ICA算法及其在阵列信号处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
独立分量分析(Independent Component Analysis, ICA)是解决盲源分离(Blind Source Separation, BSS)问题的主要方法之一。该方法可以在信源信号和信道参数均未知的条件下,仅利用信源信号之间相互统计独立的特性,就能从接收到的混合信号中辨识出信道参数,估计出信源信号。ICA在通信系统、语音信号处理、图像信号处理、生物医学信号、环境和金融数据的分析等领域,具有很大的应用价值。
     ICA按照所处理信号的不同可以分为实数ICA和复数ICA。实数ICA是目前研究最广泛的ICA方法,主要应用于实数信号处理领域。复数ICA是近几年来部分学者为了处理复数信号而提出来的ICA方法。虽然目前有了一定的发展,但是相对于实数ICA,复数ICA的研究还不是很成熟,其理论和其应用方面的研究都有待于进一步深化和完善。
     为此,本文重点研究和分析了复数ICA的基本理论,从算法的适用范围、收敛速度和实际应用角度出发,对现有的复数ICA算法进行了改进。同时本文也对实数ICA的基本理论进行了研究和分析,并从硬件实现角度对典型的实数快速ICA算法进行了改进。研究的主要内容和创新点如下:
     首先,由于实数快速ICA算法硬件实现比较困难,基于Huber M估计函数的实数快速ICA算法虽然硬件实现容易,但稳健性不够好,针对这一问题,本论文提出了一种基于Tukey双权函数的硬件实现容易而且稳健的实数快速ICA算法。该算法采用稳健性较好的Tukey双权函数作为实数快速ICA算法代价函数中的非线性函数,该函数的实现只涉及到加法和乘法,因此相对于原算法,该算法硬件实现容易;相对基于HuberM估计函数的实数快速ICA算法,该算法的稳健性更好。
     其次,针对强不相关变换算法仅适用于谱系数不相同的非圆信源信号的问题,提出了两种适用范围更广的复数ICA算法。这两种算法以非圆信号二阶统计量不为零的特点构造代价函数,然后分别采用不同的优化方法对代价函数进行优化。它们不仅适用于原算法所适用的谱系数不相同的非圆信源信号,而且适用于原算法所不适用的谱系数相同的非圆信源信号,扩大了算法的适用范围。
     再次,针对复数快速ICA算法只适用于非高斯圆信源信号的问题,提出了一种适用范围更广的复数快速ICA算法。该算法通过修正复数快速ICA的代价函数,得到新的代价函数,并采用近似的复数牛顿迭代方法对代价函数优化。该算法不但适用于原算法所适用的非高斯圆信源信号,而且适用于原算法所不适用的非高斯非圆信源信号。另外,针对复数快速ICA算法具有二阶收敛速度,收敛速度不够快的问题,采用具有三阶收敛速度的牛顿方法对算法的代价函数进行优化,推导出了收敛速度更快的复数快速ICA算法,并将其应用到波达方向估计中。该算法不但收敛速度快,而且可以直接计算出信号的波达方向,相对传统高分辨率波达方向估计方法性能更好,分辨率更高。
     最后,在没有任何信号先验信息的条件下,复数非高斯最大化算法很难选择合适的学习速率,针对这一问题,本论文提出了一种不需要设置学习速率的复数非高斯最大化算法。该算法将分离矩阵满足归一化的条件,以惩罚函数的形式引入到代价函数中,得到新的代价函数,在复数域中直接对代价函数优化。另外,针对峭度最大化盲波束形成算法也存在设置学习速率的问题,采用近似的复数牛顿方法对原代价函数进行优化,推导出了一种不需要设置学习速率的固定点峭度最大化盲波束形成算法。改进后的复数非高斯最大化算法和峭度最大化盲波束形成算法都是固定点迭代算法,都不需要设置学习速率,因此更适合在盲条件下应用。
     综上所述,本文研究了实数ICA算法和复数ICA算法以及盲波束形成算法,并针对算法中存在的不足,进行了相应的改进。仿真实验证实,本文提出的改进算法,均能够获得很好的效果。
Independent component analysis is one of the most primary methods to solve the problem of blind source separation. By using mutual statistical independence property of source signals, it can separate source signals from mixed signals without any known paraemters of source signals and channel. ICA has large application value in communication system, speech signal processing, image processing, biomedicine, environment analysis, financial data analysis and other fields.
