基于分数傅立叶变换的混合载波通信系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前无线通信过程中,电磁环境越来越恶劣,信道衰落、多径干扰、多用户干扰等均对通信质量产生严重的影响。干扰是一个通信过程中不可回避的问题,如何有效地抵抗干扰也是研究人员的关注点。
     传统的傅立叶变换信号处理手段,建立了一种信号时域与频域的联系,但仍采用相对独立的时域或频域方式观察信号,具有一定的局限性。为了有效地抑制干扰,研究人员提出了一系列时域与频域联合的信号处理方法,分数傅立叶变换(fractional Fourier transform, FRFT)即为其中一种。分数傅立叶变换是对傅立叶变换特征值分数化的结果,主要包含以Chirp信号作为正交基函数的Chirp类分数傅立叶变换(Chirp-type fractional Fourier transform, CFRFT)和加权分数傅立叶变换(weighted-type fractional Fourier transform, WFRFT)。其中,Chirp类分数傅立叶变换已经在通信系统干扰抑制方面得到了一定的应用,而加权分数傅立叶变换仍多数停留在理论研究阶段,应用处于起步阶段。
     本文以无线通信中存在的多径干扰、多用户干扰、单频干扰等干扰形式作为着眼点,尝试采用分数傅立叶变换、频域均衡、码序列设计等物理层技术加强系统的抗干扰能力。WFRFT可以看作同时包含单载波(single carrier, SC)、多载波(multi-carrier, MC)的混合载波(hybrid carrier, HC)体制调制过程,其具有时频对称的特点。基于WFRFT的混合载波系统信号能量分布在时频平面上与现有的单载波和多载波系统相比更加均匀。本文将WFRFT与码分多址(codedivision multiple access, CDMA)相结合,提出混合载波CDMA联合传输方法。HC-CDMA传输方法中在某阶分数傅立叶变换域进行序列扩展后采用WFRFT将信号变换到时域传输,传输信号均具有混合载波的特征,同时序列扩展进一步起到了符号能量平均化的作用。在这样的条件下,干扰能量被平均分配到更多的码片上,从而起到对多径干扰及单频干扰的抵抗作用。而信道衰落对扩频序列正交性的破坏将导致多用户干扰,为了抑制这种干扰并兼顾混合载波的特性,提出在时域进行序列扩展的HC-DS-CDMA方法。
     未来通信系统中,与现有通信技术的兼容与融合是一个重要的需求。所提出方法不仅可以与现有的单载波或多载波方法兼容,而且可以实现无缝转换,通过对HC-CDMA方法中变换参数的选择可以实现与现有的单载波CDMA(SC-CDMA)及多载波CDMA(MC-CDMA)的转换。同时本文对HC-CDMA与其它物理层技术的融合进行了探讨,就HC-CDMA方法与现有的多天线技术及端到端(Device-to-Device, D2D)直接通信的结合方式进行了尝试。在HC-CDMA与多天线结合的方面,在由于多径引起的频率选择性衰落信道下均取得了较好的系统误码性能。而在端到端直通技术方面,HC-CDMA传输方法面对更为实际和复杂的干扰环境仍表现出优异的抗干扰能力。
     多用户干扰是无线通信中的一种常见干扰,尤其在CDMA系统中,扩频序列的选择对系统性能具有决定性的影响。为了抵抗系统中的多用户干扰,本文提出一种灵活的多电平序列设计方法。从传统的时域入手,针对同步及非同步场景设计多电平序列,进而将上述设计方法引入到基于WFRFT的通信系统中,结合信道条件和均衡技术设计序列,使之更适应实际通信环境。而发送信号的峰均比(peak-to-average power rate, PAPR)直接影响发送设备的功率放大器的效率及寿命,在多载波系统中更是制约其发展的重要因素。作为与多载波系统兼容的混合载波系统尽管其PAPR数值较小,但仍存在进一步降低的可能。本文对HC-CDMA传输方法中的峰均比问题进行了研究,并提出一种采用多电平序列设计降低PAPR的方法。
     Chirp信号是一种典型宽带信号,是IEEE802.15.4标准推荐采用的载波信号。Chirp信号是Chirp类分数傅立叶变换的基函数,而Chirp类分数傅立叶变换可以理解为信号在时频平面的旋转,在特定阶数的分数傅立叶变换域上Chirp信号表现为能量聚集的特性,可以形成一个冲激。基于上述特性,采用CFRFT抵抗Chirp干扰具有先天优势。本文分析了时域有限的Chirp信号在分数域上幅度谱对称的特性,并基于此提出一种分数域谱置换修正的方法抵抗这种宽带干扰。通过对这种分数域的谱修正方法可以有效地利用信号的相位信息,与简单的分数域窄带滤波相比,受干扰信号的失真更小,干扰抑制效果更好,系统误码性能更优。同时,研究通信系统抵抗Chirp干扰的方法也为现有系统与基于Chirp信号的通信系统的兼容提供了保障。
In the current wireless communication system, the electromagnetic environment isbecoming worse, and the interference, such as channel fading, multipath interfercence,multiple access interference, has serious impact on the communication quality. Thereforeinterference is a evasive problem. And how to resit the interference is a research hot topic.
