无线通信中抗多径衰落新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近年来无线通信中的移动电话、数据、图像、多媒体、互联网应用等业务的不断发展,要求无线通信系统能在复杂环境下提供更高的传输速率,并具有更高的可靠性,因此抗多径衰落技术一直是经久不衰的研究热点。
     本文以块传输系统为研究对象,围绕其频带效率与其在多径衰落信道中的传输性能进行了深入研究,主要贡献概括为以下几个方面:
     1.提出了一种块传输系统的多数据块联合调制算法。通过深入分析准正交时分复用(QOTDM)系统的频谱结构之后,提出了一种改进的QOTDM系统方案,并提出了一种适于该系统的高性能盲均衡算法。在此基础上,针对如何减小单载波块传输与正交频分复用系统中循环前缀占用系统开销的问题,提出了一种基于QOTDM的多数据块联合调制算法;利用多个数据块共用一个循环前缀,有效降低了系统冗余,提高了系统的频带效率,而且联合调制的数据块在接收机分解后,相互之间不产生干扰。块调制算法不仅可用于单载波块传输与正交频分复用系统,也可应用于采用这两者传输技术的超宽带以及MIMO等系统。理论分析以及仿真结果证明,该算法在慢衰落信道条件下与已有算法相比性能完全没有损失,而频带效率明显提高。
     2.提出一种新颖的适于二径衰落信道应用的双向裁决判决反馈均衡器。这种均衡算法通过对带有判决反馈结构的时间正向、逆向无限冲激响应(IIR)均衡器的输出判决量进行最大比合并而获得分集增益,使误码特性改善。该合并过程采用线性复杂度的处理,而不是像已有的双向裁决判决反馈均衡器那样的高复杂度,因为后者需要在最终裁决过程中逐个符号采用加窗最大似然序列估计算法。仿真结果表明,所提算法无论是最小还是非最小相位系统信道条件下都能超过已有的双向判决反馈IIR均衡器的性能。
     3.针对单载波块传输系统的时、频域均衡器在不采用信道编码的情况下无法获得多径分集增益的缺点,提出了一种可应用于非扩频的单载波块传输系统的RAKE接收算法。这种RAKE接收机是通过均衡器重构各个多径信号分量,再结合多级干扰抵消获得多径分集增益的,能明显改善误码性能。理论分析和仿真结果表明,所提出的算法能够与常规单载波均衡器相结合明显改善检测性能,而且可推广到与其它多种常见均衡算法相结合使用。
     4.提出多天线非扩频通信系统的干扰抵消与空时二维RAKE接收机方案。探讨了二发一收MIMO系统中单载波频域均衡算法的原理,针对目前对该算法的研究仅限于两个发射天线的情况,将它推广应用到具有四个发射天线的系统。提出了该系统的干扰抵消检测方案,与单载波传输系统类似,该MIMO系统中的干扰抵消技术也能改善初始均衡器的检测性能。然后进一步提出该系统的空时二维RAKE分集接收方案,将接收信号中的各条多径分量分解后分别进行空时分组码的空时合并,然后再进行多径分集合并,在获得空时分组码提供的空间分集增益基础上,进一步取得多径的分集增益。此外,在非扩频的多用户MIMO通信系统中实现了空时二维RAKE接收;当各用户信息从接收信号中分解后,分别独立进行空时二维分集合并,获得空间与多径的分集增益。仿真结果表明,所提出的几种算法都可以良好工作。
With the increasing development of various services via wireless communications such as mobile voice, data, image, multimedia and internet applications in the recent years, the wireless communication is required to provide higher transmission rate with higher reliability, so that anti-multipath-fading techniques have been a hot point in this research area.
     This dissertation researches on block transmission system, paying great attention to the frequency band efficiency as well as the transmission performance in the multipath fading channels. The main contributions of the dissertation are as follows.
     A multiple blocks joint modulation technique is proposed. Through analyzing the spectral property of quasi-orthogonal time division multiplexing (QOTDM) system, a modified QOTDM system scheme and a blind equalizer for the system are proposed. Then, aiming at the problem of how to reduce the redundancy of the cyclic prefix (CP) in single carrier block transmission (SCBT) and orthogonal frequency division multiplexing (OFDM) systems, a QOTDM based block modulation (BM) algorithm is proposed, where multiple blocks are jointly modulated together to share a CP, which remarkably increases its band efficiency. When the BM frame is decomposed at the receiver, the multiple blocks can be obtained from the received signal without inter-block interference (IBI). The BM algorithm can be applied not only to SCBT and OFDM systems, but also to multi-input multi-output (MIMO) or MIMO-OFDM systems. Theoretical analysis and simulations show that the proposed system scheme for slow-fading channels has much higher band efficiency without performance degradation compared with the existing algorithms.