     ICA can be classified as real valued ICA and complex valued ICA according to the differences of the processed signals. Real valued ICA enjoys the most extensive researching, which is mainly applied in real valued signal processing. Complex valued ICA is proposed by some researchers to process complex valued signal in recent years, which is mainly applied in the fields of array signal processing, frequency domain signal and functional magnetic resonance imaging processing. Although complex valued ICA has some development, comparied with real valued ICA, its research is not mature. Its research on theory and application need to be deeper.
     In this paper, we mainly research on and analyze the basic theory of complex valued ICA and improve the complex valued ICA algorithms from their scope of application, convergence rate and practical application. At the same time, we also research on and analyze the basic theory of real valued ICA and propose an improved ICA algorithm, which can be realized easily by hardware. The content and innovation of this paper can be summarized as follows:
     Firstly, to overcome the problem that real valued fast ICA algorithm is difficult to be realized by hardware, while the real valued fast ICA algorithm based on Huber M-estimator is easy, but its robustness is not good enough. We propose a new real valued fast ICA algorithm wich is easy to be realized by hardware based on tukey biweight function. It uses tukey biweight function which has better robustness as nonlinear function of real valued fast ICA algorithm and only involves addition and multiplication operation, so it can be realized easily by hardware. Compared with the FastICA algorithm based on Huber M-estimtor, the new algorithm has better robustness.
     Secondly, to overcome the problem that strong-uncorrelating transform algorithm is only applicable to the non-circular source signals which have different spectrum coefficients, we propose two complex valued ICA algorithms with wider range of application. They use the property that second-order statistics are not zero to contruct cost function and optimize it by different optimization methods. The new algorithms are not only applicable to non-circular source signals with different spectrum coefficients, but also any statical independent complex valued source signals that contain non-circular signals. They extend the range of application of original algorithm.
     Thirdly, to overcome the problem that complex valued FastICA algorithm is only applicable to circular source signals, we propose an improved complex valued FastICA algorithm which has wider range of application. It constructs new cost function by modifying the cost function of complex valued fast ICA algorithm, and uses approximate Newton method to optimize the new cost function. The new algorithm is not only applicable to circular signals, but also to any non-Gaussian complex valued source signals. Besides, to overcome the problem that the quadratic convergence rate of complex valued FastICA algorithm is not fast enough, we use complex Newton method that has third order convergence rate to optimize the cost function, and deduce a new complex valued FastiCA algorithm with faster convergence rate and apply it in estimating direction of the arrival signals. It not only has faster convergence rate compared with the original algorithm, but also can directly compute the direction of arrival signals, compared with traditional estimation method of the arrival signal direction with high resolution. It also has better perfeormantce and resolution.
     Finally, to overcome the problem that complex valued non-Gaussian maximization algorithm need the setting of learning rate, but it is difficult to choose suitable learing rate without any system information. We propose a fixed-point complex valued non-Gaussian maximization algorithm. It constructs cost function by introducing penalty function, which is a separated matrix satisfying normalization condition to original cost function, and optimizes the cost function directly in complex valued field. Besides, kurtosis maximization blind beamforming algorithm also has the same problem of setting learning rate. To overcome the problem, we use complex valued Newton-Like method to ptimize cost function and deduce a fixed point kurtosis maximization blind beamforming algorithm without settig learning rate. The improved complex valued non-Gaussian maximization algorithm and kurtosis maximization blind beamforming algorithm are both fixed point algorithm without setting any learning rate, so they are more suitable for practical application.
