知识辅助的SAR图像目标特性分析与识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SAR作为一种有效的信息获取手段,被广泛地应用于军事侦察和地理遥感等多个领域。随着SAR数据收集能力的不断提高,如何快速、有效地从SAR图像中提取出感兴趣目标类型的目标识别,就成为制约战场情报生成和态势感知能力的重要环节。目前SAR图像目标识别面临的最大技术难题来自于目标特性的多样性和所处环境的复杂性,有限的SAR图像信息不足以刻画目标特性的变化,还需要充分地挖掘和利用其它辅助信息。针对此问题,本文将领域知识引入到识别中,分别从知识表示、结构模型描述以及知识应用三个方面探讨和研究知识辅助的SAR图像目标识别。
     首先,从知识的基本含义出发,介绍了在SAR图像目标识别中需要用到的有关目标内部构成关系的结构模型知识和有关目标和外部环境间因果关系的上下文知识。基于散射中心频率依赖性和方位依赖性中蕴含的结构模型信息,简要地说明了两种结构模型知识的表示和匹配方法。对于经验性的上下文知识,从证据和知识不确定性的表示、不确定性的传递和结论不确定性的合成几个方面讨论了各种不确定性知识的表示和处理方法。
     然后,在结构模型知识研究方面,首先从散射中心的频率依赖性角度研究了高分辨雷达目标一维结构模型的描述,即模型参数的估计方法。在分析了子空间型方法对GTD模型位置参数估计的有效性后,提出了一种基于正交投影的模型参数估计方法。该方法依据GTD模型中散射中心位置和类型参数的低耦合,利用信号子空间的平移不变结构估计散射中心位置,根据频率依赖项的正交投影系数对类型参数进行鉴别,使整个估计过程一次完成,具有较低的计算复杂性。分析表明,该方法具有较高的估计精度和良好的推广性能,从而为SAR图像目标二维结构模型的研究奠定了基础。
     其后,同时考虑散射中心的频率依赖性和方位依赖性,对基于属性散射中心模型的SAR图像目标二维结构模型的描述展开研究。在总结图像域模型参数提取基本流程的基础上,分析了图像分割对参数估计性能的重要影响。为指导散射中心区域分割,将频率域中的散射模型转换到图像域,对属性散射中心的分布特性进行了充分地分析。根据属性散射中心模型中局域式和展布式散射中心方位特性的差异,提出了一种类型判断-图像分割-参数估计的模型参数顺序估计方法。为了提高参数估计性能,分析了基于lk范数的SAR复图像域正则化方法实现超分辨的内在机理,并针对该方法在不同强度散射点条件下分辨率提高不一致的问题,提出了一种基于变参数的改进正则化方法。这些研究完备了二维结构模型知识的应用基础。
     最后,对结构模型知识和上下文知识辅助的SAR图像目标识别方法进行研究。根据结构模型知识的层次化结构,提出了一种知识辅助的序贯处理流程,并分析了特定结构知识在SAR图像目标识别中的优势。基于全局结构知识预测得到的主散射中心结构,提出了一种构造近似旋转平移不变特征的匹配识别方法。在阐述了上下文知识在SAR图像目标识别中重要性后,提出了一种上下文知识辅助的目标识别模型,并以可信度方法为例对知识处理的过程进行了具体说明。
As an effective sensor for acquiring information, synthetic aperture radar (SAR) is now widely used in military reconnaissance as well as geophysical remote sensing applications. Along with the increasing capacity of SAR collection, automated or semi-automated SAR target recognition, which allows quickly and efficiently identification of interested objects in SAR image, has become a crucial part of battlefield intelligence gathering and situation assessment. At present the principal challenge of SAR image target recognition is root in the variability of SAR signatures of targets and complexity of background environment and the limitied information in SAR observation is badly unsufficient in coping with this problem. That is to say, apart from SAR observation, other aided information such as expert knowledge should be introduced. Focusing on exploitation of expert knowledge for SAR target recognition, three key techniques such as knowledge representation, structural model description and knowledge application are studied in this dissertation.
     Starting from the basic meaning of knowledge, this paper firstly introduces the structural model knowledge and the contextural knowledge. The two types of knowledge respectively describe the internal structure of target and the causality between the target and the external environment. They should be very useful in SAR target recognition. Based on the structural model information of the frequency dependence and the aspect dependence in scattering center model, two kinds of structural model knowledge representation are briefly established. Aiming at the uncertainty in the experiential contextual knowledge, this paper discusses several kinds of representation and processing method of uncertain knowledge. The uncertainty representation of evidence and knowledge, uncertainty propagation and uncertainty combination of conclusions are subsequently elaborated.
     Secondly, in the aspect of structural model knowledge, according to the frequency dependence of scattering center in geometrical theory of diffraction (GTD) model, one dimensional structural model of high resolution radar target is studied, namely model parameter estimation method. After analyzing the validity of position parameter estimation of GTD model using subspace-type technique, an orthogonal projection-based method for parameter estimation is presented. According to weak coupling between scattering center position and type parameter in GTD model, this method firstly utilizes the shift-invariance characteristerics of signal subspace to estimate the position of scattering center, and then determine the type of scattering center in terms of the orthogonal projection of frequency-dependent term. The sequential estimation schema largely reduces computational complexity. Moreover theoristic analysis and simulated experiment illustrate that the method can simultaneously achieve accurate estimation and well bandwidth-generalized performance, which lays a foundation for the research of two dimensional structural model.
     Subsequently, based on the frenquency dependency and the aspect dependency in attributed scattering center model, two dimensional structural model of target in SAR image is studied. After reviewing the main flow of complex imagery-domain model parameters extraction, the effects of image segmentation is analyzed. Aiming at the above issue, we transform the scattering center model from the frequency-aspect domain into the image domain and analyze the distribution characteristics of attributed scattering centers fully, which provides a useful guidance for the segmentation of SAR image and type selection of attributed scattering centers. According to different aspect-dependence characteristics of localized and extended scattering centers in attributed scattering center model, a three steps of type selection, image segmentation and parameter estimation is proposed. Moreover, in order to improve the performance of parameter estimation, the inherent principles of lk norm regularization-based super-resolution in SAR complex image domain are studied, and a modified lk norm regularization method is presented. Owing to varying parameters, the proposed method can mitigate the problem of inconsistent resolution for scattering centers with different amplitudes. The above researches have completed the apllication basis of structural model knowledge.
