水声综合通信网络关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水声通信对于国防和国民经济建设都有着非常重要的作用。围绕着水声综合通信网络中所涉及的关键技术,在应用盲信号处理理论,OFDM、CDMA及网络通信理论和技术的基础上对水声综合通信网络的关键技术开展了基础性的研究。主要研究内容和成果有:
     (1)提出了水声综合通信网络的结构体系。将整个水声网络分为由一个主节点、若干个子节点和大量的终端构成的有机联系的、相互协调工作的、能提供多种服务的通信系统。提出了主链路、副链路及子链路的概念。描述了主节点管理整个水声通信网络,子节点管理其覆盖区内的终端的管理机制。
     (2)分析了海洋水声信道的特性,并得出了海洋水声信道是一个时空变化的随机信道的结论。可将水声信道分解为稳定多途信道、慢变多途信道和随机多途信道,前两部分信道可通过拷贝相关法和脉冲相关法测量出海洋水声信道,而随机多途信道却无法通过测量方法得到。为提高信息传输的可靠性,就需要采用盲信号处理技术对信道进行盲处理和盲均衡。
     (3)研究了水声信道的盲辨识、盲均衡及OFDM系统的盲辨识技术。建立了子空间盲信道辨识的数学模型,研究了子空间的分解,构造了线性约束条件及二次型约束条件下的盲信道辨识算法,推导出了在二次型约束条件下用少数噪声空间向量辨识信道参数的方法。充分利用了OFDM信号中循环前缀的信息冗余特点,推导出子空间辨识的算法。无需过采样,无需改变OFDM的信号结构,就可通过构造一个简单的Toepltz矩阵对OFDM系统进行盲辨识,且减小了计算量。
     (4)研究了基于MC-CDMA的水声传输链路。提出了扩频与OFDM相结合的水声多用户传输系统的基本原理。用最大似然估计法研究了用一个OFDM块进行定时和频偏估计的问题,提出了快速估计算法。通过仿真实验表明:MC-CDMA在多用户传输方面具有较强的抗噪声性能,尤其在小信噪比下具有较低的误比特性能;同时还表明较少个数的循环前缀就能保证定时估计的精度和载波频率估计的精度。
     (5)探讨了水声多用户检测技术的基本方法。应用MMSE准则,在考虑信道及其相关性的基础上改进了最小均方差多用户检测算法,通过增加了新的线性约束条件,保证了最优MMSE解落在搜索空间中。
     (6)对水声综合通信网络结构体系进行较详细的研究。对节点、终端的作用及功能给予了定义和描述。对基本通信方式、物理信道给予了定义和描述。提出了公共物理信道接入时序原理及规则。定义了数据链路层通信协议的具体的帧格式,同时对数据链路层的“协商-请求-确认-信息传输”通信机制模型进行了详细的数学分析,给出了时隙利用率和公共信道信息传输损失率的公式。
     详细定义和描述了多址转移层中的静态路由管理、动态路由管理的机制和结构。对管理层中的链路管理、带宽管理、认证管理、PN码管理、工况及信息统计也给予了较详细的定义和描述,最后对终端的服务层也给予了定义和描述。
Underwater acoustic communications have very important utilizations for national defense and national economic construction. The key techniques are foundationally researched in key technologies concerned with integrated network of underwater acoustic communications, using the theories of blind signal process, OFDM technology, CDMA technology, and the network communication theory and technology. The main research contents and achievements are as follows:
     (1) The hierarchy structure of integrated network of underwater acoustic communications are proposed. The whole underwater acoustic communication networks (UACN) are consisted of main node, some sub-node and many of terminals, they can provide multi-service by harmonized operating and organic relating each other. The conceptions of main link, vice link and sub-link are proposed. The management mechanism which main node manage whole UACN, sub-node manage terminals in its covering region is described.