     In conclusion, the real valued ICA, complex valued ICA and kurtosis maximization blind beamforming algorithm are researched in this paper, and improved algorithms are proposed to overcome the problems existing in the algorithms. Experimental results indicate that all the improved algorithms could attain good results.
引文
[1]谢胜利,何昭水,高鹰编著.信号处理的自适应理论.北京:科学出版社,2006:130页
    [2]马建仓,牛奕龙,陈海洋编著.盲信号处理.北京:国防工业出版社,2006:4-8页,88-92页
    [3]董国华,徐昕,周宗潭等编著.独立成分分析.北京:电子工业出版社出版,2007:7-8页,84-88页,103-104页,193-194页
    [4]Hyvarinen A, Karhunen J, Oja E. Independent Component analysis. New York:John Wiley & Sons,2001:194-195P,276-270P
    [5]Mckeown M J, Makeig S, Brown G..Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping, 1998,6(3):160-188P
    [6]Calhoun V, Adali T. Complex ICA for fMRI analysis:performance of several approaches.2003ICASSP, Hong Kong,771-720P
    [7]Xiong W, Li O, Li H. On ICA of complex-valued fMRI:adavantages and order selection.2008ICASSP, Las Vegas, Nevada,529-532P
    [8]王明祥.独立分量分析方法及其在图像处理中的应用研究.上海大学博士论文.2005
    [9]杨福生,洪波编著.独立分量分析的原理与应用.北京:清华大学出版社.2006:36-41页,50-53页,92-101页
    [10]Herault J, Ans B. Circuits neuronaux a synapses modifiablles:decodage de messages composites par apprentissage non supervise.C.R.de 1 Academie des Sciences,1984,299(Ⅲ-13):525-528P
    [11]Jutten C, Herault J, and Ans B. Detection de grandeurs primitives dans un message composite par une architecture de calcul neuromimetique en apprentissage non supervise. In Actes du Xeme colloque GRETSI, Nice, France,1985:1017-1022P
    [12]Ans B, Herault J, Jutten C. Adaptive neural architectures:detection of primitives. In proceedings of cognitiva'85, Pairs, France,1985:593-897P
    [13]Herault J, Jutten C. Space or time adaptive signal processing by neural network models. AIP Conference, New York, Snowbird,1986:206-211P
    [14]Jutten C, Taleb A. Source separation:from dusk till dawn. ICA2000, Helsinki, Finland,2000,15-26P
    [15]Jutten C. Calcul neuromimetique et traitement du signal. Analyse en
    composantes independentes. Ph.D. thesis, INP-USM, Grenoble,1987
    [16]Giannakis G B, Swami A. new results on state-space and input-output identification of non-Gaussian processing using cumulates. In:Proc SPIE'87, San Diego,1987,826:199-250P
    [17]Cardoso J F. Source separation using higher order moments. Workshop on higher-order spectral analysis. ICASSP, Glasgow, UK,1989:2109-2112P
    [18]Soon V. An extended fourth order blind identification algorithm inspatially correlated noise. ICASSP. Albuquerque, NM, USA,1990:1365-1367P
    [19]Tong L.Indeterminacy and identifiability of blind identification.IEEE trans.CAS,1991,38(5):499-509P
    [20]Tong L. AMUSE, A new blind identification algorithm. Proc IEEE Trans. 1991,38(5):499-509P
    [21]Cardoso J F. Blind beamforming for non-Gaussian signal.IEE-proc. 1993,140(6):362-370P
    [22]Jutten C, Herault J. Independent component analysis versus PCA. EUSIPCO,1988:643-646P
    [23]Comon P. Statistical Approach to the Jutten-Herault Algorithm. workshop on Neuro-Computing, Les Arcs, France,1989:81-88P
    [24]Comon P. Separation of stochastic Processes. Workshop on Higher-order Spectral Analysis, Vail, Colorado,1989:28-30P