     Finally, the application of the structural model knowledge and the contextual knowledge to SAR image target recognition is investigated. According to the hierarchy of the structural model knowledge, a sequential knowledge-aided processing flow is proposed. Therein the specific structural knowledge describes the local relation of stuctures, and its merit in SAR image target recognition is analyzed. Moreover, we employ the global structural knowledge to construct the main scattering structure and put forward an approximately translational and rotational invariant feature based attributed point matching algorithm for target recognition. On the other hand, the importance of the contextual knowledge in SAR image target recognition is stated. A model of contextual knowledge-aided target recognition is presented, and the confidence method as an application example is utilized to illustrate the detailed process.
引文
[1]张澄波.综合孔径雷达——原理、系统分析与应用[M].北京:科学出版社, 1989.
    [2]张直中.微波成像技术[M].北京:科学出版社, 1990.
    [3]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社, 1999.
    [4]保铮.雷达成像技术[M].北京:电子工业出版社, 2003.
    [5]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社, 2003.
    [6]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社, 2001.
    [7] [法]Maitre H著,孙洪译.合成孔径雷达图像处理[M].北京:电子工业出版社, 2005.
    [8] [美]Curlander J C, Mcdonough R N著,韩传钊等译.合成孔径雷达——系统与信号处理[M].北京:电子工业出版社, 2006.
    [9] [美]Gumming I G, Wong F H著,洪文,胡东辉等译.合成孔径雷达成像——算法与实现[M].北京:电子工业出版社, 2007.
    [10]皮亦鸣,杨建宇,付毓生.合成孔径雷达成像原理[M].成都:电子科技大学出版社, 2007.
    [11]匡纲要,高贵,蒋咏梅,等.合成孔径雷达目标检测理论、算法及应用[M].长沙:国防科技大学出版社, 2007.
    [12] Berens P. Introduction to synthetic aperture radar (SAR) [C]. In Advanced Radar Signal and Data Processing, NATO-RTO-EN-SET-086, 2006: 3-1~3-14.
    [13] Henry J C. The Lincoln Laboratory 35 GHz airborne polarimetric SAR imaging radar system [C]. IEEE National Telesystems Conference, 1991, 1: 353~358.
    [14] Rosario D S. New automated terrain and feature extraction approach for the Predator UAV TESAR ATR system [C]. SPIE, 3721, 1999: 47~55.
    [15] Tsunoda S I, Pace F, Stence J, et al. Lynx: a high-resolution synthetic aperture radar [C]. SPIE, 3704, 1999: 20~27.
    [16] http://www.sandia.gov/radar/minisar.html.
    [17]第二届中国合成孔径雷达会议论文集[C].南京, 2005.
    [18] Bhanu B. Automatic target recognition: state of the art survey [J]. IEEE Trans on AES, 1984, 22(4): 364~379.
    [19] Novak L M, Owirka G J, Netishen C M. Performance of a high-resolution polarimetric SAR automatic target recognition system [J]. The Lincoln Laboratory Journal, 1993, 6(1): 11~24.
    [20] Novak L M, Owirka G J, Brower W S, et al. The automatic target recognitionsystem in SAIP [J]. The Lincoln Laboratory Journal, 1997, 10(2): 187~202.
    [21] Novak L M, Halversen S D, Owirka G J, et al. Effects of polarization and resolution on the performance of a SAR ATR system [J]. The Lincoln Laboratory Journal, 1995, 8(1): 49~68.
    [22] Benitz G R. High-definition vector imaging [J]. The Lincoln Laboratory Journal, 1997, 10(2): 147~170.
    [23] Novak L M, Owirka G J, Brower W S. An efficient multi-target SAR ATR algorithm [C]. The Thirty-Second Asilomar Conference on Signals, Systems & Computers, 1998, 1: 3~13.
    [24] Novak L M, Owirka G J, Brower W S. Performance of 10- and 20-target MSE classifiers [J]. IEEE Trans on AES, 2000, 36(4): 1279~1289.
    [25] Keydel E R, Lee S W, Moore J T. MSTAR extended operating conditions: a tutorial [C]. SPIE, 2737, 1996: 228~242.
    [26] Diemunsch J, Wissinger J. Moving and stationary target acquisition and recognition (MSTAR) model-based automatic target recognition: search technology for a robust ATR [C]. SPIE, 3370, 1998: 481~492.
    [27] Wissinger J, Washbum R, Morgan D, et al. Search algorithm for model-based SAR ATR [C]. SPIE, 2757, 1996: 279~293.
    [28] Andersh D J, Hazlett M, Lee S W, et al. XPatch: a high frequency electromagnetic-scattering prediction code and environment for complex three-dimensional objects [J]. IEEE Antennas and Propagation Magazine, 1994, 36(1): 65~69.
    [29] Keydel E R. Signature prediction for model-based automatic target recognition [C]. SPIE, 2757, 1996: 306~317.
    [30] Williams W, Wojdacki W, Keydel E R, et al. Development of class models for model-based automatic target recognition [C]. SPIE, 3721, 1999: 650~660.
    [31] Keydel E R , Williams W, Sieron R, et al. Reasoning support and uncertainty prediction in model-based vision SAR ATR [C]. SPIE, 3721, 1999: 620~631.
    [32] Ettinger G J, Klanderman G A, Wells W M, et al. A probabilistic optimization approach to SAR feature matching [C]. SPIE, 2757, 1996: 318~329.
    [33] Wissinger J, Diemunsch J, Severson W, et al. MSTAR's extensible search engine and model-based inferencing toolkit [C]. SPIE, 3721, 1999: 554~570.
    [34]计科峰. SAR图像目标特征提取与分类方法研究. [D].长沙:国防科技大学, 2003.