     (2) The characters of ocean acoustic channel are analyzed, the conclusion that ocean acoustic channel is a spatio-temporal varying random channel is obtained. The channel of underwater acoustic channel can be decomposed into three components in that the first is stably multi-path channel, the second is slowly varying multi-path channel, and the third is random channel. The first and second channels can be measured by using copy relative method and pulse relative, but the random channel cannot be obtained by measure. It is necessary that use blind process and blind equalization for ocean acoustic channel in order to enhance reliability of information transmission.
     (3) The techniques about blind identification and blind equalization of underwater acoustic channel, and blind identification of OFDM system are studied. The mathematic model of blind identification for channel based on subspace is established, and the decomposition of subspace is also studied. The algorithms of blind identification for channel are constructed under the linear restriction condition and two-order type restriction condition, and method of blind identification for channel is induced using few vectors of noise space under two-order type restriction condition.
     The algorithm of blind identification for OFDM is induced using adequately characters of redundancies information of cycle prefix of OFDM signal. It can be blind identified for OFDM system by constructing a simply Toepltz matrix without over-sample and without changing structure of OFDM signal, the computing quantitative is reduced.
     (4) MC-CDMA underwater acoustic transmission link is studied. The basic principle of multi-user underwater acoustic transmission system is proposed combining with spread frequency technology and OFDM. The issues of frequency deviation estimation and timing estimation are study using maximum likelihood method with one OFDM block, and the quickly estimation algorithm is proposed.
     It is indicated that MC-CDMA has better performance of anti-noise in multi-users transmission; furthermore, has low BER performance under lower SNR by simulation experiment, it is also indicated that a few cycle prefix of OFDM signal can ensure precision of timing estimation and frequency estimation.
     (5) The basic methods of underwater acoustic multi-user detection techniques are discussed. The algorithm of MMSE multi-user detection is improved with considering of channel and its relativity, and that the optimum solution of MMSE for multi-user detection can be guaranteed to converge in searching space by addition new linear constraint condition.
     (6) The hierarchy structure of integrated network of underwater acoustic communication is detailedly studied. The definitions and functions about the node, terminal, basic communication manners, and physical channels are detailedly described, the principle and regulation about accessing time slot of public physical channel. The material formats of communication protocol of data link layer are defined, the model of correspondence mechanism of negotiation-request-acknowledge-information transmission is detailedly mathematically analyzed, and the formulas about utilization ratio of time slot and loss ratio of information transmission are developed.