    [25]Jutten C, Herault J. Blind separation of sources, Part Ⅰ:an adaptive algorithm based on a neuromimetic architecture. Signal Processing.1991, 24(1):1-10P
    [26]P Comon, C Jutten, Herault J. Blind separation of sources, Part II: Statement problem. Signal processing.1991,24(1):11-20P
    [27]Sorouchyari E. Blind separation of sources, part Ⅲ:stability analysis. Signal processing.1991,24(1):21-29P
    [28]Cichoki A. New algorithm for blind separation of sources.Electronics Letters.1992,28(1):1986-1987P
    [29]Cichoki A. Robust learning algorithm for blind separation of sources.Electronics Letters.1994,30(17):1386-1387P
    [30]Burel G. Blind separation of source:A nonlinear neural algorithm. Neural Network.1992,5(6):937-947P
    [31]Gaeta M, Lacoume J L. Source separation without a priori knowledge:the maximum likelihood solution. EUSIPCO 90. Barcelona, Spain,1990:621 624P
    [32]Pham D T, Garat P. Blind separation of mixture of independent sources through aquasi-maximum likelihood approach. IEEE Transactions on.1997
    45(7):1712-1725P
    [33]Linsker R. Self-organization in a perceptual network. Computer,1988, 21(3):105-117P
    [34]Bell A J, Sejnowski T J. An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation.1995,7(6):1129-1159P
    [35]Cichocki A, Unbehauen R, Rummert E. Robust learing algorithm for blind separation of signals. Electronics letters.1994,30(17):1386-1387P
    [36]Cichocki A, Unbehauen R. Robust nerual networks with on-line learning for blind identification and blind separation of sources.IEEE trans.Circuits and systems.1996,43(11):894-906P
    [37]Amari S, Cichocki A. A new learning algorithm for blind signal separation. Advance in Neural Information Processing Systems. Cambridge:MIT Press 1996,8:757-764P
    [38]Amari S, Cichocki A. new learning in structural parameter space-natural Riemannian gradient. Advance in Neural Information Processing Systems.1997,9:127-133P
    [39]Amari S, Cichocki A. Nature gradient works efficiently in learning. Neural computation.1997,10(2):251-276P
    [40]Cichocki A, Unbehauen R.A new on-line adaptive learning algorithm for blind separation of sources signals. Symposium on artificial neural networks.Tainan, Taiwan,1994:406-411P
    [41]Cardoso J F, Laheld B H. Equivariant adaptive source separation. IEEE Trans. Signal processing.1996,44(10):3017-3030P
    [42]Cardoso J F. Blind signal processing:statistical principle. IEEE Proc.1998,86(10):2009-2025P
    [43]Hyvarinen A. A fast fixed-point algorithm for independent component analysis. Neural computation.1997,9(7),1483-1492P
    [44]Hyvarinen A. A family of fixed-point algorithm for independent component analysis. Proc. Int. Conf. of Acoustics. Speech and Signal Processing. Munich, Germany,1997:3917-3920P
    [45]Bach F R, Jordan M I. Kernel independent component analysis.Jouranal of machine learning research.2002,3:1-48P
    [46]Hesse C W, James C J. The FastICA algorithm with spatial constaints.IEEE signal processing letters.2005,12(11):792-795P
    [47]Zbynek K, Petr T, Oja E. Efficient variant of algorithm fastICA for independent component analysis attaining the cramer-rao lower bound. IEEE trans on neural networks.2006,17(5):1256-1277P