    [35]王岩.机载SAR目标特征提取与识别方法研究[D].长沙:国防科技大学, 2003.
    [36] Sandirasegaram N M. Automatic target recognition in SAR imagery using a MLP neural network [R]. Technical Report, DRDC, Ottawa, 2002.
    [37] English R A, Rawlinson S J, Sandirasegaram N M. Development of an ATR workbench for SAR imagery [R]. Technical Report, DRDC, Ottawa, 2002..
    [38] Sandirasegaram N M. Spot SAR ATR using wavelet features and neural network classifier [R]. Technical Report, DRDC, Ottawa, 2005.
    [39] Redding N J, Kettler D I, Blucher G, et al. The analysts' detection support system for deploying a network of target detection and recognition [C]. IEEE International Radar Conference, 2003: 448~453.
    [40] Druyts P, Mees W, Borghys D, et al. SAHARA semi-automatic help for aerial region analysis' system description and final evaluation [DB/OL]. http://www.sic.rma.ac.be/~pdruyts/publi/sahara_iris.pdf, 1998.
    [41]高贵. SAR图像目标ROI自动获取技术研究[D].长沙:国防科技大学, 2007.
    [42]李禹. SAR图像机动目标检测与鉴别技术研究[D].长沙:国防科技大学, 2007.
    [43] Douville P L. Measured and predicted synthetic aperture radar target comparison [J]. IEEE Trans on AES, 2002, 38(1): 25~37.
    [44] Broek B, Bieker T, Ewijk L. Comparison of modelled to measured high -resolution ISAR data [C]. In MMW Advanced Target Recognition and Identification Experiment, NATO-RTO-MP-SET-096, 2005: 17-1~17-10.
    [45] Sharma R, Subotic N S. Construction of hybrid templates from collected and simulated data for SAR ATR algorithms [C]. SPIE, 3371, 1998: 480~486.
    [46] DeVore M D, Lanterman A D, O’Sullivan J A. ATR performance of a Rician model for SAR images [C]. SPIE, 4050, 2000: 34~55.
    [47] O’Sullivan J A, DeVore M D, Kedia V, et al. SAR ATR performance using a conditionally Gaussian model [J]. IEEE Trans on AES, 2001, 37(1): 91~108.
    [48] DeVore M D, O’Sullivan J A. Performance complexity study of several approaches to automatic target recognition from SAR images [J]. IEEE Trans on AES, 2002, 38(2): 632~648.
    [49] DeVore M D, O’Sullivan J A. Quantitative statistical assessment of conditional models for synthetic aperture radar [J]. IEEE Trans on IP, 2004, 13(2): 113~125.
    [50] Novak L M, Owirka G J, Netishen C M. Radar target identification using spatial matched filters [J]. Patten Recognition, 27(4), 1994: 607~617.
    [51] Carlson D W, Kumar V, Mitchell R R, et al. Optimal trade-off distance classifier correlation filters (OTDCCFs) for synthetic aperture radar automatic target recognition (SAR ATR) [C]. SPIE, 3070, 1997: 110~120.
    [52] Mahalanobis A, Carlson D W, Kumar V. Evaluation of MACH and DCCF correlation filters for SAR ATR using the MSTAR public database [C]. SPIE, 3070, 1998: 460~468.
    [53] Carlson D W, Riddle J G, Waagen E. Selecting training images with supportvector machines for composite correlation filters in SAR ATR [C]. SPIE, 5095, 2003: 292~302.
    [54] Casasent D, Patnaik R. Automated synthesis of distortion-invariant filters: AutoMinace [C]. SPIE, 6384, 2006: 638401-1~638401-12.
    [55] Casasent D, Nehemiah A. Confuser rejection performance of EMACH filters for MSTAR ATR [C]. SPIE, 6245, 2006: 62450D-1~62450D-12.
    [56] Patnaik R, Casasent D. MSTAR object classification and confuser and clutter rejection using Minace filters [C]. SPIE, 6234, 2006: 62340S-1~62340S-13.
    [57] Patnaik R, Casasent D. SAR classification and confuser and clutter rejection tests on MSTAR ten-class data using Minace filters [C]. SPIE, 6574, 2007: 657402-1~657402-15.
    [58] Jeong K H, Liu W F, Han S J, et al. The correntropy MACE filter [J]. Pattern Recognition, 2009, 42(5): 871~885.
    [59] Suvorova S, Schroeder J. Automated target recognition using the Karhunen–Loéve transform with invariance [J]. Digital Signal Processing, 2002, 12(): 295~306.
    [60] Novak L M, Owirka G J. Radar target identification using an eigen-image approach [C]. IEEE National Radar Conference, 1994: 129~131.
    [61] Mishra A K, Mulgrew B. Radar signal classification using PCA-based features [C]. ICASSP, 2006: III-1104~III-1107.
    [62]王世晞,贺志国.基于PCA特征的快速SAR图像目标识别方法[J].国防科技大学学报, 2007, 30(3): 136~140.
    [63] Chen Y, Blasch E, Chen H, et al. Experimental feature-based SAR ATR performance evaluation under different operational conditions [C]. SPIE, 6968, 2008: 69680F-1~69680F-12.
    [64] Zhang R, Hong J, Ming F. An improved PCA based features for SAR ATR [C]. IET International Radar Conference, 2009.
    [65] Mishra A K. Validation of PCA and LDA for SAR ATR [C]. TENCON, 2008: 1~6.
    [66]韩萍,吴仁彪,王兆华,等.基于KPCA准则的SAR图像目标特征提取与识别[J].电子与信息学报, 2003, 25(10): 1297~1301.
    [67]成功,赵巍,毛士艺.基于快速提升KLDA准则的MSTAR SAR目标特征提取与识别研究[J].航空学报, 2007, 28(3): 667~672.
    [68] Yang S Y, Wang M, Jiao L C. Radar target recognition using contourlet packet transform and neural network approach [J]. Signal Processing, 2009, 89(4): 394~409.
