号极化检测研究.电子学报, 2000, 28(12): 15-18.
    [29]李永祯,王雪松,徐振海等.基于强散射点径向积累的高分辨极化目标检测研究.电子学报,2001, 29(3): 307-310.
    [30]李永祯,王雪松,肖顺平等.基于ISVS的微弱目标检测算法,电子学报,2005, 33(6): 1028-1031.
    [31]徐振海,王雪松,肖顺平等.极化敏感阵列信号检测:部分极化情形.电子学报,2004, 32(6): 938-941.
    [32]曾勇虎,王雪松,肖顺平等.基于时频联合域极化滤波的高分辨极化雷达信号检测.电子学报,2005,33(3) 524-526.
    [33]李永祯,王雪松,王涛等.有源诱饵的极化鉴别研究.国防科大学报,2004,26(3): 83-88.
    [34]李永祯,王雪松,肖顺平等.基于IPPV的真假目标极化鉴别算法.现代雷达,2004,26(9): 38-42.
    [35]李永祯,肖顺平,王雪松等.地基防御雷达的有源假目标极化鉴别能力.系统工程与电子技术,2005,27(7): 1164-1168.
    [36]王涛,王雪松,肖顺平.随机调制单极化有源假目标的极化鉴别研究.自然科学进展,2006,16(5): 611-617.
    [37]何松华.高距离分辨率毫米波雷达目标识别的理论与应用[博士学位论文].长沙:国防科技大学电子技术系, 1993.
    [38]曾勇虎.极化雷达时频分析与目标识别的研究[博士学位论文].长沙:国防科技大学电子科学与工程学院, 2004.6.
    [39] Fuller D F, Terzuoli A J, Collins P J et al. Approach to object classification using dispersive scattering centres. IEE Proc.-Radar Sonar Navig, 2004, 151( 2):85-90.
    [40] Emre E, Lee C P. Polarimetric classification of scattering centers using M-ary Bayesian decision rules. IEEE Trans on AES, 2000, 36(3):738-749.
    [41] Jong-See Lee, Ernst Krogager, Thomas L.Ainsworth, et al. Polarimetric analysis of radar signature of a manmade structure. IEEE GRS letters, 2006,3(4): 555-559.
    [42] Karnychev V, Valery A K, Leo P L, et al. Algorithms for estimating the complete group of polarization invariants of the scattering matrix (SM) based on measuring all SM elements. IEEE trans. on GRS, 2004, 42(3): 529-539.
    [43] Mickael Duquenoy, Jean Philippe Ovarlez, Laurent Ferro-Famil, et al. Study of Dispersive and Anisotropic Scatterers Behavior in Radar Imaging Using Time-Frequency Analysis and Polarimetric Coherent Decomposition. Proc of ICR-2006: 180-185.
    [44] Touzi R, Boerner W M, Lee J S, et al. A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction. Canadian Journal of Remote Sensing, 2004,30 (3): 380-407.
    [45]代大海. POLSAR图像模拟及目标检测与分类方法研究[硕士学位论文].长沙:国防科技大学研究生院. 2003.11.
    [46] Kim K T, Kim S W, Kim H T. Two-dimensional ISAR imaging using full polarisation and super-resolution processing techniques. IEE Proc. on Radar, Sonar & Navig. 1998, 145(4): 240-246.
    [47]代大海,王雪松,肖顺平.基于二维CP-GTD模型的全极化ISAR超分辨成像.自然科学进展,2007,17(9): 131-140.
    [48]代大海.极化雷达成像及目标特征提取研究[博士学位论文].长沙:国防科技大学研究生院. 2008.6.
    [49] M. N. Cohen, E. S. Sjoberg. Intrapulse polarization agile radar. Advances in radar techniques, edited by J. Clarke, Peter Peregrinus Ltd., 1985.
    [50]王被德.近三年来雷达极化研究的进展.现代雷达, 1996,18(2): 1-14.
    [51]国家导弹防御系统http://www.les.com.cn/nanjing/part/les/database/weng/2nd/nmd.htm
    [52]戴博伟.多极化合成孔径雷达系统与极化信息处理研究[博士学位论文].北京:中国科学院电子学研究所, 2000.