    [48]Chao J C, Douglas S C.A simple and robust FastICA algorithm using the Huber M-estimator cost function.ICASSP2006.Toulouse, France, 2006:14-19P
    [49]Chao J H, Douglas S C. Using piecewise linear nonlinearities in the natural gradient and FastICA algorithms for blind sources separation. ICASSP2008,2008:1813-1816P
    [50]Ling X T, Liu R W. A stability theory of blind signal separation. International symposium on nonlinear theory and its applications, Hawaii, 1993:5-9P
    [51]胡波,凌燮亭.Hebbian无导师学校原理的盲均衡:,(Ⅱ)非最小相位通道.通信学报.1994,15(6):17-22页
    [52]淩燮亭.延时窄带信号的自学习盲分离.电子学报.1995,23(1):28-33页
    [53]刘斌,淩燮亭.源于盲分离思想的线性变形图像校正.复旦大学学报.1995,34(2):185-190页
    [54]赵青,俞承芳,淩燮亭.前馈神经网络盲信号分离的试验研究.复旦学报.1997,36(3):344-348页
    [55]刘琚,梅良模.一种新的瞬时混迭信号盲分离的自适应方法.电路与系统学报.1998,3(4):66-71页
    [56]何振亚,杨绿溪.非线性Infomax自组织算法的盲源分离机理.数据采集与处理,1998,13(4):303-305页
    [57]杨绿溪,李可,周长春,何振亚.一种用于超高斯和亚高斯混合信号盲分离的新算法.东南大学学报.1999,29(1)1-7页
    [58]冯大政,史维祥.一种自适应信号盲分离和盲辨识的有效算法.西安交通大学学报.1998,32(5):76-79页
    [59]虞晓,胡光锐.基于FIR神经网络的非线性盲信号分离.上海交通大学学报.1999,33(9):1093-1096页
    [60]谭丽丽,韦岗.卷积混叠信号的最小化互信息盲分离算法.通信学报.1999,20(10):49-55页
    [61]张小兵,马建仓,陈翠华.基于最大信噪比的盲源分离算法.计算机仿真.2006,23(10):72-75页
    [62]付卫红,杨小牛,刘乃安.基于步长最优化的EASI盲源分离算法.四川大学学报,2008,40(1):118-121页
    [63]朱孝龙,张贤达.基于选优估计函数的盲信号分离.西安电子科技大学学报.2003,30(3):335-339P
    [64]张安清,邱天爽,章新华.分数低阶矩的信号盲分离方法.通信学报.2006,27(3):32-36页
    [65]马守科,何选森,许广延.基于扩展Informax算法的变步长在线盲分离.
    系统仿真学报.2007,19(19):4513-4517页
    [66]张洪渊,贾鹏.互累积量迫零法信号源盲分离.上海交通大学学报.2001,35(8):1159-1162页
    [67]杨福生,洪波,唐庆玉.独立分量分析及其在生物医学工程中的应用.国外医学生物医学工程分册.2000,23(3):129-134页
    [68]李小军,朱孝龙,张贤达.盲信号分离研究分类与展望.西安电子科技大学学报.2004,31(3):399-404页
    [69]李木森,毛剑琴.盲信号分离的现状和展望.信息与电子工程.2003.1(1):69-79页
    [70]Yang T Y, Mikhael W B. Baseband digital image-suppression in low-IF receivers by complex-valued ICA.2003 IEEE International Symposium on Micro-NanoMechatronics and Human Science. Cairo, Egypt,2003,3:1287-1290P
    [71]Nakasako N, Ogura H. Complex ICA for direction finding and separation of broadband sound sources high quality signal separation using and inverse filter. ICA2003. Carolina, USA,2003:633-638P
    [72]Mejuto C, Dapena A, Castedo L. Frequency-domain Informax for blind separation of convolutive mixtures. Workshop on Independent Components Analysis and Blind Signal Separation. Helsinki, Finland,2000:315-320P
    [73]Adali T, Calhoun V D. Complex ICA of Brain Imaging Data. Signal Processing Magazine.2007,24(5):136-139P
    [74]Desodt G, Muller D. Complex ICA applied to the separation of Radar Signals. EUSIPCO. Barcelona, Spain,1990:665-668P
    [75]汪晋宽,刘志刚,薛延波.4阶量算法在盲波束形成上的应用.东北大学学报.2003,24(9):900-902页
    [76]冯丹凤,王海燕.基于盲分离技术的双目标辨识与定位方法研究.声学与电子工程.2006,1:20-22页
    [77]Cardoso J F, Souloumiac A, An efficient technique for the blind separation of complex sources. HOS'93.South Lake Tahoe,USA,1993:275-279P
    [78]Cardoso J F, Adali T. The maximum likelihood approach to complex ICA. ICASSP 2006.Toulouse,France,2006:673-676P
    [79]Bingham E, Hyvarinen A. A Fast Fixed-Point Algorithm for Independent Component Analysis of Complex Valued Signals. International Journal of Neural Systems.2000,10(1):1-8P