     The traditional Fourier transform can be seen as a signal processing method, whichbuilds a relationship between the time domain and frequency domain. However, it islimited to observe the signal in the time or frequency domain independently. While thejoint time-frequency methods are more effective to suppress the interference, comparingto the traditional Fourier transform. And fractional Fourier transform (FRFT) is one ofthese methods. FRFT is a generalization of Fourier transform by eigenvalues fraction-alization, and it mainly contains Chirp-type fractional Fourier transform (CFRFT) withChirp signal as orthogonal basis function and weighted-type fractional Fourier transform(WFRFT). CFRFT has been adopted for interference suppression in the communicationsystems. While WFRFT is still mainly in the stage of theoretical research and the initialapplication stage.
     The thesis focuses on the influences of multipath interference, multiple access inter-ference, single frequency interference and other interferences in the wireless communi-cation system, and adopts FRFT, frequency domain equalization, code sequence designto enhance the system anti-interference ability. In these approaches, WFRFT can be un-derstood as a hybrid carrier (HC) scheme combining single carrier (SC) and multi-carrier(MC) schemes. In the HC system signal energy is distributed more uniformly and evenlyin the time-frequency plane. The transmission schemes combing hybrid carrier and codedivision multiple access (CDMA) are proposed in this thesis. Spreading is applied in acertain fractional Fourier transform domain, and the HC characteristic of SC and MC in-tegration is achieved by the WFRFT. Then the data are transformed to the time domainby the WFRFT. By spreading in the fractional domain, the data symbol is distributed inthe time-frequency domain simultaneously. Meanwhile, the interference is averaged tomore chips to achieve the resistance against single frequency and multipath interferences.However, the orthogonality of spreading sequence is destroyed by channel frequency se- lectivity, resulting in multi-user interference. In order to resist this interference, takinginto account the HC characteristic, HC-DS-CDMA scheme using time domain spreadingis proposed.
     Convergence of the existing techniques in a common platform will be a main featurefor future wireless systems. The proposed systems can not only provide the compatibilitywith single carrier and multi-carrier systems, but also achieve a smooth and seamless tran-sition between the two. The proposed system can switch to single carrier or multi-carrierscheme under the specific conditions. At the same time the combination of HC-CDMAapproach with other physical layer techniques are further discussed. And HC-CDMA isadopted in the existing multi-antenna and Device-to-Device (D2D) communication sys-tems. In the former system, HC scheme obtains the outstanding performance in the fre-quency selective channel. And in the latter system, HC-CDMA transmission scheme stillexhibits great anti-interference ability in the face of more real and complex interferenceenvironment.
     Multi-user interference is a common interference in the wireless communication sys-tems, especially in the CDMA system, and the spreading sequence selection is a decisivefactor on system performance. A flexible multi-level sequence design method is pro-posed in order to resist multi-user interference. The multi-level sequence design methodis applied in the traditional time domain synchronous and asynchronous systems. Thenit is extended to the HC system based on the WFRFT, considering channel conditionand equalization technique, and the method is more suitable to the real communicationscene. Peak-to-average ratio (PAPR) directly influences the transmitter power amplifierefficiency and service life. In the MC system it is an important restricting factor. HC sys-tem is compatible with MC system, and its PAPR value is smaller. However, the PAPRin HC system can be further reduced. The PAPR problem is analyzed in HC-CDMAtransmission scheme, and a multi-level sequence design method is adopted to reduce it.
     Chirp signal is a typical broadband signal, and it is also used as carrier signal adoptedin IEEE802.15.4. Chirp is the orthogonal basis function of Chirp-type fractional Fouriertransform, and CFRFT can be considered as an angle rotation in the time-frequency plane.In a specific order fractional Fourier transform domain Chirp signal has the property ofenergy concentration, and it forms a peak. Based on this property, CFRFT is thought tohave the potential superiority to resist Chirp interference. The symmetrical property of time-limited Chirp signal in the fractional Fourier transform domain is analyzed in thethesis, and a interference suppression method is proposed. In the method the spectrumin the interference existing band is displaced and corrected. By the correction, the phaseinformation is utilized effectively, and compared to the simple narrow band filtering inthe fractional domain, the distortion of the carrier signal is smaller, resulting in bettersuppression effect and bit error rate (BER) performance. Meanwhile Chirp interferencesuppression is also provides a guarantee at the compatibility of existing system and othersystem using Chirp signals.
引文
1魏安全.循环平稳理论在复杂无线通信环境中应用的研究[D]东南大学,2009:1-2.
    2T. Zhao, H. Zhao, Y. Zhao, et al. A Frequency-domain Estimation Scheme forSingle-tone Interference in OFDM Systems[C]//proceedings of3rd InternationalConference on Communications and Mobile Computing.2011:409–412.
    3F. Pancaldi, G. Vitetta, R. Kalbasi, et al. Single-carrier Frequency Domain Equal-ization[J]. IEEE Signal Processing Magazine,2008,25(5):37–56.