    [53]曾清平,董天临,万山虎.极化雷达的发展动态与极化信息的应用前景.系统工程与电子技术,2003, 25(6): 669-673.
    [54]魏克珠,李士根.双模铁氧体器件的发展及应用.现代雷达, 2001,23(3): 71-74.
    [55] R.Efard, M.Cohen, E.S.Sjoberg. Advanced intrapulse polarization agile radar near deployment. Microwave syst., 1984, News-14.
    [56]蒋仁培,魏克珠.微波铁氧体新器件.北京:国防工业出版社, 1995.
    [57]高文斗.自适应捷变极化天线抗干扰技术.系统工程与电子技术,1995,17(10): 25-31.
    [58]郭亨远.自适应极化雷达体制研究[学位论文].武汉:空军雷达学院, 2001.
    [59]李蕴滋,黄培康,郝祖全等.雷达工程学.北京:海洋出版社,1999.3.
    [60]刘克成,等.天线原理.长沙:国防科技大学出版社,1989.
    [61]王雪松,等.天线极化误差对天线接收功率影响的统计建模与分析.自然科学进展,2001,11(11):1210-1215.
    [62]罗佳,王雪松,李永祯,肖顺平.实测天线的空域瞬态极化特性.电波科学学报,2007,vol.22(Sup) : 373-376.
    [63] LUO Jia, WANG Xue-song, etc. Spacial Polarization Characteristics of Antenna. 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar Proceedings(APSAR-2007). Nov. 5-9, 2007, Huangshan, China, pp:139-144.
    [64]鲍亮,罗佳,王雪松等.天线空域极化比分布的分析及设计方法.电波科学学报,2007,vol.22(Sup): 364-367.
    [65]罗佳,王雪松,李永祯,肖顺平.天线空域极化特性的表征及分析.电波科学学报,2008,23(4): 620-628.
    [66] Yanting Wang, V. Chandrasekar. Polarization Isolation Requirements for Linear Dual-Polarization Weather Radar in Simultaneous Transmission Mode of Operation. IEEE Trans. GRS, 2006,44(8): 2019-2027.
    [67] Soon-Soo Oh and Lotfollah Shafai, Investigation into the Cross-Polarization of Loaded Microstrip Ring Antennas. Antennas and Propagation Society International Symposium, 2005 IEEE, 3-8 July 2005, Vol. 1A, pp:243-246.
    [68] Kamal Sarabandi, et al. Calibration of Polarimetric Radar Systems With Good Polarization Isolation. IEEE Trans. on Geoscience and Remote Sensing. 1990,28(1): 70-75.
    [69]王俊义.改善单偏置天线交叉极化劣化的C-band馈源.无线电通信技术, 2006,32(1): 29-32.
    [70]周建寨.利用馈源的高次模改善偏置抛物面天线的交叉极化性能.无线电通信技术,2001,27(4): 48-50.
    [71]刘涛.雷达瞬态极化统计学理论及其应用研究[博士学位论文].长沙:国防科技大学研究生院. 2007.12.
    [72] G. Sinclair. The transmission and reception of elliptically polarized radar waves. Proc. IRE, 1950, 38(2): 148-151.
    [73] L.S.Melvin, G.P.Banner. Radars for the detection and tracking of ballistic missiles, satellites, and planets. Lincoln laboratory journal, 2000, 12(2): 217-244.
    [74] Philip A Ingwersen, William Z Lemnios. Radars for ballistic missile defense research. Lincoln laboratory journal, 2000, 12(2): 245-266.
    [75] J R Huynen. Phenomenological theory of radar targets[Ph. D. Dissertation]. Netherlands: Technical University Delft, 1970.
    [76] J.J.van Zyl. On the importance of polarization in radar scattering problems[Ph.D. Dissertation] California Institute of Technology, Pasadena, CA, Jan. 1986.
    [77] E.M.Kennangh. Polarization properties of radar reflectors[M.Sc.Thesis]. Dept. Of Electr. Eng., The Ohio State University, Columbus, OH 43212,1952.