    [80]Bingham E. Hyvarinen A. ICA of complex valued signals:a fast and robust deflationary algorithm. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks.2000,3:357-362P
    [81]Pomponi E, Fiori S, Piazza F. Complex Independent Component Analysis by nonlinear generalized Hebbian learning with Raleigh nonlinearity. International Conference on Acoustics speech and signal processing. Arizona, USA,1999,2:1077-1080P
    [82]Fiori S, Piazza F. Neural blind separation of complex sources by extended APEX algorithm (EAPEX).ISCAS'99. Orlando Florida, USA,1999:627-630P
    [83]Fiori S. Blind Separation of Circularly-Distributed Sources by Neural Extended APEX Algorithm.Neurocomputing.2000,47(9):239-252P
    [84]Fiori S. On blind separation for complex-valued sources by extended Hebbian Learning. IEEE Signal Processing Letters,2001,8(8):217-22P
    [85]Fiori S. Extended Hebbian learning for blind separation of complex-valued sources. IEEE Trans on Circuits and Systems.2003,50(4):195-202P
    [86]Fiori S. Non-Linear Complex-Valued Extensions of Hebbian Learning:An Easy. Neural Computation.2005,17(4):779-838P
    [87]Eriksson J, Seppola A M., Koivunen V. Complex ICA for Circular and Non-circular Sources.EUSIPCO2005. Antalya, Turkey,2005
    [88]Eriksson J, Koivunen V. Complex-valued ICA using second order statistics. MLSP 2004.Sao Luis, Brazil,2004:183-191P
    [89]Eriksson J, Koivunen V. Complex random vectors and ICA models: identifiability, uniqueness, and separability.IEEE Transactions on Information Theory.2006,52(3):1017-1029P
    [90]Douglas S C, Eriksson J, Koivunen V. Fixed-Point Complex ICA Algorithms for the Blind Separation of Sources Using Their Real or Imaginary Components. ICA 2006.Charleston, USA,2006:343-351P
    [91]Douglas S C, Eriksson J, Koivunen V. Equivariant Algorithms for Estimating the Strong-Uncorielating Transform in Complex Independent Component Analysis. ICA 2006. Charleston, USA,2006:57-65P
    [92]Douglas S C, Eriksson J, Koivunen V. Adaptive estimation of the strong uncorrelating transform with application to subspace tracking.2006 IEEE International Conference on Acoustics, Speech and Signal Processing. Toulouse, France,2006,14-19P
    [93]Douglas S C, Eriksson J, Koivunen V. The strong uncorrelating projection approximation (SUP) algorithm for Eigenstructure Estimation of complex non-circular data. Workshop sensor array and Multichannel Signal Proc. Waltham,MA.2006:510-514P
    [94]Chao J H, Douglas S C. A Robust Complex FastICA Algorithm Using the Huber M-Estimator Cost Function. ICA 2007.London, UK,2007:152-160P
    [95]Sawada H, Mukai R, Araki S. A polar coordinate based activation function
    for frequency domain blind source separation. ICA 2001. California, USA, 2001:663-668P
    [96]Sawada H, Mukai R, Araki S. Polar coordinate based nonlinear functions for frequency-domain blind source separation. Inst Electron Inf Commun Eng.2003,86(3):590-596P
    [97]Sawada H, Mukai R, Araki S. Polar coordinate based nonlinear functions for frequency-domain blind source separation. ICASSP'02. Oriando,FL, USA,2002,1:1001-1004P