     A novel bidirectional arbitrated decision feedback (BAD) equalizer is presented for two-path fading channels, which can effectively improve the bit-error performance by acquiring diversity gains from combining the output of the forward and reversal infinite impulse response (IIR) equalizers with decision feedback architectures using maximal ratio combining (MRC) rule. The combining procedure needs only linear complexity rather than so high complexity of the local maximal likelihood sequence estimation (MLSE) as employed in the existing BAD equalizers. Simulations show that the proposed BAD algorithm obviously over-performs the existing bidirectional IIR equalizer with decision feedback in both channel conditions of minimum and non-minimum phase systems.
     Aiming at the defect of losing diversity gain in SCBT systems with time domain or frequency domain equalization, a RAKE receiver scheme for non-spectrum-spreading SCBT system is proposed, which can improve the bit-error performance by taking advantage of the multipath diversity gains. The RAKE receiver is realized by means of reconstruction of the multipath signals and multi-stage interference cancellation equalizer. Theoretic analysis and simulation results show that the proposed algorithms can effectively improve the performance of the single-carrier equalizer; moreover, it can also be combined with other equalizers since its initial solution can be obtained by using various commonly used equalizers.
     A scheme of space-time two dimensional (2D-) RAKE receiver is proposed for non-spectrum-spreading MIMO systems. Firstly, the single carrier frequency domain equalization combined with space-time block codes (STBC-SC-FDE) is investigated, and the scheme applied to the MIMO system with four transmit antennas is deduced. Then, similar to the interference cancellation (IC) technique in single antenna systems, the space time IC technique is employed to improve the performance of STBC-SC-FDE. Further, the 2D-RAKE receiver is accomplished in the system by decomposing the received signal and combining the multipath components based on STBC combination and multipath combination rules. Finally, the proposed 2D-RAKE is introduced into the multiuser MIMO systems to achieve both the spatial and multipath diversity gains for each user. Simulation results show that the proposed algorithms behave well.
引文
[1]郭梯云,邬国扬,李建东.移动通信[M].西安:西安电子科技大学出版社,2000.
    [2] T. Rappaport著.蔡涛,李旭,杜振民译.无线通信原理与应用[M].北京:电子工业出版社,1999.
    [3]张贤达,保铮.通信信号处理[M].北京:国防工业出版社,2000.
    [4]谢显中,李祥明等.基于TDD的第四代移动通信技术[M].北京:电子工业出版社,2005.
    [5] A. Goldsmith著.杨鸿文等译.无线通信[M].北京:人民邮电出版社, 2007.
    [6] L. B. Milstein, D. Schinling. On the feasibility of a CDMA overlay for personal communications networks, IEEE J. Sele. Areas in Commun., vol. 10, no. 4, pp. 655-668, May 1992.
    [7] I. G. Kim and D. Kim. Spectral overlay of multicarrier CDMA on existing CDMA mobile systems, IEEE Commun. Lett., vol. 3, no. 1, pp. 15-17, Jan. 1999.
    [8] L. Noel and T. Widdowson. Experimental CDMA data overlay of GSM networks, Electron. Lett., vol. 35, no. 8, pp. 614-615, Apr. 1999.
    [9] D. Vouyioukas and P. Constantinou. Performance degradation of analog FM system due to spread spectrum overlay, IEEE Trans. Broadcasting, vol. 49, no. 2, pp. 113-123, Feb. 2003.
    [10] T. Barrett. History of ultra wideband (UWB) radar and communications: Pioneers and innovators. Proc. Progress in Electromagnetics Symposium, Cambridge, 2000.
    [11] W. Win and R. Scholtz. Impulse radio: How it works. IEEE Commun. Lett., vol. 2, no. 2, pp. 36-38, Feb. 1998.
    [12] S. Roy, J. Foerster and V. Somayazulu. Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity. Procedings of IEEE, vol. 9, no. 2, pp. 295-311, Feb. 2004.
    [13] J. Proakis著.张力军,张宗橙,郑宝玉等译.数字通信(第四版)[M].北京:电子工业出版社,2003.
    [14] N. Benvenuto, L. Bettella, and R. Marchesani. Performance of the Viterbi algorithm for interleaved convolutional codes. IEEE Trans Vehicular Technology, vol. 47, no. 3, pp. 919-922, Mar. 1998.
    [15] T. Li, W. H. Mow, and M. Siu. Joint erasuremarking and list Viterbi algorithm for decoding in unknown Non-Gaussian noise. IEEE Trans. On Wireles. Commun., vol. 7, no. 3, pp. 787-792, Mar. 2008
    [16] Y. Zhu, K. B. Letaief. Single carrier frequency domain equalization with time domain noise prediction for wideband wireless communications. IEEE Trans. On Wireles. Commun., vol. 5, no. 12, pp. 3548-57, Dec. 2006.
    [17] J. Baek, S. Park, and J. Seo. Fast start-up decision feedback equalizer based on channel estimation for 8VSB DTV system. IEEE Trans. Broadcasting, vol. 53, no. 1, pp. 38-47, Jan. 2007.
    [18] S. Qureshi. Adaptive equalization. IEEE Commun. Mag., vol. 20, no. 2, pp. 9–16, Mar. 1982.
    [19] P. Liu, Z. Xu. Blind MMSE-constrained multiuser detection. IEEE Trans. Veh. Technol., vol. 57, no. 1, pp. 608-615, Jan. 2008.