    [69] Pham Q H, Brosnan T M, Smith M J T, et al. An efficient end-to-end feature based system for SAR ATR [C]. SPIE, 3370, 1998: 519~529.
    [70] Nilubol C, Mersereau R M, Smith M J T. A SAR target classifier using Radon transforms and hidden markov models [J]. Digital Signal Processing, 2002, 12(2-3): 274~283.
    [71] Zhang J, Modestino J W, Langan D A. Maximun-likehood parameter estimation for unsupervised stochastic model-based images segmentation. IEEE Trans on Images Processing [J]. 1994, 3(40): 404~420.
    [72] Stanhope S A, Daida J M. Genetic programming for automatic target classification and recognition in synthetic aperture radar imagery [C]. Proceedings of the 7th Annual Conference on Evolutional Programming, 1998: 735~744.
    [73] Bhanu B, Lin Y Q. Genetic algorithm based feature selection for target detection in SAR images [J]. Image and Vison Gomputing, 2003, 21(7): 591~608.
    [74]郭炜炜. SAR图像目标分割与特征提取[D].长沙:国防科技大学, 2007.
    [75] Saghri J A, Cary D A. A rectangular-fit classifier for synthetic aperture radar automatic target recognition [C]. SPIE, 6696, 2007: 66961B-1~66961B-11.
    [76] Nicoli L P, Anagnostopoulos G C. Shape-based recognition of targets in synthetic aperture radar images using elliptical Fourier descriptors [C]. SPIE, 6967, 2008: 69670G-1~69670G-12.
    [77] Anagnostopoulos G C. SVM-based target recognition from synthetic aperture radar images using target region outline descriptors [J]. Nonlinear Analysis, 2009, 71(12): e2934~e2939.
    [78] Cui J J, Gudnason J, Brookes M. Automatic recognition of MSTAR targets using radar shadow and superresolution features [C]. ICASSP, 2005: V-589~V-592.
    [79] Cui J J, Gudnason J, Brookes M. Radar shadow and superresolution features for automatic recognition of MSTAR targets [C]. IEEE International Radar Conference, 2005: 534~539.
    [80] Saghri J, DeKelaita A. Exploitation of target shadows in synthetic aperture radar imagery for automatic target recognition [C]. SPIE, 6312, 2006: 631212-1~631212-11.
    [81] Papson S, Narayanan R M. Applying target shadow models for SAR ATR [C]. SPIE, 6567, 2007: 65670H-1~65670H-10.
    [82] Blacknell D. Shadow-based SAR ATR performance prediction [C]. SPIE, 7337, 2009: 73370N-1~73370N-12.
    [83] Ikeuchi K, Shakunaga T, Wheeler M D, et al. Invariant histograms and deformable template matching for SAR target recognition [C]. IEEE International Radar Conference, 2000: 856~861.
    [84]张翠,郦苏丹,邹涛,等.一种应用峰值特征匹配的SAR图象自动目标识别方法[J].中国图象图形学报, 2002, 7(7): 729~734.
    [85] Jones G, Bhanu B. Recognition of articulated and occluded objects [J]. IEEE Trans on PAMI, 1999, 21(7): 603~613.
    [86] Jones G, Bhanu B. Recognizing occluded objects in SAR images [J]. IEEE Trans on AES, 2001, 37(1): 316~327.
    [87] Ying Z R, Castanon D Partially occluded object recognition using statistical models [J]. International Journal of Computer Vision, 2002, 49(1): 57~78.
    [88] Bhanu B, Lin Y Q. Stochastic models for recognition of occluded targets [J]. 2003, 36(12): 2855~2873.
    [89] Gao Y, Hu R, Jiao L C, et al. Recognition of SAR occluded targets using SVM [C]. International Multimedia Modeling Conference, 2007: 423~432.
    [90] Bhanu B, Jones G. Recognizing target variants and articulations in synthetic aperture radar images [J]. Optical Engineering, 2000, 39(3): 712~723.
    [91] Jones G, Bhanu B. Recognizing articulated objects in SAR images [J]. Pattern Recognition, 2001, 34(6): 469~485.
    [92] Bhanu B, Ahn J S. Model-based recognition of articulated objects [J]. Pattern Recognition Letters, 2002, 23(): 1019~1029.
    [93] Rihaczek A W. Radar Resolution and Complex-Image Analysis [M]. Artech House, 1996.
    [94] Rigling B, Potter L C, Moses R L. Relative information in phase of radar range profiles [C]. SPIE, 4053, 2000: 24~28.
    [95]黄培康,殷红成,许小剑,等.雷达目标特性[M].北京:电子工业出版社, 2005: 229~237.
    [96] Mensa D L. High resolution radar imaging [M]. Artech House, 1981.
    [97] Hurst M P, Mittra R. Scattering center analysis via prony’s method [J]. IEEE Trans on AP, 1987, 35(8): 986~988.
    [98] Carriere R, Moses R L. High resolution radar target modeling using a modified prony estimator [J]. IEEE Trans on AP, 1992, 40(1): 13~18.
    [99] Sacchini J J, Steedly W M, Moses R L. Two-dimensional prony modeling and parameter estimation [J]. IEEE Trans on SP, 1993, 41(11): 3127~3137.
    [100] Carriere R, Potter L C, Moses R L, et al. Radar target modeling: a GTD-based approach [C]. SPIE, 2234, 1994: 67~78.
    [101] Potter L C, Chiang D M, Carriere R, et al. A GTD-based parametric model for radar scattering [J]. IEEE Trans on AP, 1995, 43(10): 1058~1067.
    [102] Fuller D F, Terznoli A J, Collins P J, et al. Approach to object classification using dispersive scattering centres [J]. IEE Proc-Radar Sonar Navig., 2004, 151(2): 85~90.
    [103] Potter L C, Moses R L. Attributed scattering centers for SAR ATR [J]. IEEE Trans on IP, 1997, 6(1): 79~91.
    [104] Gerry M J, Potter L C, Gupta I J, et al. A parametric model for synthetic aperture radar measurements [J]. IEEE Trans on AP, 1999, 47(7): 1179~1188.