    [98]Smaragdis P. Blind separation of convolved mixtures in the frequency domain.Neurocomputing.1998,22:21-34P
    [99]Calhoun V D, Adali T, Pearlson G On complex Infomax applied to functional MRI data.ICASSP'02. Oriando,FL,USA,2002,1:1009-1012P
    [100]Calhoun V D, Adali T, Pearlson G. Independent Component Analysis of FMR1 Data in the Complex Domain. Magnetic Resonance In Medicine. 2002,48(1):180-192P
    [101]Calhoun V D, Adali T. Complex Infomax:Convergence and approximation of Infomax with complex nonlinearities. VLSI Signal Processing Systems for Signal, Image, and Video Technonlogy.2006,44 (1/2):173-190P
    [102]Calhoun V D, Adali T. Complex ICA for FMRI analysis:performance of several approaches. ICASSP. Hong Kong,2003,2:717-720P
    [103]Li H L, Adali T.Gradient and fixed-point complex ICA algorithms based on kurtosis maximization. Workshop on Machine Learning for Signal Processing. Maynooth, Ireland,2006:85-90P
    [104]Li H L, Adali T. A Class of Complex ICA Algorithms Based on the Kurtosis Cost Function. Neural Networks, IEEE Transactions on.2008, 19(3):408-420P
    [105]Li H L, Adali T. Stability analysis of complex maximum likelihood ICA using Wringers calculus. ICASSP. Las Vegas, Nevada,2000:1801-1804P
    [106]Novey M, Adali T. ICA by Maximization of Nongaussianity using Complex Functions. Machine Learning for Signal Processing.Mystic, CT, 2005:21-26P
    [107]Novey Mike, Adali T. Stability analysis of complex-valued nonlinearities for maximization of nongaussianity. ICASSP. Toulouse,France,2006:633-636P
    [108]Novey M, Adali T. Adaptable nonlinearity for complex maximization of nongaussianity and a fixed-point algorithm. in Proc. MLSP. Maynooth, Ireland, Sept.2006:79-84P
    [109]Novey M, Adali T.Complex fixed-point ICA algorithm for separation of QAM sources using Gaussian mixture model. ICASSP 2007.Honolulu, Hawaii,2007:445-44P
    [110]Novey M.,Adali T. On Extending the Complex FastICA Algorithm to Noncircular Sources. IEEE Transactions on Signal Processing.2008,56(5): 2148-2154P
    [111]Novey M, Adali T. On quantifying the effects of noncircularity on the complex FastICA algorithm. ICASSP. Las Vegas, Nevada,2008:1809-1812P
    [112]Novey M. Adali T. Complex ICA by Negentropy Maximization. Neural Networks, IEEE Transactions on.2008,19(4):596-609P
    [113]Ranganathan R, Mikhael W. A Novel Interference Suppression Technique employing Complex Adaptive ICA for Time-Varying Channels in Diversity Wireless QAM Receivers. ISCAS 2007. New Orleans,LA, 2007:101-104P
    [114]Ranganathan R, Mikhael W. A comparative study of complex gradient and fixed-point ICA algorithms for interference suppression in static and dynamic channels. Signal Processing.2007,88(2):399-406P
    [115]Ranganathan R, Mikhael W. Separation of complex signals with known source distributions in time-varying channels using optimum complex block adaptive ICA.50th Midwest Symposium on Circuits and Systems. 2007:361-364P
    [116]Ranganathan, R. Yang T. Mikhael W. Adaptive ICA for separation of complex signals with known source distributions in time-varying channels. Electronics letters.2007,43(15):838-840P
    [117]Xu J W, Erdogmus D. Minimax mutual information approach for ICA to complex-valued linear mixtures.ICA2004.Granada,Spain.2004:311-318P