    [78] A.B. Kostinski, W.M.Boerner. On foundations of radar polarimetry. IEEE Trans. AP. 1986, 34(12): 1395-1404.
    [79] Jaan Praks, Martti Hallikainen. A novel approach in polarimetric covariance matrix eigendecomposition. IEEE Proc. IGARSS’2000, 1119-1121.
    [80] Ya-Qiu Jin, and Fei Chen. Polarimetric scattering indexes and information entropy of the SAR imagery for surface monitoring. IEEE Trans. GRS,2002,40(11): 2502-2506.
    [81] Muhtar Qong. A new scattering Mechanism enhancement scheme for polarimetric SAR images. IEEE GRS,2002,40(12): 2582-2592.
    [82] Irena Hajnsek, S.R.Cloude, Jong-Sen Lee, E.Pottier. Inversion of surface parameters from polarimetric SAR data. IEEE Proc. IGARSS’2000, 1095-1097.
    [83] T.L.Ainsworth, J.S.Lee, D.L.Schuler. Multi-Frequency polarimetric SAR data analysis of Ocean surface Features. IEEE Proc. IGARSS’2000, 1113-1115.
    [84] M.Hellmann, E.Krogager. Comparison of decompositions for Pol-SAR image interpretation. IEEE Proc. IGARSS’2000, 1313-1315.
    [85] J.D.Kraus. Antennas. McGraw-Hill, New York, 1950.
    [86] Th.C.Cheston, J.Frank,‘Phased Array Radar Antennas’, in M.I.Skolnik,‘Radar-Handbook’, McGraw Hill Publ., 1990, Ch.9/1. Edition.
    [87]任朗著.天线理论基础.北京:人民邮电出版社. 1979.
    [88]刘克成,宋学诚.天线原理.长沙:国防科技大学出版社. 1989.5.
    [89]朱崇灿,黄景熙,鲁述编.天线.武汉:武汉大学出版社. 1996.
    [90]周朝栋,王元坤,杨恩耀.天线与电波.西安:西安电子科技大学出版社. 2001.
    [91]卢万铮.天线理论与技术.西安:西安电子科技大学出版社. 2004.
    [92]张祖稷,金林,束咸荣编著.雷达天线技术.北京:电子工业出版社. 2005.
    [93] [美]Warren L. Stutzman, Gary A. Thiele著.朱守正,安同一译.天线理论与设计.北京:人民邮电出版社. 2006.
    [94] [美]John D. Kraus,Ronald J. Marhefka著,章文勋译.天线.北京:电子工业出版社. 2006.
    [95] A.C.Ludwig. The Definition of Cross Polarization. IEEE Trans. AP, Jan 1973,(21):116-119.
    [96] G.H. Knittel. Comments on“The Definition of Cross Polarization”, IEEE Trans. Antennas Prapagat. Nov. 1973: 917-918.
    [97] P.A. Watson, M.Arbabi. Crosspolarization and Discrimination. Electronics Letter. 1973, 9(22): 516-517.
    [98] Howard A. Zebker. Imaging Radar Polarimetry: A Review. IEEE Proc.1991,79(11): 1583-1606.
    [99] Yoshio Yamaguchi, et al. On Characteristic Polarization States in the Cross-Polarized Radar Channel. IEEE Trans. on Geoscience and Remote Sensing. Sep.1992,30(5): 1078-1080.
    [100] John C. Hubbert. A Comparison of Radar, Optic, and Specular Null Polarization Theories. IEEE Trans. GRS, 1994,32(3): 658-671.
    [101] Nader Damavandi. Cross Polarization Characteristics of Annular Ring Microstrip Antennas. IEEE Antennas and Propagation Society International Symposium, July 1997,(3): 1878-1881.
    [102]李勇,张士选等.高交叉极化鉴别度天线的近场测量.西安电子科技大学学报(自然科学版),2000,27(2): 223-227.
    [103] J.E.Roy, L.Shafai. Generalization of the Ludwig-3 Definition for Linear Copolarization and Cross Polarization. IEEE Trans. AP, June 2001,49(6):1006-1010.