    [105] Chiang H C, Mose R L, Potter L C, et al. Model-based classification of radar images [J]. IEEE Trans on IT, 2000, 46(5): 1842~1854.
    [106] Chiang H C, Mose R L, Potter L C, et al. Model-based Bayesian feature matching with application to synthetic aperture radar target recognition [J]. Pattern Rcognition, 2001, 34(8): 1539~1553.
    [107] Moses R L, Potter L C. Feature extraction using attributed scattering center models for mode-based automatic target recognition [C]. DARPA Image Understanding Workshop, 1997: 1019~1022.
    [108] Koets M A, Moses R L. Feature extraction using attributed scattering center models on SAR imagery [C], SPIE, 3721, 1999: 104~115.
    [109] Akyildiz Y, Moses R L. A scattering center model for SAR imagery [C]. SPIE, 3869, 1999: 76~85.
    [110] Koets M A, Moses R L. Image domain feature extraction from synthetic aperture imagery [C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 1999, 4: 2319~2322.
    [111]孙真真,陈曾平,庄钊文,等.一种高频区复杂雷达目标二维散射的参数模型[J].国防科技大学学报, 2001, 23(4): 113~119.
    [112]计科峰,匡纲要,粟毅,等.基于SAR图像的目标散射中心特征提取方法研究[J].国防科技大学学报, 2003, 25(1): 45~50.
    [113]刘拥军,葛德彪,张忠治,等.有属性的散射中心理论及应用[J].电波科学学报, 2003, 18(5): 559~563.
    [114]张进,闫冬梅,王超,等.高分辨率SAR图像目标属性散射中心特征提取方法[J].中国图象图形学报, 2009, 14(1): 35~39.
    [115] Vannicola V C, Mineo J A. Applications of knowledge based systems to surveillance [C]. IEEE National Radar Conference, 1988: 157~164.
    [116] Vannicola V C, Slaski L K, Genello G J. Knowledge based resource allocation for multifunction radars [C]. SPIE, 1954, 1993: 410~425.
    [117] Baldygo W, Wicks M, Brown R, et al. Artificial intelligence applications to constant false alarm rate (CFAR) processing [C]. IEEE Natioanl Radar Conference, 1993: 275~280.
    [118] Farina A, Capraro G T, Griffiths H D, Wicks M C. Knowledge based radar signal and data processing [R]. NATO RTO-EN-SET-063, Aug 2005.
    [119] Farina A, Capraro G T, Griffiths H D, Wicks M C. Knowledge based radar signal and data processing [R]. NATO RTO-EN-SET-063bis, Sep 2006.
    [120] Farina A, Capraro G T, Griffiths H D, Wicks M C. Knowledge based radar signal and data processing [R]. NATO RTO-EN-SET-063-(2006), Jun 2007.
    [121] Special Section on“Knowledge-Based Systems for Adaptive Radar: Detection, Tracking and Classification”[J]. IEEE Signal Processing Magazine, 2006, 23(1).
    [122] Special Section on“Knowledge-Aided Sensor Signal and Data Processing”[J]. IEEE Trans on AES, 2006, 42(3).
    [123] Fulvio Gini, Muralidhar Rangaswarmy. Knowledge Based Radar Detection, Tracking and Classification [M]. John Wiley & Sons, Inc, 2008.
    [124] Come E, Maio A D, Farina A, et al. Design and analysis of a knowledge-based radar detector [C]. IEEE International Radar Conference, 2005: 387~392.
    [125] Knowledge base applications to adaptive space-time processing. Volume I: Summary [R]. AFRL-SN-TR-2001-146 Vol I Final Technical Report, 2001.
    [126] Knowledge base applications to adaptive space-time processing. Volume IV: Knowledge-based Tracking [R]. AFRL-SN-TR-2001-146 Vol IV Final Technical Report, 2001.
    [127] Knowledge base applications to adaptive space-time processing. Volume V: Knowledge-based tracker rule book [R]. AFRL-SN-TR-2001-146 Vol V Final Technical Report, 2001.
    [128] Farina A, Ferranti L, Golino G. Constrained tracking filters for A-SMGCS [C]. International Conference on Information Fusion, 2003: 414~421.
    [129] Gordon N J, Ristic B. Tracking airborne targets occasionally hidden in the blind doppler [J]. Digital Signal Processing, 2002, 12(2-3): 383~393.
    [130] Blacknell D. Contextual information in SAR target detection [J]. IEE Proc.-Radar, Sonar Navig., 2001, 148(1): 41~47.
    [131] Filippidis A, Martin J N. Fusion of intelligent agents for the detection of aircraft in SAR images [J]. IEEE Trans on PAMI, 2000, 22(4): 378~384.
    [132] Greig D, Denny M. Knowledge-based methods for small object detection in SAR images [C]. SPIE, 4883, 2003: 121~130.
    [133] Marni S M, Context-aided false alarm reduction for SAR automatica target recognition [C]. IEEE International Conference on Image Processing, 1997: 885~888.
    [134] Halversen S D, Owirka G J, Novak L M. New approaches for detecting groups of targets [C]. The 28th Asilomar Conference on Signals, Systems and Coputers, 1994: 137~140.
    [135] Owirka G J, Halversen S D, Heitt M, et al. An algorithm for detecting groups of targets. IEEE International Radar Conference, 1995: 641~643.
    [136]高贵,周蝶飞,蒋咏梅,等.合成孔径雷达图像自动目标鉴别的新方案[J].自然科学进展, 2007, 17(12): 1707~1716.
    [137] Gao G, Kuang G Y, Zhang Q, et al. Fast detecting and locating groups of targets in high-resolution SAR images [J]. Pattern Recognition, 2007, 40(4): 1378~1384.
    [138] Ravichandran B, Gandhe A, Smith R, et al. Robust automatic target recognition using learning classifier systems [J]. Information Fusion, 2007, 8(3): 252~265.
    [139] Kaufman V I, Ross T D, Lavely E M, et al. Score-based SAR ATR performance model with operating condition dependencies [C]. SPIE, 6568, 2007: 65680Z-1~65680Z-12.