    4Q. Yu, W. Meng, B. Liu, et al. Application of Cyclic Delay Transmit Diversityto Uplink2-dimensional Block Spread CDMA with Frequency-domain Equaliza-tion[C]//2009IEEE20th International Symposium on Personal, Indoor and MobileRadio Communications.2009:1742–1746.
    5M. Ahmed, J. Khalid, K. Noori, et al. Bit Error Rate Comparison of OFDM andMC-CDMA Systems[C]//International Conference on Computer Science and In-formation Technology, ICCSIT’08.2008:665–668.
    6Q. Yang, H. Shi, Z. Han. Analysis of BER for MC-CDMA with Effect of Multi-path[C]//8th International Conference on Electronic Measurement and Instruments,ICEMI’07.2007:2–136–2–140.
    7Y. Feng. Ber Performance of MC-CDMA Systems with MMSE in Nakagami-mFading[C]//20103rd IEEE International Conference on Broadband Network andMultimedia Technology, IC-BNMT.2010:398–402.
    8M. Cooper, S. Armour, Y. Bian, et al. Comparison of Equalisation Strategies forMulti-carrier CDMA[C]//2003IEEE International Conference on Consumer Elec-tronics, ICCE2003.2003:298–299.
    9K. Zhang, Y. L. Guan, Q. Shi. Complexity Reduction for MC-CDMA with MM-SEC[J]. IEEE Transactions on Vehicular Technology,2008,57(3):1989–1993.
    10P. Singh, R. Kumar, T. Lamba. Performance Analysis of MC-CDMA System inMultipath Fading Channel[C]//2006IFIP International Conference on Wireless andOptical Communications Networks.2006.
    11R. Khan, A. Hossain, R. Islam, et al. SINR Performance of Multicarrier CDMASystem in Frequency-selective Rayleigh Fading Channels[C]//International Confer-ence on Information and Communication Technology, ICICT’07.2007:201–204.
    12K. Baum, T. Thomas, F. Vook, et al. Cyclic-prefix CDMA: An Improved Transmis-sion Method for Broadband DS-CDMA Cellular Systems[C]//2002IEEE WirelessCommunications and Networking Conference, WCNC2002.2002,1:183–188.
    13L. Liu, Y. L. Guan, G. Bi, et al. Effect of Carrier Frequency Offset on Single-carrierCDMA with Frequency-domain Equalization[J]. IEEE Transactions on VehicularTechnology,2011,60(1):174–184.
    14L. Cao, G. Xu, X. Zhang, et al. Partial Parallel Interference Cancellation withFrequency Domain Equalization for Cyclic-prefix CDMA Downlink[C]//IEEE18thInternational Symposium on Personal, Indoor and Mobile Radio Communications,PIMRC2007.2007:1–5.
    15F. Horlin, E. Estraviz-Lopez, L. Van der Perre. STBC for Uplink Single-carrierCDMA with Equalization in the Frequency Domain[C]//IEEE Global Telecommu-nications Conference, GLOBECOM’05.2005,5:3154–3158.
    16B. Popovic. Spreading Sequences for Multicarrier CDMA Systems[J]. IEEE Trans-actions on Communications,1999,47(6):918–926.
    17H.-H. Chen, S.-W. Chu, M. Guizani. On Next Generation CDMA Technologies:The Real Approach for Perfect Orthogonal Code Generation[J]. IEEE Transactionson Vehicular Technology,2008,57(5):2822–2833.
    18M. Magaa, T. Rajatasereekul, D. Hank, et al. Design of an MC-CDMA SystemThat Uses Complete Complementary Orthogonal Spreading Codes[J]. IEEE Trans-actions on Vehicular Technology,2007,56(5):2976–2989.
    19H. Agirman-Tosun, A. Akansu. Continuous Phase Modulation for Multi-levelSpreading Codes in CDMA Communications[C]//2008IEEE Sarnoff Symposium.2008:1–5.
    20R. Abimoussa, R. Landry. Anti-jamming Solution to Narrowband CDMA Inter-ference Problem[C]//2000Canadian Conference on Electrical and Computer Engi-neering.2000,2:1057–1062.
    21X.-Y. Xu, Y. Shang, H.-G. Xiang. Expanded Time-frequency OFDM and its In-terference Suppression Techniques[C]//International Conference on Ultra ModernTelecommunications Workshops, ICUMT’09.2009:1–5.
    22N. Wiener. Hermitian Polynomials and Fourier Analysis[J]. Journal of MathematicsPhysics MIT,1929,18:70–73.23陶然,邓兵,王越.分数阶傅里叶变换及其应用[M].清华大学出版社,2009:1–2.
    24E. U. Condon. Immersion of the Fourier Transform in a Continuous Group ofFunctional Transformations[C]//Proceedings of the National Academy of Sciencesof the United States of America.1937,23:158–164.
    25V. Bargmann. On a Hilbert Space of Analytic Functions and an Associated IntegralTransform Part I[J]. Communications on Pure and Applied Mathematics,1961,14(3):187–214.