    [104]林敏,龚铮权.超分辨测向中阵元间互耦的校正,电子与信息学报,2002,24(5): 631-636.
    [105] J.E.Roy, L.Shafai. Corrections to“Generalization of the Ludwig-3 Definition for Linear Copolarization and Cross Polarization”. IEEE Trans. AP, February 2004,52(2): 638-639.
    [106]杨雪霞.双极化与变极化微带天线的研究[博士学位论文].上海:上海大学研究生院,2001.1.
    [107]刘德虎,刘卫东.交叉极化鉴别率和交叉极化干扰抵消技术在实际中的应用.无线通信技术,2002, (3): 53-55,60.
    [108]黄际英,陈新莲,唐映德,王兰美. Ka波段降雨衰减与去极化效应.西安电子科技大学学报(自然科学版),2002,29(6): 733-736.
    [109] B Fong, P B Rapajic, G Y Hong, et al. The Effect of Rain Attenuation on Orthogonally Polarized LMDS Systems in Tropical Rain Regions. IEEE Antennas and Wireless Propagation Letters, 2003,(2): 66-67.
    [110] Anna V. Shishkova, et al. Polarization Characteristics of an Open-ended Circular Waveguide. International Conference on Antenna Theory and Techniques. 9-12 September,2003,Sevastopol,Ukraine.pp:465-467.
    [111]杜延.双极化频率复用通信系统的去极化及自适应补偿.无线电通信技术,2004, (1): 44-53.
    [112]刘开,李红卫,胡海峰.微波天线交叉极化特性分析及现场调测.通信与测控,2005, (3): 38-42.
    [113]王卫民.频率复用通信系统中的交叉极化问题.微波学报,2005,vol.21(Sup): 157-159.
    [114] B Fong, A CM Fong, G Y Hong, et al. Measurement of Attenuation and Phase on 26-GHz Wide-Band Point-to-Multipoint Signals under the Influence of Rain. IEEE Antennas and Wireless Propagation Letters, 2005,(4): 20-21.
    [115]陈一天,陈斗雪,LAINGA IMNG.降雨衰耗对LMDS正交极化的影响.计算机应用研究,2006, (12): 71-73.
    [116] M.J.GANS.反射型波束波导和天线的交叉极化.译自《B.S.T.J》V.55, N.3, 1976, pp: 289-316.
    [117]王五兔.反射面形状参数对交叉极化的影响.中国空间科学技术. 1993,(1): 43~50.
    [118]陈少平.馈源偏离焦点及反射面变形情况下抛物面天线辐射场的计算.中南民族学院学报(自然科学版),1995,14(1): 24-26.
    [119]杜彪,杨可忠.抛物环面天线交叉极化特性的研究.电子学报,1996,24(12): 12-16.
    [120] His-tseng Chou, P.H. Pathak, R.J. Burkholder. Gaussian Ray Basis Functions for EM Fields and their Applications in Rapid Analysis of Parabolic Reflector Antennas. Antennas and Propagation Society International Symposium, 1998,(4): 2082-2085.
    [121]杨维明.单偏馈抛物反射面天线的研究.湖北大学学报(自然科学版),1998,20(3): 250-252.
    [122]吕雪峰,董维仁,杨晶,向福.偏置角对偏置抛物面天线特性的影响.北京邮电大学学报,1998,21(4): 75-78.
    [123] Leopoldo Infante, Stefano Maci. Near-Field Line-Integral Representation of the Kirchhoff-Type Aperture Radiation for a Parabolic Reflector. IEEE Antennas and Wireless Propagation Letters, 2003,(2): 273-276.
    [124]刘彦等.反射面变形对天线辐射特性的影响.北京理工大学学报,2004,24(6): 541-544,558.
    [125]田暕,郭陈江.偏焦偏置抛物面天线的辐射特性.雷达科学与技术,2004,2(4): 247-251.
    [126]田暕,郭陈江.偏馈抛物面天线前轴向区的辐射特性.兰州交通大学学报(自然科学版),2005,24(4): 117-119,126.
    [127]吴东梅,吕善伟,南仁东.前馈圆极化反射面天线的焦场分析.微波学报,2005,21(6): 19-22.