    [140] Rupp C T, Halversen S D, Montagnino L J M, et al. Analysis of spatially mismatched imagery for synthetic aperture radar ATR classification [C]. SPIE, 6967, 2008: 69670H-1~69670H-9.
    [141] Montagnino L J, Cassabaum M L, Halversen S D, et al. Analysis of uncompensated phase error on automatic target recognition performance [C]. SPIE, 7337, 2009: 73370Q-1~73370Q-9.
    [142] Ross T D, Goodwon L C. Improved Automatic Target Recognition (ATR) value through enhancements and accommodations [C]. SPIE, 6237, 2006: 62370T-1~62370T-12.
    [143] Horsfield O, Blacknell D. Utilising feedback in adaptive SAR ATR systems-multi feature [C]. SPIE, 7337, 2009: 73370M-1~73370M-10.
    [144]黄培康等.雷达目标特征信号[M].北京:宇航出版社, 1993.
    [145] Keller J B. Geometrical theory of diffraction [J]. Journal of the Optical Society of America, 1962, 52(2): 116~130.
    [146] Binford T O, Wang B H, Levitt T S. Context and quasi-invariants in ATR with SAR imagery [C]. DARPA Image Understanding Workshop, 1997: 1031~1039.
    [147] Wang B H. An Automatic target recognition system for SAR imagery [D]. Ph.D. Disseration, The Stanford University, 1997.
    [148] Sockman G. Object recognition and localization via pose clustering [J]. computer Vision Graphics Image Process, 1987, 40(3): 361~387.
    [149] Bhanu B, Ming J. Recognition of occluded object: a cluster-structure algorithm [J]. Pattern Recognition, 1987, 20(2): 199~211.
    [150] Lamden Y, Wolfson H. Geometric hashing: a general and efficient model-based recognition scheme [C]. Proceedings of the International Conference on Computer Vision, 1988: 238~249.
    [151] Lamden Y, Schwartz Jacobt, Wolfson H. Affine Invariant model-based object recognition [J]. IEEE Trans on RA, 1990, 6(5): 578~589.
    [152] Yi J H, Bhanu B, Li M. Target indexing in SAR images using scattering centers and the Hausdorff Distance [J]. Pattern Recognition Letters, 1996, 17(11): 1191~1198.
    [153] Albus J. Applications of an efficient algorithm for locating 3D models in 2D images [C]. SPIE, 3371, 1998: 416~427.
    [154] Hummel R, Zucher S. On the foundation of relaxation labeling processes [J].IEEE Trans on PAMI, 1983, 5(3): 267~286.
    [155] Gold S, Rangarajan A, Lu C P, et al. New algorithms for 2D and 3D point matching: pose estimation and correspondence [J]. Pattern Recognition, 1998, 31(8): 1019~1031.
    [156] Gold S, Rangarajan A. A graduated assignment algorithm for graph matching [J]. IEEE Trans on PAMI, 1996, 18(4): 377~388.
    [157] Caetano T S, Caelli T, Schuurmans D, et al. Graphical models and point pattern matching [J]. IEEE Trans on PAMI, 2006, 28(10): 1646~1663.
    [158] Caetano T S, Caelli T, Barone D A C. Graphical models for graph matching [C]. IEEE Computer Socirty Conference on Computer Vision and Pattern Recognition, 2004: 466~473.
    [159] Caetano T S, Caelli T, Barone D A C. A comparison of junction trees and relaxation algorithms for point matching using different distance metrics [C]. Proceedings of the 17th International Conference on Pattern Recognition, 2004: 124~127.
    [160] Mossing J C, Ross T D. Evaluation of SAR ATR algorithm performance sensitivity to MSTAR extended operating conditions [C], SPIE, 3370, 1998: 554~565.
    [161]王永庆.人工智能原理与方法[M].西安:西安交通大学出版社, 1998.
    [162]邵军力等.人工智能基础[M].北京:电子工业出版社, 2000.
    [163]尹朝庆等.人工智能与专家系统[M].北京:中国水利水电出版社, 2002.
    [164] Shortliffe E H, Buchanan B G. A model of inexact reason in medicine. Mathematical Bioscience, 1975, 23(3-4): 351~379.
    [165] Duda R, Gaschnig H, Hart P. Model design in the PROSPECTOR consultant system for mineral exploration, in expert systems in the micro-electronic age [M]. Donald Michie, eds, Edinburgh University Press, 1979: 153~167.
    [166] Dempster A P. Upper and lower probabilities induced by multivalued mappings [J]. Annals of Mathematical Statistics, 1967, 38(2): 325~339.
    [167] Shafer G A. Mathematical theory of evidence [M]. Princeton, NJ, Princeton University Press, 1976.
    [168] George J K. Uncertainty in the Dempster-Shafer theory: a critical re-examination [J]. International Journal of General Systems, 1990, 18(2):155~166.
    [169] Zadeh L A. Fuzzy sets [J]. Information and Control, 1965, 8(3): 338~353.
    [170]石志广,周剑雄,赵宏钟,等.基于协同粒子群优化的GTD模型参数估计方法[J].电子学报, 2007, 35(6): 1102~1107.
    [171] Hua Y, Sarkar T K. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise [J]. IEEE Transactions on ASSP, 1990, 38(5): 814~824.
    [172] Moghaddar A, Ogawa Y, Walton E K. Estimating the time-delay and frequency decay parameter of scattering components using a modified MUSIC algorithm [J]. IEEE Trans on AP, 1994, 42(10): 1412~1418.
    [173]贺治华,张旭峰,黎湘,等.一种GTD模型参数估计的新方法[J].电子学报, 2005, 33(9): 1679~1682.
    [174]杜小勇,胡卫东,郁文贤.基于稀疏成份分析的几何绕射模型参数估计[J].电子与信息学报, 2006, 28(2): 362~366.
    [175]石志广,周剑雄,赵宏钟,等. GTD模型联合参数估计与定阶的Bayes方法[J].中国科学E辑:信息科学, 2007, 37(6): 824~835.