    26V. Namias. The Fractional Order Fourier Transform and its Application to QuantumMechanics[J]. IMA Journal of Applied Mathematics,1980,25(3):241–265.
    27A. C. Mcbride, F. H. K. Kerr. On Namias’s Fractional Fourier Transforms[J]. IMAJournal of Applied Mathematics,1987,39(2):159–175.
    28C. C. Shih. Fractionalization of Fourier Transform[J]. Optics Communications,1995,118(5-6):495–498.
    29S. Liu, J. Zhang, Y. Zhang. Properties of the Fractionalization of a Fourier Trans-form[J]. Optics Communications,1997,133:50–54.
    30B. H. Zhu, S. T. Liu, Q. W. Ran. Optical Image Encryption Based on MultifractionalFourier Transforms[J]. Optics Letters,2000,25(16):1159–1161.
    31Q. Ran, D. Yeung, E. Tsang, et al. General Multifractional Fourier TransformMethod Based on the Generalized Permutation Matrix Group[J]. IEEE Transac-tions on Signal Processing,2005,53(1):83–98.
    32陶然,齐林,王越.分数阶Fourier变换的原理与应用[M].清华大学出版社,2004:2–7.
    33S. Aromaa, P. Henttu, M. Juntti. Comparative Study of Time-frequency Analy-sis Based Interference Suppression Methods in DS-SS Communications[C]//2004IEEE59th Vehicular Technology Conference, VTC2004-Spring.2004,3:1674–1677.
    34X. Q. Qiao, J. Qiao, T. Liang. Suppression of LFM Interference for DSSS Commu-nication System Based on Frft[C]//2011International Conference on Electronics,Communications and Control (ICECC).2011:1068–1071.
    35齐林,陶然,周思永,等. DSSS系统中基于分数阶傅立叶变换的扫频干扰抑制算法[J].电子学报,2004,32(5):799–802.
    36Y. Hou, W. Guo, X. Li. Design of a GPS Receiver for the Linear Frequency Modu-lation Interference Suppression[C]//International Conference on Communications,Circuits and Systems, ICCCAS.2009:454–456.
    37刘鑫,谭学治.基于分数傅里叶变换的认知无线电抗干扰系统[J].华南理工大学学报,2010,38(1):44–48.
    38K. Huang, R. Tao. Interference Suppression in Spread Spectrum Systems Usingthe CR-fractional Fourier Transform[C]//2010First International Conference onPervasive Computing Signal Processing and Applications (PCSPA).2010:560–563.
    39B. Deng, R. Tao, E. Chen. A Novel Method for Binary Chirp-Rate Modulation andDemodulation[C]//20068th International Conference on Signal Processing, ICSP2006.2006,3:1–4.
    40H. Lakshminarayana, J. Bhat, B. Jagadale, et al. Improved Chirp ModulationSpread Spectrum Receiver Based on Fractional Fourier Transform for Multiple Ac-cess[C]//2009International Conference on Signal Processing Systems.2009:282–286.
    41X.-Y. Ning, X.-J. Sha, L. Mei. A Narrowband Interference Suppression Methodin Cognitive Ultra-wide Band Radio[C]//Canadian Conference on Electrical andComputer Engineering, CCECE’09.2009:455–458.
    42H. K. Wu, W. Z. Yu, T. Ran. Study of Incoherent Demodulation Technique in ChirpSpread Spectrum Communication Systems[C]//20089th International Conferenceon Signal Processing, ICSP2008.2008:1926–1929.
    43Y. Chen, H. Hu. Gray Image Watermark Algorithm in Integer Wavelet TransformDomain[C]//2010International Conference on Electrical and Control Engineering(ICECE).2010:1096–1099.
    44M. Goodwin. Realization of Arbitrary Filters in the STFT Domain[C]//IEEE Work-shop on Applications of Signal Processing to Audio and Acoustics, WASPAA’09.2009:353–356.
    45张晓林,郭黎利.直扩通信中窄带干扰抑制的边带相关置换算法[J].电子与信息学报,2008,30(1):86–88.
    46张晓林,郭黎利,国强,等.高斯噪声与窄带干扰同时抑制技术[J].北京邮电大学学报,2009,32(4):86–89.
    47J. Lang, R. Tao, Y. Wang. The Generalized Weighted Fractional Fourier Transformand its Application to Image Encryption[C]//2nd International Congress on Imageand Signal Processing,2009.2009:1–5.
    48Y. Xiao, H. Zhang, Q. Ran, et al. Image Encryption and Two Dimensional DiscreteM-parameter Fractional Fourier Transform[C]//2nd International Congress on Im-age and Signal Processing, CISP’09.2009:1–4.
    49J. Lang. The Multiple-parameter Weighted Fractional Fourier Transform and itsApplication to Image Encryption[C]//20114th International Congress on Imageand Signal Processing (CISP).2011,4:1779–1783.
    50L. Mei, X. Sha, Q. Ran, et al. Research on the Application of4-weighted FractionalFourier Transform in Communication System[J]. Science China: Information Sci-ences,2010,40(5):732–741.