     The structures and management mechanism of static and dynamic router management of multi-access transfer layer is detailedly defined and described. The link, bandwidth, authentication, PN code, and operation status management are also detailedly defined and described in management layer. Finally, the serve layer of terminal is defined and described.
引文
〔1〕Л.М.布列霍夫斯基(主编),汪德昭(译).海洋声学.北京:科学出版社,1983. 1-10
    〔2〕杨儒贵.电磁场与电磁波.北京:高等教育出版社,2003.184-189
    〔3〕M.Stojanovic. Recent advances in high rate underwater acoustic communications. IEEE J. Oceanic Eng. 1996, 21:125-136
    〔4〕Paul C. Etter,蔡志明(译).水声建模与仿真(第三版).北京:电子工业出版社,2005.17-27
    〔5〕S.Chappell et al. Acoustic communication between two autonomous underwater vehicles. Proc.1994 Symposium on AUV Technology: 1994. 462-469
    〔6〕王海斌.远程水声通信研究.中国科学院声学研究所博士学位论文,2002
    〔7〕卢光瑛,杨世周.水声遥测.北京:海洋出版社,1983
    〔8〕Milica Stojanovic. Underwater acoustic communication. In Proc. Oceans' 95.San Diego, CA, Oct., 1995. 435-440。
    〔9〕艾宇惠.水声数字通信研究.哈尔滨工业大学博士论文,1997
    〔10〕陈庚.海洋声信道自适应匹配实验研究.声学学报,1996, 21(2): 139-148
    〔11〕Zhu Weiqing. Short range underwater acoustic communication system. 14's ICA, Beijing, 1992.10-14
    〔12〕Sang Enfang and Xi Hongyan. High speed data transmission through underwater acoustic channel. SWAC' 97 Beijing, 1997. 579-584
    〔13〕温周斌.一种新的水声通讯体制.声学学报,1993, 18 (5): 345-351
    〔14〕艾宇惠. FSK水声遥控系统.应用声学,1997, 16 (2): 32-36
    〔15〕李霞,桑恩方.空间分集均衡水声通信技术得研究与仿真,哈尔滨工程大学学报,2003, 24(5): 508-512
    〔16〕李霞,陆佶人等.水声通信中的多载波CDMA.,声学技术,2005, 24(4):.202-205
    〔17〕陆佶人等.一种节约能量的水声传感器网络组织结构与协议.电路与系统学报,2005,10(2):16-20
    〔18〕陆佶人等.一种有效的水声通信网络中用于半双工信道的ARQ协议.电路与系统学报,2005,10(3):39-42
    〔19〕W.S.伯迪克.水声系统分析.北京:海洋出版社, 1992. 78-123
    〔20〕Urick R J. Principles of underwater sound (second edition). New York: McGraw-Hill, 1975
    〔21〕M.Stojanovic. Acoustic (Underwater) Communications entry in Encyclopedia of Telecommunications. John G. Proakis, Ed., John Wiley & Sons, 2003
    〔22〕许肖梅.浅海水声数据传输技术研究.厦门大学博士论文,2002
    〔23〕Daniel B. Kilfoyle and Arthur B. Baggeroer. The State of the Art in Underwater Acoustic Telemetry. IEEE J. Oceanic. Eng., 2000, 25(1): 4-24
    〔24〕A. Kaya and S. Yauchi. An acoustic communication system for subsea robot. in Proc. Oceans'89, Seattler,WA,Oct,1989. 765-770
    〔25〕M.Suzuki and T. Sasaki. Digital acoustic image transmission system for deep-sea research submersible. in Proc. Oceans'92, Newport, RI. Oct. 1992. 567-570
    〔26〕J. Fischer, K. Bennett, S. Reible, J. Cafarella, and I.Yao. A high rate underwater acoustic data communications transceiver", in Proc. Oceans'92, Newport RI, Oct I992. 571-576。
    〔27〕M. Stojanovic, et al. Adaptive multichannel combining and equalization for underwater acoustic communications. J.A.S.A. 1993, 94(3): 1621-1631
    〔28〕S. Coatelan and A. Glavieux. Design and test of a multicarrier transmission system on the shallow water acoustic channel", Proc. IEEE Oceans' 94,1994. III472-III477
    〔29〕E. Bejjani and J. C. Belfiore. Multicarrier coherent communication for the underwater acoustic channel. Proc. IEEE. Oceans' 96, 1996.1125-1130
    〔30〕W. K. Lam and R. F. Ormondroyd. A novel broadband COFDM modulation scheme for robust communication over the underwater acoustic channel. Proc. IEEE Oceans' 98, 1998. 794-799
    〔31〕Kazuyoshi Miyoshi. Preliminary design of OFDM and CDMA acoustic communication system. IEEE Oceans' 2001.2216-2219
    〔32〕R.Coates, Ming Zheng, and Liansheng Wang. Bass 300 PARACOM:A "MODEL" underwater parametric communication system. IEEE J. Oceanic Eng. 1996, 21(2): 225-235
    〔33〕S.Thomas Alesander. Adaptive Signal processing-Theory and applications. Springer-Verlag:New York, 1986.