    [128] Makoto Ando, Luis Rodriguez, Tetsu Shijo. Far Calculation of the Defocused Parabolic Reflector Antennas by the Modified Edge Representation Line Integrals. 11th Int. Conf. on Mathematical Methods in Electromagnetic Theory June 26-29,2006. Kharkiv Ukraine. pp:45-50.
    [129] Pre-Simon Kildal, etc. Losses, Sidelobes, and Cross Polarization Caused by Feed-Support Struts in Reflector Antennas: Design Curves. IEEE Trans. AP, 1988,36(2).
    [130] M.A.Terada and W.L.Stutzman. Design of Offset Parabolic Reflector Antennas for Low Cross Polarization and Low Sise Lobes. IEEE AP. Dec. 1993,(35):116-119.
    [131]李红卫.偏置天线低交叉极化技术.通信与测控. 1997,(2):7-9.
    [132] Kim Woelders, Johan Granholm. Cross-Polarization and Sidelobe Suppression in Dual Linear Polarization Antenna Arrays. IEEE Trans. AP, 1997,45(12):1727-1740.
    [133]高式昌,钟顺时.一种高隔离度的双极化微带天线阵的理论和实验,电子学报,1999,27(8): 64-66.
    [134] Tzung-Wern Chiou, Kin-Lu Wong. Broad-Band Dual-Polarized Single Microstrip Patch Antenna With High Isolation and Low Cross Polarization. IEEE, Trans. AP, 2002,50(3): 399-401.
    [135] Hiroyuki Deguchi, Mikio Tsuji, Hiroshi Shigesawa. Compact Low-Cross-Polarization Horn Antennas With Serpentine-Shaped Taper. IEEE Trans. AP. 2004,52(10): 2510-2516.
    [136] P. Li, H.W.Lai, K.M.Luk, K.L.Lau. A Wideband Patch Antenna With Cross-Polarization Suppression. IEEE Antennas and Wireless Propagation Letters, 2004(3): 211-214.
    [137] Arun K. Bhattacharyya, Guy Goyette. A Novel Horn Radiator With High Aperture Efficiency and Low Cross-Polarization and Applications in Arrays and Multibeam Reflector Antennas. IEEE Trans. AP. 2004,52(11): 2850-2859.
    [138] Tairan Wang, et al. Cross-Polarization Generation and Its Impact on Coupler Performance. IEEE Journal of Selected Topics in Quantum Electronics, July/August,2006,12(4):751-759.
    [139] Kengo Nishimoto, Toru Fukasawa, etc. Optimization of cross polarization characteristics for dual-polarized patch antennas. IEEE Antennas andPropagation Society International Symposium, 2004, pp: 4352-4355.
    [140] Dau-Chyrh Chang, Ming-Chih Huang. Multiple-Polarization Microstrip Reflectarray Antenna with High Efficiency and Low Cross-Polarization. IEEE Tans. AP, 1995,43(8): 829-833.
    [141] B.H.Arnold, etc. Effect of Feed Cross-polarization on the Cross-polar Characteristics of a Shaped Dual Reflector Antenna. IEEE AP. Society International Symposium. 13-18, July, 1997,(2): 1406-1409.
    [142] Rajasri Sen, M.P.Singh. Estimation of cross polarization of millimeter waves due to rain over few stations in India and its modification incorporating measured values of rain height. IEEE Antennas, Propagation and EM Theory, 2003 6th International Symposium, 28 Oct.-1 Nov.2003,pp: 568-571.
    [143] Andrea Vallecchi, Guido Biffi Gentili. Dual-Polarized Linear Series-Fed Microstrip Arrays With Very Low Losses and Cross Polarization. IEEE Antennas and Wireless Propagation Letters, 2004,(3):123-126.
    [144] Wei Wang, Jian Jin, Jia-Guo Lu, Shun-Shi Zhong. Waveguide Slotted Antenna Array With Broadband, Dual-polarization And Low Cross-polarization For X-Band SAR Applications. IEEE Intern. Conference on Radar, 9-12,May,2005, pp: 653-656.