    51B. Ding, L. Mei, X. Sha. Secure Communication System Based on Alterable-parameter4-weighted Fractional Fourier Transform[J]. Information TechnologyJournal,2010,9(1):158–163.
    52T. Li, L. Mei, X. Wu, et al. Anti-interception Communication System Based onDouble Layers Weighted-type Fractional Fourier Transform[C]//20116th Interna-tional ICST Conference on Communications and Networking in China (CHINA-COM).2011:88–92.
    53沙学军,梅林,叶嘉星,等.基于多参数四项加权分数傅立叶变换的通信加密和解密方法[P], ZL200810136939.5,2008.
    54梅林,沙学军,张乃通.加权分数傅立叶变换通信系统抗参数扫描及星座分裂性能分析[J].云南民族大学学报(自然科学版),2011,20(5):361–366.
    55詹宗超.基于加权分数傅立叶变换的通信系统抗截获性能研究[D]哈尔滨工业大学,2010:24-43.
    56H. Feng, L. Mei, X. Sha, et al. Modulation Recognition for Hybrid Carrier SchemeBased on Weighted-type Fractional Fourier Transform[C]//20116th InternationalICST Conference on Communications and Networking in China (CHINACOM).2011:381–383.
    57冯红.加权类分数傅里叶变换信号的抗截获性能分析[D]哈尔滨工业大学,2011:33-44.
    58沙学军,梅林,张钦宇,等.一种利用一般信号序列隐藏[P],201010300718.4,2010.
    59L. Mei, X. Sha, N. Zhang. Covert Communication Based on Waveform Overlaywith Weighted Fractional Fourier Transform Signals[C]//2010IEEE InternationalConference on Wireless Communications, Networking and Information Security(WCNIS).2010:472–475.
    60S. Keshari, S. Modani. Weighted Fractional Fourier Transform Based ImageSteganography[C]//2011International Conference on Recent Trends in Informa-tion Systems (ReTIS).2011:214–217.
    61L. Mei, X. jun Sha, N. tong Zhang. The Approach to Carrier Scheme ConvergenceBased on4-weighted Fractional Fourier Transform[J]. IEEE Communications Let-ters,2010,14(6):503–505.
    62T. Li, X. Wu, L. Mei, et al. Performance Analysis of4-WFRFT Based CarrierModulations under Burst Interference[C]//International Conference on EngineeringMaterials, Energy, Management and Control.2011.
    63K. Wang, X. Sha, L. Mei. On Interference Suppression in Doubly-Dispersive Chan-nels with Hybrid Single-Multi Carrier Modulation and an MMSE Iterative Equal-izer[J]. IEEE Wireless Communications Letters,2012,1(5):504–507.
    64K. Wang, X. Sha, L. Mei, et al. Performance Analysis of Hybrid Carrier Systemwith MMSE Equalization Over Doubly-Dispersive Channels[J]. IEEE Communi-cations Letters,2012,16(7):1048–1051.
    65史军,迟永刚,沙学军,等.加权分数傅里叶变换在采样重构中的应用[J].通信学报,2010,31(4):88–93.
    66Q.-W. Ran, H. Zhao, G.-X. Ge, et al. Sampling Analysis in Weighted FractionalFourier Transform Domain[C]//International Joint Conference on ComputationalSciences and Optimization, CSO2009.2009,1:878–881.
    67L. Mei, Q. Y. Zhang, X. J. Sha, et al. Digital Computation of the Weighted-typeFractional Fourier Transform[J]. Science of China: Information Sciences,2013,(2):Online First: http://link.springer.com/article/10.1007
    68W. Yulong, S. Xuejun, M. Lin, et al. Wavefrom Design in Doubly DispersiveChannel[C]//2011First International Conference on Instrumentation, Measure-ment, Computer, Communication and Control.2011:609–614.
    69[法]约瑟夫.傅立叶著.热的解析理论[M].桂质亮译.武汉出版社,1993: vii-ix.
    70J. W. Cooley, J. W. Tukey. An Algorithm for the Machine Calculation of ComplexFourier Series[J]. Mathematics of Computation,1965,19(90):297–301.
    71王黎黎.基于希尔伯特-黄变换的时频分析算法研究[D]西安电子科技大学,2009:1-2.
    72张贤达,保铮.非平稳信号分析与处理[M].国防工业出版社,1998:1-13.
    73A. Kutay, H. Ozaktas, O. Ankan, et al. Optimal Filtering in Fractional FourierDomains[J]. IEEE Transactions on Signal Processing,1997,45(5):1129–1143.
    74M. Erden, M. Kutay, H. Ozaktas. Repeated Filtering in Consecutive FractionalFourier Domains and its Application to Signal Restoration[J]. IEEE Transactionson Signal Processing,1999,47(5):1458–1462.
    75B. Borden. On the Fractional Wideband and Narrowband Ambiguity Function inRadar and Sonar[J]. IEEE Signal Processing Letters,2006,13(9):545–548.
    76L. Qi, R. Tao, S. Zhou. Rejection of Linear FM Interference in DSSS System Basedon Fractional Fourier Transform[J]. Journal of Beijing Institute of Technology,2005,14(2):158–161.