    〔34〕Jona G. Proakis. Adaptive Equalization Techniques for Acoustic Telemetry Channels. IEEE J. Oceanic Eng., 1991,16(1): 21-31
    〔35〕H. liu et al. Recent Developments in Blind Channel Equalization: from Cycle stationary to Subspace. Signal Processing, 1996, 3(4): 83-96
    〔36〕H. Gazzah, P. A. Regalia, J. Delmas, K. Abed-Meraim. A blind multichannel identification algorithm robust to order overestimation. IEEE Trans. Signal Processing,2002, 50: 1449-1458
    〔37〕孙丽君,孙超.一种用于多径衰落水声信道的盲均衡算法仿真研究.系统仿真学报,2005, 17(3):559-562
    〔38〕张艳萍,赵俊渭,李金明.稀疏水声信道判决反馈盲均衡算法研究.电子与信息学报,2006, 28(6): 1009-1012
    〔39〕樊昌信等.通信系统原理(第5版).北京:国防工业出版社, 2001. 187-233
    〔40〕Arthur B. Baggeror. Acoustic Telemetry-an Overview. IEEE J. Oceanic. Eng., 1984, 9(4):229-235
    〔41〕惠俊英.水下声信道.北京:国防工业出版社,1992
    〔42〕R.Coates. Underwater Acoustic communications. In Proc. IEEE. Oceans'93 Conf, 1993. 420-425
    〔43〕E.them M. Sozer, Milica Stojanovic,et al. Underwater Acoustic Networks. IEEE J. Oceanic Eng. 2000, 25(1):72-83
    〔44〕M.W.Nelisse. Networking Considerations for Acoustic Communication within Multi-Underwater Sensor Networks. Preceding of the Seventh ECUA. July, 2004.1203-1208
    〔45〕Bryan G.M. Underwater sound in marine geology, Underwater Acoustics, Vol.2, ed. New York Olenum: V.M. Albers, 1976. 351,61
    〔46〕Bowditch N. American Practical Navigator, Vol. I. Defense Mapping Agency. Washington,DC:Hydrographic Center, Pub. 1977
    〔47〕FlattéS.M. Sound Transmission through a Fluctuating Ocean. Cambridge. New York: Univ. Press.1979
    〔48〕Pekeris, C.L. Theory of propagation of sound in half-space of variable sound velocity under conditions of formation of shadow zone. J. Acoust. Soc. Amer., 1946,18: 295-315
    〔49〕Harrison C.H. Ocean propagation models. Appl. Acoust., 1989, 27: 163-201
    〔50〕McCammon D.F. Underwater acoustic modeling. Sea Techno., 1991,32(8):53-5
    〔51〕Buckingham, M.J. Ocean–acoustic propagation models. J. Acoust., 1982,3: 223-87
    〔52〕Porter M.B.,Jensen F.B. Anomalous parabolic equation results for propagation in leaky surface ducts. J. Acoust. Soc., Amer., 1993,94:1510-16
    〔53〕Kinsler L.E., Frey, A.R., Coppens A.B., Sanders J.V. Fundamentals of Acoustic(3rd edn.), New York: John Wiley & Sons.1982
    〔54〕P. Etter. Underwater Acoustic Modeling :Principles, Techniques and Applications. London: Elsvier Science Publisher Lt.D, 1991。
    〔55〕Robert J. Urick. Principles of underwater sound(3rd edn.). McGraw-Hill Book Company,1983
    〔56〕Tolstoy I., Clay C. S. Ocean Acoustic. New York: McGraw-Hill.1966
    〔57〕陈庚.海洋声信道自适应匹配实验研究.声学学报, 1996,21(2):139-148
    〔58〕陈庚.一种自适应滤波中不长因子的算法.声学学报, 1993,18(4):306-312
    〔59〕张仁和.海面和介质起伏对不同路径相干性的影响.声学学报,1979,4(1):109
    〔60〕M. Torlak, L.K. Hansen, G. Xu. A geometric approach to blind source separation for digital wireless application. Signal Processing, 1999, 73:153-167
    〔61〕赵青,胡波,凌燮亭.非理想信道多用户数字信号的盲分离.电子学报,1999, 27(1):41-44
    〔62〕Y.Gong. Speech recognition in noisy environments. Speech Communication, 1995,12(1):16-26
    〔63〕N. D. Sidiropoulos, R. Bro. On Communication Diversity for Blind Identifiability and the Uniqueness of Low Rank Decomposition of N-way Arrays . In ICASSP, 2000,V: 2449-2452
    〔64〕Jutten C., Herault J. Blind Separation of Sources, part I: an adaptive algorithm based on neuromimetic architecture. Signal Processing, 1991,24(1):1-10
    〔65〕Comon P. Independent Component Analysis, a new concept?. Signal Processing,1994,36(3):287-314
    〔66〕Comon P. Blind source separation of sources, Part II: Problem statement. Signal Processing, 1994,22: 35-48