    [145] E.Hanle. 3-D Polarimetry for Target Acquisition and Classification With Electronically Steered Planar Array Systems, IEEE Intern. Conference on Radar, Brighton, 1992, pp: 222-225.
    [146] E.Hanle. Polarimetric Suppression of Clutter at Off-Broadside Direction. Int’1 Conf. on Radar, Paris,1994.
    [147] E.Hanle. Adaptive Chaff Suppression by Polarimetry with Planar Phased Arrays at Off-broadside. IEEE International Radar Conference, May,1995, pp:108-112.
    [148]倪晋麟,苏为民,储晓彬,幅相不一致性对自适应阵列的影响,应用科学学报,2000,18(3): 223-226.
    [149]倪晋麟,等.单元交叉极化对自适应阵列性能的影响.电子与信息学报,2002,24(1): 97-101.
    [150] William Z Lemnios and Alan A Grometstein. Overview of the Lincoln Laboratory Ballistic Missile Defense Program. Lincoln Laboratory Journal. 2002,13 (1) : 9-32.
    [151] J S Arthur, J C Henry, G H Pettengill, and P B Sebring, The Millstone Radar in Satellite and Missile Tracking. Ballistic Missiles and Space Technology, vol. III(Pergamon Press, New York, 1961), pp. 81-93
    [152] G H Pettengill and L G Kraft, Jr. Observations Made with the Millstone Hill Radar. Avionics Research: Satellites and Problems of Long Range Detection and Tracking, AGARD Avionics Panel Mtg., Copenhagen, 20–25 Oct. 1958, pp. 125-134
    [153] E C Freeman, ed. MIT Lincoln Laboratory: Technology in the National Interest (Lincoln Laboratory, Lexington, Mass.,1995). p.83
    [154]向敬成,张明友编著.毫米波雷达及其应用.北京:国防工业出版社, 2005.1.
    [155] JoBea Way, Elizabeth Atwood Smith. The Evolution of Synthetic Aperture Radar Systems and Their Progression to the EOS SAR. IEEE Trans on Geoscience Remote Sensing, 1991, 29(6): 962-985
    [156] Livingstone C E, Gray A L, Hawkins R K, Olsen R B. CCRS C/X-Airborne Synthetic Aperture Radar: an R and D Tool for the ERS-1 Time Frame. Radar Conference,1988, Proceedings of the 1988 IEEE National, 20-21 April 1988. 15-21.
    [157] Christensen E L. Dall J. EMISAR: a Dual2Frequency, Polarimetric Airborne SAR. Geoscience and Remote Sensing Symposium, 2002. IGARSS 2002, IEEE International, 24-28 June 2002. VOL 3: 1711-1713.
    [158] Christensen E L , Skou N, Dall J . EMISAR: an Absolutely Calibrated Polarimetric L- and C-band SAR . IEEE Trans on Geoscience and Remote Sensing, 1998, 36(6): 1852-1865.
    [159] Belejer G J. Flashlight Radar: A Three-Dimension Imaging Radar. AD-A213439, 1989.
    [160] The NASA STI program office. Aeronautical Engineering-A continuing bibliography with indexes. NASA/SP-1999-7037/SUPPL395,March 5, 1999.
    [161] 863先进防御技术通讯(A类).美国国防部声称NMD能够识别真假目标. 863先进防御技术通讯简讯, 2000年第14期: 1-2.
    [162]马骏声.目标识别与GBR地基成像雷达.航天电子对抗, 1996, 12(4): 32-35.
    [163]马骏声. NMD-GBR雷达的测量能力及其性能参数.航天电子对抗, 2002, 18(5): 1-8.
    [164] Andrew M S, John M Cl, Bob Dietz, et al. Countermeasures-A technical evaluation of the operational effectiveness of the planned US national missile defense system. Union of Concerned Scienst, Cambridge MA, 2000
    [165] A J Poelman. On using orthogonally polarized receiving channels to detect targetechoes in Gaussian noise. IEEE Trans AES, 1975,(11): 660-663.
    [166] R T Compton, Jr. On the performance of a polarization sensitive adaptive array. IEEE Trans. AP, 1981, 29(5): 718-725.