    77F. Yu, Z. Zhang, M. Xu. A Digital Watermarking Algorithm for Image Based onFractional Fourier Transform[C]//1ST IEEE Conference on Industrial Electronicsand Applications.2006:1–5.
    78吴晓涛.基于分数阶傅里叶变换的信道估计算法研究[D]哈尔滨工业大学,2010:21-47.
    79X. Y. Ning, L. L. Guo, X. J. Sha. Joint Time Delay and Frequency Offset EstimationBased on Fractional Fourier Transform[C]//2012International Conference on ICTConvergence (ICTC).2012:318–322.
    80X. Y. Ning, L. L. Guo, Z. G. Sun, et al. A Novel Channel Multiplexing SchemeBased on Fractional Fourier Transform[C]//2012Second International Conferenceon Instrumentation, Measurement, Computer, Communication and Control (IM-CCC).2012:1485–1489.
    81邓兵,王旭,何友,等. Chirp脉冲的分数阶傅里叶域测距[J].航空学报,2012,33(10):1915–1922.
    82宁晓燕.基于分数傅立叶变换的脉冲超宽带系统研究[D]哈尔滨工业大学,2011:11-18.
    83H. M. Ozaktas, Z. Zalevsky, M. A. Kutay. The Fractional Fourier Transformwith Application in Optics and Signal Processing[M]. John Wiley&Sons Ltd.,2000:117–183.
    84H. Ozaktas, O. Arikan, M. Kutay, et al. Digital Computation of the FractionalFourier Transform[J]. IEEE Transactions on Signal Processing,1996,44(9):2141–2150.
    85S.-C. Pei, M.-H. Yeh, C.-C. Tseng. Discrete Fractional Fourier Transform Basedon Orthogonal Projections[J]. IEEE Transactions on Signal Processing,1999,47(5):1335–1348.
    86温容慧,沙学军,郭佩. Chirp信号与连续载波信号的多路复用传输[J].华南理工大学学报(自然科学版),2009,37(10):16–19,24.
    87张海莹.加权酉变换类及其在光学图像加密中的应用[D]哈尔滨工业大学,2010:9-29.
    88R. Tao, J. Lang, Y. Wang. Optical Image Encryption Based on the Multiple-parameter Fractional Fourier Transform[J]. Optics Letters,2008,33(6):581–583.
    89田达.非平稳信号阵列多参量估计技术研究[D]电子科技大学,2004:17-18.
    90G. Chen, Y. Zhu, K. Letaief. Combined MMSE-FDE and Interference Cancellationfor Uplink SC-FDMA with Carrier Frequency Offsets[C]//2010IEEE InternationalConference on Communications, ICC2010.2010:1–5.
    91D. Martin-Sacristan, J. F. Monserrat, J. Cabrejas-Penuelas, et al. On the Way To-wards Fourth-generation Mobile:3GPP LTE and LTE-Advanced[J]. EURASIPJournal on Wireless Communications and Networking,2009.
    92K. Fazel. Performance of CDMA/OFDM for Mobile Communication Sys-tem[C]//Proceeding of IEEE International Conference on Universal Personal Com-munications, Canada.1993,2:975–979.
    93F. Adachi, D. Garg, S. Takaoka, et al. Broadband CDMA Techniques[J]. IEEEWireless Communications,2005,12(2):8–18.
    94J.-D. Chen, F.-B. Ueng, J.-C. Chang, et al. Performance Analyses ofOFDM–CDMA Receivers in Multipath Fading Channels[J]. IEEE Transactionson Vehicular Technology,2009,58(9):4805–4818.
    95K. Fazel, S. Kaiser. Multi-carrier and Spread Spectrum Systems: From OFDM andMC-CDMA to LTE and WiMAX (second Edition)[M]. John Wiley&Sons Ltd,United Kingdom,2008:47–49.
    96L. He, C. Deng. Broadband Wireless Communication Systems Based on MC DS-CDMA[C]//Asia-Pacific Conference Proceedings of Microwave Conference Pro-ceedings, APMC2005.2005,1.
    97梅林.加权类分数傅立叶变换及其在通信系统中的应用[D]哈尔滨工业大学,2010:56-66,114-119.
    98H. Schulze, C. Luders. Theory and Applications of OFDM and CDMA[M]. JohnWiley&Sons Ltd, United Kingdom,2005:268-269.
    99X. M. Peng, A. S. Madhukumar, F. P. S. Chin. Performance Studies of InterleavingSchemes for MC-CDMA Systems[C]//IEEE Wireless Communications and Net-working Conference, WCNC2004.2004,4:2081–2086.
    100L. Mei, X. Sha, Q. Zhang, et al. The Concepts of Hybrid-carrier Scheme Commu-nication System[C]//20116th International ICST Conference on Communicationsand Networking in China (CHINACOM).2011:26–33.
    101N. Y. Yu. A Theoretical Study of Peak-to-average Power Ratio in Reed-mullerCoded Multicarrier CDMA[C]//44th Annual Conference on Information Sciencesand Systems (CISS).2010:1–6.