    [118]Seppola A M, Eriksson J, Koivunen V. Separation of Complex Signals Using Characteristic Functions. CISS2005. Baltimore, MD,2005:16-18P
    [119]Zhe C, Ma J W. Contrast functions for non-circular and circular sources separation in complex-valued ICA. International Joint Conference on Neural Networks. Vancouver, BC, Canada,2006:465-472P
    [120]Adali T, Kim T, Calhoun V. Independent component analysis by complex nonlinearities. ICASSP. Montreal, Canada,2004,5:525-528P
    [121]Adali T, Li H L, Novey M. Complex ICA Using Nonlinear Functions. IEEE Transactions on Signal Processing.2008,56(9):4536-4544P
    [122]T Adali, Li H L. A practical formulation for computation of complex gradients and its application to maximum likelihood. ICASSP. Honolulu,
    Hawaii,2007:633-636
    [123]Ollila E, Koivunen V. Complex ICA using generalized uncorrelating transform. Signal Processing.2008,89(4):365-337P
    [124]Ollila E, Oja H, Koivunen V. Complex-valued ICA based on a pair of generalized covariance matrices. Computational Statistics & Data Analysis. 2008,52(7):3789-3805P
    [125]倪晋平.水声信号盲分离技术研究.西北工业大学博士学位论文.2002
    [126]李小军,楼顺天,张贤达.一种针对复值信号的独立分量分析方法.西安电子科技大学学报.2005,32(3):447-451页
    [127]丛丰裕,雷菊阳,许海翔.在线增强型复值混合信号盲分离算法研究.西安交通大学学报.2006,40(9):1070-1073页
    [128]丛丰裕,雷菊阳,许海翔.在线复值独立分量分析算法.上海交通大学学报.2007,41(6):907-910页
    [129]付卫红,杨小牛,刘乃安.通信侦察中通信复信号的盲源分离算法,华中科技大学学报.2007,35(4):33-36页
    [130]付卫红,杨小牛,刘乃安.基于步长最优化的EASI盲源分离算法.四川大学学报.2008,40(1):118-121页
    [131]高晓滨,郝重阳.空间电子探测信号盲分离研究.电波科学学报.2004,19(4):503-507页
    [132]李立峰,张建立.基于盲信号分离的高分辨率测向算法研究.电子对抗.2006,1:1-5页
    [133]张贤达,保铮.通信信号处理.北京:国防工业出版社,2000:310-332页
    [134]杨福生,洪波编著.独立分量分析的原理与应用.北京:清华大学出版社.2006:36-41页,50-53页,92-101页
    [135]袁连喜.线性盲源分离算法的理论与应用研究.哈尔滨工程大学博士学位论文.2006:38页
    [136]张贤达编著.矩阵分析与应用.北京:清华大学出版社.2004:285-295页,216-218页
    [137]Cichocki A等著.吴正国,唐劲松,章林柯等译.自适应盲信号与图像处理.电子工业出版社,2005:205页,167-169页
    [138]Hyvarinen A. Survey on independent component analysis. Neural computing surveys.1999,2:94-128P
    [139]Hyvarinen A. One-unit contrast functions for independent component analysis:a statistical analysis. Neural Networks for Signal Processing. Amelia Island, USA,1997:24-26P
    [140]Asad A, Muhammad F.A modified m-estimator for the detection of outliers. PJSOR2005.2005,1:49-64P
    [141]张贤达编著.矩阵分析与应用.北京:清华大学出版社.2004:285-295页,216-218页
    [142]王永良,陈辉,彭应宁.空间谱估计理论与算法.北京:清华大学出版社,2004:19-21页,83-85页,185-189页
    [143]杨维,陈俊仕,李世明等编著.移动通信中的阵列天线技术.北京:清华大学出版社,上海交通大学出版社,2005:25-56页,129-134页
    [144]Darvishi M T, Barati A. A third-order Newton-type method to solve systems of nonlinear equations. Applied Mathematics and Computation. 2007,187(2):630-635P
    [145]郭艳.恒模算法及其在盲波束形成中的应用.西安电子科技大学博士论文.2002:19-20页
    [146]Ding Z, Nquyen T. Stationary points of a kurtosis maximization algorithm for blind signal separation and antenna beamforming. IEEE Transactions on Signal Processing.2000,48(6):1587-1596P
    [147]Yan G Q, Fan H. A Newton-like algorithm for complex variable with application in blind equation. IEEE Transactions on Signal Processing.2000, 48(2):553-556P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700