    〔67〕Stao Y. A Method of Self-Recovering Equalization for Multilevel Amplitude-Modulation System. IEEE Trans. On Communications, 1975,23(6): 679-682
    〔68〕Goard D N. Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems. IEEE Trans. On Communications, 1980,28(11):1867-1875
    〔69〕Tugnait J K. Blind spatial-temporal equalization and impulse response estimation for MIMO channel using a Godard cost function. IEEE Trans. on Signal Processing, 1997,45(1):268-271
    〔70〕Shalvi O, Weinstein G. New criteria for blind deconvolution of nonminimum phase system (channels). IEEE Trans. Information Theory,1990,36(2):312-321
    〔71〕Li Y, Ding Z. Blind Channel Identification Based on Second-order Cyclosttationary statistics. ICASSP, 1993,4:81-84
    〔72〕L. Tong, G. Xu, T. Kailath. Blind identification and equalization based on second-oreder statistics: a time domain approach. IEEE Trans. Inform. Theory, 1994, 40(3): 340-350
    〔73〕E. Moulines, P Duhamel, J. F Cardoso, S. Mayrargue. Subspace methods for the blind identification of multichannel FIR filters. IEEE Trans. Signal Processing, 1995,43(2): 516-525
    〔74〕G. Xu, et al. A least-squares approach to blind channel identification. IEEE Trans. Signal Processing, 1995,43(12):2982-2993
    〔75〕K. Abed-Meraim, et al. Prediction error method for second-order blind identification. IEEE Trans, Signal Processing, 1997,45(3): 694-705
    〔76〕Wang Z, Giannakis G B. Wireless multi-carrier communications. IEEE Signal Processing Magazine,2000,38(3):29-48
    〔77〕Heath R W, Giannakis G B. Exploiting input cyclic-stationary for blind channel identification in OFDM system. IEEE Trans. Signal Processing, 1999, 47(3):848-856
    〔78〕张贤达.信号处理中的线性代数[M].北京:科学出版社,1997
    〔79〕Muquet B, Courville M D, Duhamel P. Subspace-based blind and semi-blind channel estimation for OFDM system. IEEE Trans. Signal Processing, 2002,50(7): 1699-1712
    〔80〕Kazuyoshi Miyoshi. Preliminary design of OFDM and CDMA acoustic communication system. IEEE Oceans' 2001: 2216-2219
    〔81〕G. Loubet, V. Capellano, R. Fillipiak. Underwater Spread-Spectrum communications. IEEE, 0-7803-4108-2/97, 1997:574-579
    〔82〕M. Stojanovic, J. G. Proakis, J.A. Rice, M. D. Green. Spread Spectrum underwater acoustic telemetry. IEEE,0-7803-5045-6/98, 1998: 650-654
    〔83〕Reimers U.DVB-T. The COFDM-based system for terrestrials' television. Electronics and Communication Engineering Journal, 1997, 9(1):28-32
    〔84〕W. Y. Zou, Y WU. COFDM: an overview. IEEE transaction on Broadcasting, 1995,41(3): 1-1
    〔85〕William Y. ZOU, Yiyan Wu. COFDM: An Overview. IEEE Trans. on Broad, 1995, 41(1): l-6
    〔86〕John G. Proakis. Digital Communication.北京:人民邮电出版社,1998
    〔87〕Aiarashi H., Abeta S,, Sawashashi M. Broadband packet wireless access appropriate for high-speed and high-capacity throughput. Vehicular Technology Conference. VTC 2001 Spring, IEEE VTS 53rd, 2001,1:556-570
    〔88〕佟学俭,罗涛. OFDM移动通信技术原理与应用.北京:人民邮电出版社,2003
    〔89〕N. Dinur, D. Wulich. Peak to Average Power Ratio in Amplitude Clipped High Order OFDM. IEEE communication Magazine, 1998, 11(1):684-687
    〔90〕J.Armstrong. Peak-to-Average Power Reduction for OFDM by Repeated Clipping and Frequency Domain Filtering. Electronics letters, 2002, 38(5): 246-247
    〔91〕Frises M. Multicarrier Modulation with Low Peak-to-Average Power Ratio. Electronics letters, 1996,32(8): 713-714
    〔92〕Jones A.E, Wilkinson T.A, Barton S.K. Block Coding Scheme for Reduction of Peak-Average Mean Envelope Power Ratio of Multicarrier Transmission scheme. Electronics letters, 1994, 30(5): 2098-2099.