    102M.-H. Cho, S.-J. Lee, J. Jin, et al. A Study on the PAPR Using Variable Code Sets(VCS) in Multi-user MC-CDMA System[C]//2004IEEE60th Vehicular Technol-ogy Conference, VTC2004-Fall.2004,5:3448–3451.
    103E. Alsusa, L. Yang. MC-CDMA Specific PAPR Reduction Technique UtilisingSpreading Code Redistribution[C]//2006IEEE64th Vehicular Technology Confer-ence, VTC-2006Fall.2006:1–5.
    104Y. Zhang, Q. Ni, H.-H. Chen, et al. An Intelligent Genetic Algorithm for PAPRReduction in a Multi-carrier CDMA Wireless System[C]//International WirelessCommunications and Mobile Computing Conference, IWCMC’08.2008:1052–1057.
    105L. Mei, X. Sha, N. Zhang. PAPR of Hybrid Carrier Scheme Based on Weighted-type Fractional Fourier Transform[C]//20116th International ICST Conference onCommunications and Networking in China (CHINACOM).2011:237–240.
    106A. Ling, L. Milstein. Trade-off between Diversity and Channel Estimation Errorsin Asynchronous MC-DS-CDMA and MC-CDMA[J]. IEEE Transactions on Com-munications,2008,56(4):584–597.
    107A. Lodhi, F. Said, M. Dohler, et al. Performance Comparison of Space-time BlockCoded and Cyclic Delay Diversity MC-CDMA Systems[J]. IEEE Wireless Com-munications,2005,12(2):38–45.
    108A. Phasouliotis, D. So. Performance Analysis and Comparison of Downlink MIMOMC-CDMA and MIMO OFDMA Systems[C]//IEEE69th Vehicular TechnologyConference, VTC Spring2009.2009:1–6.
    109H. Min, J. Lee, S. Park, et al. Capacity Enhancement Using an Interference Lim-ited Area for Device-to-device Uplink Underlaying Cellular Networks[J]. IEEETransactions on Wireless Communications,2011,10(12):3995–4000.
    110S. Phrompichai, P. Yuvapoositanon. A Chip Semiblind Receiver for STBC Down-link MC-CDMA Systems without Cyclic Prefix[C]//50th Midwest Symposium onCircuits and Systems, MWSCAS2007.2007:333–336.
    111J. Han, Y. Paichard. Performance Analysis for MIMO MC-CDMA Systems withImperfect Channel Estimation[C]//International Conference on Wireless Commu-nications Signal Processing, WCSP2009.2009:1–4.
    112S. Kaiser. Space Frequency Block Coding in the Uplink of Broadband MC-CDMAMobile Radio Systems with Pre-equalization[C]//2003IEEE58th Vehicular Tech-nology Conference, VTC2003-Fall.2003,3:1757–1761.
    113H. Yuan, X. Hu, Y. Ling. Design and Simulation of Baseband Transceiver SystemBased on STBC-OFDM[C]//3rd IEEE Conference on Industrial Electronics andApplications, ICIEA2008.2008:2400–2405.
    114M. Torabi, S. Aissa, M. Soleymani. On the BER Performance of Space-frequencyBlock Coded OFDM Systems in Fading MIMO Channels[J]. IEEE Transactionson Wireless Communications,2007,6(4):1366–1373.
    115C.-L. Wang, P.-C. Shen. An Energy-efficient Cooperative SFBC-OFDM SystemUsing Subcarrier Permutation[C]//2010IEEE71stVehicular Technology Confer-ence, VTC2010-Spring.2010:1–5.
    116樊凌雁.无线频选衰落信道下自适应处理技术的研究[D]上海交通大学,2007:25-27.
    117战金龙. MIMO-OFDM系统新型发射分集方法研究[D]西安电子科技大学,2007:31-33.
    118罗明超,刘友安. OFDM短波信道的建模与仿真[C]//The2011Asia-PacificYouth Conference of Youth Communication and Technology.2011:77–80.
    119P. Janis, V. Koivunen, C. Ribeiro, et al. Interference-aware Resource Allocation forDevice-to-device Radio Underlaying Cellular Networks[C]//IEEE69th VehicularTechnology Conference, VTC Spring2009.2009:1–5.
    120K. Doppler, C.-H. Yu, C. B. Ribeiro, et al. Mode Selection for Device-To-DeviceCommunication Underlaying an LTE-Advanced Network[C]//2010IEEE WirelessCommunications and Networking Conference, WCNC2010.2010:1–6.
    121S. Xu, H. Wang, T. Chen. Effective Interference Cancellation Mechanisms forD2d Communication in Multi-cell Cellular Networks[C]//2012IEEE75th Vehicu-lar Technology Conference (VTC Spring).2012:1–5.
    122J. Deng, H. Zhao. LFM Interference Excision Based on FRFT of PRPPM-PRBCCompound Fuze System[C]//Global Symposium on Millimeter Waves.2008:329–331.
    123Q. Zhao, Q. Zhang, N. Zhang. Research on Chirp Interference Suppression Basedon Fractional Fourier Transform[C]//20116th International ICST Conference onCommunications and Networking in China (CHINACOM).2011:93–97.