    [167] R T Compton, Jr. The tripole antenna: an adaptive array with full polarization flexibility. IEEE Trans. AP, 1981, 29(6): 944-952.
    [168] R T Compton, Jr. The performance of a tripole adaptive array against cross- polarized jamming. IEEE Trans. AP, 1983, 31(4): 682-685.
    [169] Dino Giuli, M Fossi, M Gherardelli. Polarization behavior of ground clutter during dwell time. IEE Proc.-F. 1991,138(3).
    [170] Dino Giuli, M Fossi, M Gherardelli. A technique for adaptive polarization filtering in radars. Proc. of IEEE International Radar Conference, 213-219, 1985.
    [171] G Wanielik, D J R Stock. Radar polarization jamming using the suppression of two fully polarized waves. Radar-87
    [172]王雪松,庄钊文,肖顺平等.极化信号的优化接收理论:完全极化情形.电子学报, 1998, 26(6): 42-46
    [173]王雪松,庄钊文,肖顺平等.极化信号的优化接收理论:部分极化情形.电子科学学刊, 1998, 20(4): 468-473
    [174]王雪松,庄钊文,肖顺平等. SINR极化滤波器通带性能研究.微波学报, 2000, 16(1): 29-37.
    [175] Wang Xuesong, Zhuang Zhaowen, Xiao Shunping. Nonlinear optimization method of radar target polarization enhancement. Progress in Natural Science, 2000,10(2): 136-140.
    [176]徐振海,王雪松,肖顺平,庄钊文.极化自适应递推滤波算法.电子学报, 2002, 30(4): 608-610.
    [177]徐振海,王雪松,肖顺平,庄钊文.极化敏感阵列滤波性能分析:完全极化情形.电子学报, 2004, 32(8): 1310-1313.
    [178]徐振海,王雪松,肖顺平,庄钊文.极化敏感阵列信号检测研究:部分极化情形,电子学报, 2004, 32(6): 938-941.
    [179]徐振海,王雪松,肖顺平,庄钊文.极化敏感阵列滤波性能分析:相关干扰情形.通信学报, 2004, 25(10): 8-15.
    [180]丁鹭飞,耿富录编著.雷达原理.西安:西安电子科技大学出版社. 2004.
    [181]叶其孝,沈永欢主编,实用数学手册.北京:科学出版社. 2006.
    [182]黄立伟,金志天编.反射面天线.西安:西北电讯工程学院出版社. 1986.
    [183] A.W.Rudge. Offset Parabolic Reflector Antenna: A Review. Proc. of the IEEE,1978, 66(12): 1592-1618.
    [184]杨可忠,杨智友,章日荣著.现代面天线新技术.北京:人民邮电出版社. 1993.
    [185] GRASP9 - General Reflector and Antenna Farm Analysis Software.丹麦TICRA公司网站http://www.ticra.com/script/site/page.asp?artid=33,
    [186] GRASP9产品信息.未尔科技公司网址http://www.vi-re.com/products2.asp?id=21.
    [187]王雪松,等.极化滤波器的性能评估与选择.自然科学进展,2004,14(4): 442-448.
    [188]王雪松,等.自适应极化滤波器的理论性能分析.电子学报,2004,32(8): 1326-1329.
    [189]张贤达著.矩阵分析与应用.北京:清华大学出版社. 2004.
    [190]马振华主编.《现代应用数学手册》概率统计与随机过程卷.北京:清华大学出版社. 2002.
    [191]罗鹏飞,张文明,刘福声编著.随机信号分析.长沙:国防科技大学出版社. 2003.
    [192]候印鸣,李德成,孔宪正,陈素菊编.综合电子战——现代战争的杀手锏.北京:国防工业出版社. 2001.1.
    [193]张锡熊. 21世纪雷达的“四抗”.雷达科学与技术. 2003,1(1): 1-6.
    [194]吕连元.现代雷达干扰和抗干扰的斗争.电子科学技术评论. 2004(4): 1-6.
    [195]王学仁,王松桂.实用多元统计分析.上海:上海科学技术出版. 1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700