    [176]代大海,王雪松,肖顺平,等.高分辨相干极化GTD散射模型及其应用[J].电波科学学报, 2008, 23(1): 55~61.
    [177] Badeau R, David B, Richard G. High resolution spectral analysis of mixture of complex exponentials modulated by polynomials [J]. IEEE Trans on SP, 2006, 54(4): 1341~1350.
    [178] Badeau R, Richard G, David B. Performance of ESPRIT for estimating mixtures of complex exponentials modulated by polynomials [J]. IEEE Trans on SP, 2008, 56(2): 492~504.
    [179] Walker M L, Helton J W. Application of signal subspace algorithms to scattered geometric optics and edge-diffracted signals [J]. IEEE Trans on SP, 1994, 42(9): 2217~2226.
    [180] Veen A J, Deprettere E F, Swindlehurst A L. Subspace based signal analysis using singular value decomposition [J]. Proceedings of IEEE, 1993, 81(9): 1277~1308.
    [181] Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques [J]. IEEE Trans on ASSP, 1989, 37(7): 984~995.
    [182] Schmidt R O. Multiple emitter location and signal parameter estimation [J]. IEEE Trans on AP, 1986, 34(3): 276~280.
    [183] Cuomo K M, Piou J E, Mayhan J T. Ultrawide-band coherent processing [J]. IEEE Trans on AP, 1999, 47(6): 1094~1107.
    [184] Shan T J, Wax M, Kailath T. On spatial smoothing for direction-of-arrival estimation of coherent signals [J]. IEEE Trans on ASSP, 1985, 33(4): 806~811.
    [185] Fillai S U, Kwon B H. Forward/backward spatial smoothing techniques for coherent signal identification [J]. IEEE Trans on ASSP, 1989, 37(1): 8~15.
    [186] Seo D K, Kim K T, Bae J H, et al. Performance of spatial smoothing algorithms for radar signature modeling [J]. IEE Electronics Letters, 2001, 37(18): 1132~1133.
    [187] Maravic I, Vetterli M. Sampling and reconstruction of signals with finite rate of innovation in the presence of noise [J]. IEEE Trans on SP, 2005, 53(8):2788~2805.
    [188] Stoica P, Selen Y. Model-order selection: a review of information criterion rules. IEEE Signal Processing Magzine, 2004, 21(4): 36~47.
    [189] Zhou J X, Zhao H Z, Shi Z G, et al. Analytic performance bounds on estimates of scattering center parameters [J]. IEEE Trans on AES, 2007, 43(2): 813~826.
    [190] McClure M, Qin R C, Carin L. On the superresolution identification of observables from swept-frequency scattering data [J]. IEEE Trans on AP, 1997, 45(4): 631~641.
    [191] Trintinalia L C, Bhalla R, Ling H. Scattering center parameterization of wide-angle backscattered data using adaptive Gaussian representation [J]. IEEE Trans on AP, 1997, 45(11): 1664~1668.
    [192] Jonsson R, Genell A, Losaus D, et al. Scattering center parameter estimation using a polynomial model for the amplitude aspect dependence [C]. SPIE, 4727, 2002: 46~57.
    [193] Kim A, Dogan Sinan, Fisher J, et al. Attributing Scatterer anisotropy for model based ATR [C]. SPIE, 4053, 2000: 176~188.
    [194] [美]Gonzalez R C, Woods R E著,阮秋琦,阮宇智等译.数字图像处理(第二版)[M].北京:电子工业出版社, 2003: 500~507.
    [195] Akyildiz Y, Moses R L. Structure selection in synthetic aperture radar scattering models [C]. IEEE International Conference on ASSP, 2000, 5: 3021~3024.
    [196] Varshney K R, Cetin M, Fisher J W, et al. Joint image formation and anisotropy characterization in wide-angle SAR [C]. SPIE, 6237, 2006: 62370D.1~ 62370D.12.
    [197] Donoho D L. Sparse components analysis and optimal atomic decompositions [J]. Constructive Approximation, 2001, 17(2): 353~382.
    [198] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit [J]. SIAM J. Scientific Computing, 1998, 20(1): 33~61.
    [199] Cetin M, Karl W C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization [J]. IEEE Trans on IP, 2001, 10(4): 623~631.
    [200] Malioutov D M, Cetin M, Willsky A S. Optimal sparse representations in general overcomplete bases [C]. IEEE International Conference on ASSP, 2004, 2: 793~796.
    [201] Tropp J A. Greed is good: Algorithmic results for sparse approximation [J]. IEEE Trans on IT, 2004, 50(10): 2231~2242.
    [202] Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve [J]. SIAM Review, 1992, 34(4): 561~580.
    [203] Galatsanos N P, Katsaggelos A K Methos for choosing the regularizationparameter and estimating the noise variance in image restoration and their relation [J]. IEEE Trans on IP, 1992, 1(3): 322~336.
    [204] Batu O, Cetin M. Hyper-parameter selection in non-quadratic regularization- based radar image formation [C]. SPIE, 6970, 2008: 697009.1~697009.12.
    [205] Varshney K R, Cetin M, Fisher J W, et al. Sparse representation in structured dictionaries with application to synthetic aperture radar [J]. IEEE Trans on SP, 2008, 56(8): 3548~3561.
    [206]王正明,朱炬波,等. SAR图像提高分辨率技术[M].北京:科学出版社, 2006: 131~171.
    [207]冉承其,王正明.基于基追踪的SAR图像超分辨处理[J].宇航学报, 2006, 27(1): 51~56.
    [208]汪雄良,冉承其,王正明.基于紧致字典的基追踪方法在SAR图像超分辨中的应用[J].电子学报, 2006, 34(6): 996~1001.
    [209]杜小勇,胡卫东,郁文贤.基于稀疏成份分析的逆合成孔径雷达成像技术[J].电子学报, 2006, 34(3): 491~495.
    [210] Cetin M, Karl W C, Castanon D A. Evaluation of a regularized SAR imaging technique based on recognition-oriented features [C]. SPIE, 4053, 2000: 40~51.