    124宁晓燕,沙学军,邱昕,等.基于多域联合的脉冲超宽带多址技术[J].哈尔滨工业大学学报,2008,40(增刊1):89–92.
    125齐林,陶然,周思永,等.基于分数阶傅里叶变换的线性调频信号的自适应时频滤波[J].兵工学报,2003,24(4):499–503.
    126齐林,陶然,周思永,等.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J].中国科学(E辑),2003,33(8):749–759.
    127O. Akay, G. Boudreaux-Bartels. Fractional Autocorrelation and its Applicationto Detection and Estimation of Linear FM Signals[C]//Proceedings of the IEEE-SPInternational Symposium on Time-Frequency and Time-Scale Analysis.1998:213–216.
    128O. Akay, G. Boudreaux-Bartels. Joint Fractional Representations[C]//Proceedingsof the IEEE-SP International Symposium on Time-Frequency and Time-ScaleAnalysis.1998:417–420.
    129P. Wang, J. Yang, Y. Du. A Fast Algorithm for Parameter Estimation of Multi-component LFM Signal at Low SNR[C]//Proceedings of2005International Con-ference on Communications, Circuits and Systems.2005,2:765–768.
    130X. Li, Y.-Y. Jiang. Golden-section Peak Search in Fractional Fourier Do-main[C]//2011International Conference on Electric Information and Control En-gineering (ICEICE).2011:4230–4233.
    131T. Alieva, M. Bastiaans, L. Stankovic. Signal Reconstruction from Two Close Frac-tional Fourier Power Spectra[J]. IEEE Transactions on Signal Processing,2003,51(1):112–123.
    132A. Cetin, H. Ozaktus, H. Ozaktus. Signal Recovery from Partial Fractional FourierTransform Information[C]//First International Symposium on Control, Communi-cations and Signal Processing.2004:217–220.
    133G. Yang, M. Li, L. Zhang. Multi-parameter Estimation of Underwater AcousticChannel Based on Fractional Fourier Transform[C]//International Conference onWireless Communications Signal Processing, WCSP2009.2009:1–5.
    134邬健,郑佳,吴祖国. CDMA伪码序列产生及抗干扰性能分析[J].电子测量,2009,(8):23–26.
    135赖利峰,张朝阳.多电平DSSS信号的盲检测[J].浙江大学学报(工学版),2004,38(2):175–179.
    136Q. Trinh, P. Fan, E. Gabidulin. Multilevel Hadamard Matrices and Zero CorrelationZone Sequences[J]. Electronics Letters,2006,42(13):748–750.
    137Q. K. Trinh, P. Fan, E. Gabidulin, et al. On the Existence of Multilevel HadamardMatrices with Odd Order[C]//3rd International Workshop on Signal Design and ItsApplications in Communications, IWSDA2007.2007:123–127.
    138王靖,李娟,施刚.多址干扰对混沌CDMA通信系统性能的影响[J].长江大学学报(自科版)理工卷,2007,4(3):82–84.
    139G. Gul, A. Vargas, W. Gerstacker, et al. Low Complexity Demapping Algorithmsfor Multilevel Codes[J]. IEEE Transactions on Communications,2011,59(4):998–1008.
    140N. V. Deetzen, W. Henkel. On Code Design for Unequal Error Protection MultilevelCoding[J].20087th International ITG Conference on Source and Channel Coding(SCC),2008:1–4.
    141S. Binti Rosli, F. Ghani, A. Ghani, et al. Synthesis of Finite Length Multi LevelSequences for Clutter Rejection in Radar[C]//2012Fourth International Conferenceon Computational Intelligence, Communication Systems and Networks (CICSyN).2012:273–277.
    142韦岗,陈芳炯.基于遗传算法的盲信道估计新算法[J].电子与信息学报,2002,24(11):1512–1516.
    143徐玉滨,丁哲,沙学军.基于遗传算法的可重配置系统动态规划和管理[J].华南理工大学学报(自然科学版),2010,38(9):13–19.
    144赵知劲,郑仕链,邢国际,等.应用遗传算法的认知无线电自适应参数调整[J].压电与声光,2007,29(1):90–92.
    145葛继科,邱玉辉,吴春明等.遗传算法研究综述[J].计算机应用研究,2008,25(10):2911–2916.
    146X.-J. Sha, R.-H. Wen, X. Qiu. A New Multiple-access Method Based on FractionalFourier Transform[C]//Canadian Conference on Electrical and Computer Engineer-ing, CCECE’09.2009:856–859.
    147田日才.扩频通信[M].清华大学出版社,2007:45–46.
    148R.-H. Wen, X.-J. Sha, X. Qiu. A New Mix-carrier Method Based on FractionalFourier Transform in Asynchronous CDMA System[C]//2010First InternationalConference on Pervasive Computing Signal Processing and Applications (PCSPA).2010:1163–1166.
    149周晓东.无线Ad Hoc网络关键技术的研究[D]西安电子科技大学,2006:34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700