    〔93〕R.W. Bauml, R. F. H. Fischer, J. B. Huber. Reduced Peak-to-Average Power Ratio of Multicarrier Modulation by Selected Mapping. Electronics letters, 1996,32(22): 2056-2057
    〔94〕S.H. Muller, J.B. Huber. OFDM with reduced Peak-to-Average Power Ratio by optimum combination of Partial transmit sequences. Electronics letters, 1997,35(5): 3065-3069
    〔95〕T.Sari, G. Karam, and I.Jeanclaude. Transmission techniques for digital terrestrial TV broadcasting. IEEE Communication Magazine, 1995, 33(2): 100-109
    〔96〕T. Pollet and M. Moeneclaey. Synchroniziability of OFDM signals. In Proc. Clobecom, Singapore, 1995,3: 2054-2058
    〔97〕L. Wei and C. Schelgel. Synchronization requirements for multi-user OFDM on satellite mobile and two-path Rayleigh-fading channels. IEEE Trans. Communications, 1995, 43(2): 887-895
    〔98〕W.D.Warner and C.Leung. OFDM/FM frame synchronization for mobile radio data communication. IEEE Trans. Vehic., 1993, l42(3):302-313
    〔99〕T. Pollet, M. van Bladel, and Moeneclaey. BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise. IEEE Trans. Communication, 1995,43(4): 191-193
    〔100〕Moose P.H. A technique for orthogonal frequency division multiplex frequency offset correction. IEEE Trans. on Communications, 1994, 42(10):2908-2914
    〔101〕F.Classen and H. Meyr. Frequency synchronization algorithms for OFDM systems suitable for communication over frequency-selective fading channels. In Proc. IEEE Vehic. Technol. Conf., Vol. 3, Stockholm, Sweden, June, 1994, 3:1655-1659
    〔102〕Schmidl T. M., Cox D.C.. Robust frequency and timing synchronization for OFDM. IEEE Trans. on Communications, 1997, 45(12):1613-1621
    〔103〕Morelli M., Mengali U. An improved frequency offset estimator for OFDM applications. IEEE Communications Letters, 1999, 3(3):75-77
    〔104〕Van de Beek J.J., Sandell, M., Borjesson P. O. ML estimation of time and frequency offset in OFDM systems. IEEE Trans. on Signal Processing, 1997,45(7):1800-1805
    〔105〕Takahaashi K., Saba T. An novel symbol synchronization algorithm with reduced influence of ISI for OFDM system. GLOBECOM'01, IEEE, 2001, 1:524-528
    〔106〕Tureli U., Liu H., Zoltowski M. D. OFDM blind carrier offset estimation: ESPRIT. IEEE Trans. on Communications, 2000, 48(9):1459-1461
    〔107〕Liu H., Tureli U. A high-efficiency carrier estimator for OFDM communications. IEEE Communications Letters, 1998,2(4):104-106
    〔108〕Bolcskei H. Blind estimation for symbol timing and carrier frequency offset in wireless OFDM system. IEEE Trans. on Communications, 2001, 49(6):988-999
    〔109〕Landstrom D., Wilson S.K., Van de Beek, J. J., Borjesson P. O. Symbol time offset estimation in coherent OFDM system. IEEE Trans. on Communications, 2002, 50(4):545-549