    [211]王岩,梁甸农,郭汉伟.基于改进正则化方法的SAR图像增强技术[J].电子学报, 2003, 31(9): 1307~1309.
    [212]汪雄良,王正明,赵侠,等.基于lk范数正则化方法的SAR图像超分辨[J].宇航学报, 2005, 26(9): 77~82.
    [213]赵侠,王正明. SAR复图像域上的噪声抑制和目标特征提取[J].电子学报, 2005, 33(12): 2135~2138.
    [214]汪雄良,王正明.基于lk范数正则化的SAR图像目标特征增强[J].电子与信息学报, 2006, 28(9): 1594~1597.
    [215]袁震宇,王正明,王光新,等. SAR图像点目标超分辨正则化方法的简化计算[J].中国空间科学技术, 2008, 28(1): 41~46.
    [216] Yadin E, Olmar D, Oron O, et al. SAR imaging using a modern 2D spectral estimation method [C]. IEEE Radar Conference, 2008: 368~373.
    [217] Suwa K, Iwamoto M. A two-dimensional bandwidth extrapolation technique for polarimetric synthetic aperture radar images [J]. IEEE Trans on GRS, 2007, 45(1): 45~54.
    [218] Rhanu B, Jones G. Increasing the discrimination of synthetic aperture radar recognition models [J]. Optical Engineering, 2002, 41(12): 3298~3306.
    [219] Rhanu B, Jones G. Multiple look angle SAR recognition [J]. International Journal of Image and Graphics, 2004, 4(1): 85~98.
    [220] Rihaczek A W, Hershkowitz S J. Recognizing aircraft without radar databases [J].Electronics Systems and Software, 2005, 3(1): 34~38.
    [221] Miller R J, Samo G C, Shephard D J. Progress in radar recognition of aircraft without using radar-derived databases [C]. Electromagnetic Remote Sensing DTC 1st Technical Conference, Edinburgh 2004.
    [222] Miller R J, Wyllie C B, Shephard D J. Advances in radar NCTR using non-radar referents [C]. Electromagnetic Remote Sensing DTC 2nd Technical Conference, Edinburgh 2005.
    [223] Miller R J. Radar NCTR using non-radar referents [C]. Electromagnetic Remote Sensing DTC 3rd Technical Conference, Edinburgh 2006.
    [224] Miller R J, Shephard D J. Model-based aircraft recognition [C]. International Radar Symposium, May 2006: 1~4.
    [225] Vespe M, Baker C J, Griffiths H D. Outline structural representation for radar target classification based on non-radar templates [C]. International Radar Conference, 2006: 1420~1423.
    [226] Voice L I, Patton R, Myler H R. Multi-criterion vehicle pose estimation for SAR ATR [C]. SPIE, 3721, 1999: 497~506.
    [227]计科峰,匡纲要,粟毅,等. SAR图像目标峰值特征提取与方位角估计方法研究[J].宇航学报, 2004, 25(1): 102~108.
    [228] Meth R. Target/shadow segmentation and aspect estimation in synthetic aperture radar imagery [C]. SPIE, 3370, 1998: 188~196.
    [229]张翠,邹涛,王正志,等.一种基于目标主导边界的方位角估计算法[J].模式识别与人工智能, 2004, 17(4): 462~466.
    [230] Dudgeon D E, Lacoss R T, Lazott, et al. Use of persistent scatterers for model-based recognition [C]. SPIE, 2230, 1994: 356~368.
    [231] Rigoutsos I. A Bayesian approach to model matching with geometric hashing [J]. Computer Vision and Image Understanding, 1995, 62(1): 11~26.
    [232] Lifshits M, Blayvas I, Goldenberg R, et al. Rehashing for Bayesian geometric hashing [C]. Proceedings of the 17th International Conference on Pattern Recognition, 2004, 3: 99~102.
    [233] Umeyama S. Least-squares estimation of transformation parameters between two point patterns [J]. IEEE Trans on PAMI, 1991, 13(4): 376~380.
    [234]吴樊,王超,张红,等.基于知识的中高分辨率光学卫星遥感影像桥梁目标识别研究[J].电子与信息学报, 2006, 28(4): 587~591.
    [235]赵晖.王文光,孙进平,等.基于知识的SAR图像目标检测[J].系统工程与电子技术, 2009, 31(6): 1314~1318.
    [236] Kuttikkad S, Phillips W, Marni S M, et al. Use of context for false alarm reduction in SAR automatic target recognition [C]. DARPA Image Understanding Workshop, 1997: 1091~1104.
    [237]孙即祥.现代模式识别[M].长沙:国防科学技术大学出版社, 2002: 14~17.
    [238] Jackson J A, Mosed R L. Feature extraction algorithm for 3D scene modeling and visualization using monostatic SAR [C]. SPIE, 6237, 2006:
    [239] Jackson J A, Mosed R L Identifiability of 3D attributed scattering features from sparse nonlinear apertures [C]. SPIE, 6568, 2007: 65680R-1~65680R-12.
    [240] Ertin E, Potter L C. Polarimetric classification of scattering centers using M-ary Bayesian decision rules [J]. IEEE Trans on AES, 2000, 36(3): 738~749.
    [241] Margarit G, Mallorqui J J. Exploitation of ship scattering in polarimetric SAR for an improved classification under high clutter conditions [J]. IEEE Trans on GRS, 2009, 47(4): 1224~1235.
    [242] Margarit G, Mallorqui J J, Pipia L. Polarimetric characterization and temporal stability analysis of urban target scattering [J]. IEEE Trans on GRS, 2010, 48(4): 2038~2048.
    [243] Ravichandran B, Gandhe A, Smith R E. XCS for robust automatic target recognition [C]. Proceedings of the Conference on Genetic and Evolutionary Computation, 2005: 1803~1810.
    [244] Ravichandran B, Gandhe A, Smith R, et al. Robust automatic target recognition using learning classifier systems [J]. Information Fusion, 2007, 8(3): 252~265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700