    〔110〕Yun Hee Kim, Licho song, Seokho Yoon, So Ryoung Park. An efficient frequency offset estimator for OFDM systems and its performance characteristics. IEEE Trans. on Vehicular Technology, 2001, 50(5): 1307-1312
    〔111〕Milica Stojanovic, Zoran Zvonar. Performance of Multiuser Detection with Adaptive Channel Estimation. IEEE Trans. on Communication, 1999, 47(8): 1129-1132
    〔112〕H. V. Poor, X. Wang. Coded-aided interference suppression in DS/CDMA communications: II. Parallel blind adaptive implementation. IEEE Trans. Communication, 1997, 45(9):1112-1122
    〔113〕S. Verdu. Minimum probability of error for asynchronous gaussian multiple access channels. IEEE Trans. on Information Theory, 1986,32(1):85-96
    〔114〕S. Verdu. Multiple-access channels with point-process observations: optimum demodulation (optical communication). IEEE Trans. on Information Theory, 1986, 32(5): 642-651
    〔115〕S. Verdu. Optimum multiuser asymptotic efficiency. IEEE Trans. on Communications, 1986,39(9): 890-897
    〔116〕R. Lupas, S. Verdu. Linear multiusers detectors for synchronous code-division multiple-access channels. IEEE Trans. on Information Theory, 1989,35(1): 123-136
    〔117〕L. Wei, C. Schlegel. Synchronous DS-SSMA system with improved decorrelating decision-feedback multiusers detection. IEEE Trans. Veh. Techno, 1994, 43(3): 767-772
    〔118〕M. L. Honig, U. Madhow, S. Verdu. Blind adaptive multiusers detection. IEEE Trans. on Information Theory, 1995,41(4):944-960
    〔119〕邓自立.最优估计理论及其应用—建模、滤波、信息融合估计.哈尔滨:哈尔滨工业大学出版社,2005
    〔120〕Tsatsanis M K. Inverse filtering criteria for CDMA systems.IEEE Trans.On Signal Processing, 1997, 45(1):102-122
    〔121〕Tsatsanis M K, Xu Z. Performance analysis of minimum variance CDMA receivers. IEEE Trans. On Signal Processing,1998, 46(11):3014-3022
    〔122〕Bugallo F B,Miguez J,Castedo L. A maximum likelihood approach to blind multiuser interference cancellation. IEEE Trans. On Signal Processing,2001, 49(6):1228-1239
    〔123〕熊尚坤,陈芳炯,韦岗.基于最小均方误差准则的盲多用户检测新算法.电子与信息学报,2004,26(8): 1218-1223, 2004.
    〔124〕Tsatsanis M K Xu Z. Performance analysis of minimum variance CDMA receivers. IEEE Trans. On Signal Processing, 1998, 46(11):3014-3022
    〔125〕秦国,秦亚莉,韩彬霞.现代通信网概论.北京:人民邮电出版社,2004,2,170-177
    〔126〕胡捍英,杨峰义.第三代移动通信系统.北京:人民邮电出版社,2001,8,170-200
    〔127〕于海斌,曾鹏,等.智能无线传感器网络系统.科学出版社,2006,9,pp. 110-144.
    〔128〕习勇,魏急波,庄钊文.差错信道下IEEE 802.11 DCF最优帧长分析及其信道自适应策论.通信学报,2006, 27(5): 84-89
    〔129〕刘彬彬,赵东风,丁洪伟.基于概率检测的时隙式多通道随机多址无线通信网络协议分析.通信学报,2006, 27(12): 70-75
    〔130〕苏驷希.通信网性能分析基础.北京:北京邮电大学出版社,2006,6,30-46
    〔131〕樊昌信.通信系统原理(第5版)[M].北京:国防工业出版社, 2001, 403

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700