    [20]曹士坷,张力军.联合利用两种不同性质循环平稳的盲辨识盲均衡[J],电子与信息学报, 2007, 29(12): 2919-2922.
    [21] W. Choi and J.G. Andrews, Improved Performance Analysis for Maximal Ratio Combining in Asynchronous CDMA Channels. IEEE Trans. Wireless Commun., vol. 6, no. 9, pp. 3297-3305, Sep. 2007.
    [22] G. Fraidenraich, M.D. Yacoub, and J.C.S. Santos Filho, Second-order statistics of maximal-ratio and equal-gain combining in Weibull fading. IEEE Commun. Lett., vol. 9, no. 6, pp. 499–501, June 2005.
    [23] N.C. Sagias, Closed-form analysis of equal-gain diversity in wireless radio networks. IEEE Trans. Vehi. Technol., vol. 56, no. 1, pp. 173-182, Jan. 2007.
    [24] M. Kousa. Enhancement of RAKE receivers for ultra-wideband reception. IET Commun., vol. 2, no. 3, pp. 422–431, Mar. 2008.
    [25] Y. Ma, and J. Jin, Unified performance analysis of hybrid-selection/equal-gain combining. IEEE Trans. Vehicul. Tech., vol. 56, no. 4, pp. 1866-1873, Apr. 2007.
    [26]周猛,凃国,周建明.降低OFDM系统峰均功率比的方法[J],通信学报, 2008, 29(7): 124-129.
    [27] Yi Sun. Bandwidth-Efficient Wireless OFDM. IEEE Journal on Selected Areas in Commun., vol. 19, no. 11, pp.2267-2278, Nov. 2001.
    [28] H. Yang. A road to future broadband wireless access; MIMO-OFDM-Based air interface. IEEE Communications Magazine, vol. 23, no. 1, pp. 53-60. Jan. 2005.
    [29] R.Corvaja, A.G.Armada. Joint channel and phase noise compensation for OFDM in fast-fading multipath applications. IEEE Transactions on Vehicular Technology, vol. 58, no. 2, pp. 636-643, Feb. 2009.
    [30]杜鹏,李强,毕光国.频率选择性信道下高速数据传输中的单载波频域均衡技术[J],电路与系统学报,2004, 9(2): 18-21.
    [31] D. Falconer, S. L.Ariyavisitakul, A. Benyamin-Seeyar, et al. Frequency domain equalization for single-carrier broadband wireless systems. IEEE Communications Magazine, vol. 40, no. 4, pp. 58-66, Apr. 2002.
    [32]秦建存,陈常嘉.基于信道探测的对流层单载波传输技术研究[J],通信学报,2008, 29(2):129-133.
    [33] N. Benvenuto, and S. Tomasin. On the comparison between OFDM and single carrier modulation with a DFE using a frequency-domain feedforward filter. IEEE Transactions on Communications, vol. 50, no. 6, pp. 947-955, June 2002.
    [34] A. Gusm?o, R. Dinis, J. Concei??o, and N. Esteves. Comparison of two modulation choices for broadband wireless communications. In Proc. IEEE Veh. Technol. Conf., May 2000, vol. 2, pp. 1300–1305.
    [35] C. Park and G. Im. Efficient DMT/OFDM transmission with insufficient cyclic prefix. IEEE Commun. Lett., vol. 8, no. 9, pp. 576–578, Sep. 2004.
    [36] X. G. Xia. Precoded and vector OFDM systems robust to channel spectral nulls and with reduced cyclic prefix length in single transmit antenna systems. IEEE Trans. Commun., vol. 49, no.8, pp. 1363–1374, Aug. 2001.
    [37] V. Prasad and K. Hari. Interleaved orthogonal frequency division multiplexing (IOFDM) system. IEEE Trans. Signal Process., vol. 52, no. 6, pp. 1711–1721, June 2004.
    [38] E. Ferrara, Jr.,―Frequency-domain adaptive filtering,‖in Adaptive Filters, C. F. Cowan and P. Grant, Eds. Englewood Cliffs, NJ: Prentice- Hall, 1985.
    [39] D. Falconer and S. Ariyavisitakul, Broadband wireless using single carrier and frequency domain equalization, in Proc. Int. Symp. Wireless Pers. Multimedia Commun., Oct. 2002, vol. 1, pp. 27–36.
    [40] P. Montezuma and A. Gusmao, A pragmatic coded modulation choice for future broadband wireless communications, in Proc. IEEE Veh. Technol. Conf., May 2001, vol. 2, pp. 1324-1328.
    [41] R. Dinis and A. Gusmao. A class of nonlinear signal processing schemes for bandwidth-efficient OFDM transmission with low envelope fluctuation. IEEE Trans. Commun., vol. 52, no. 11, pp. 2009–2018, Nov. 2004.
    [42] D. Kim, G. L. Stuber. Residual ISI cancellation for OFDM with applications to HDTV broadcasting. IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1590–1599, Aug. 1998.
    [43] T. Hwang, Y. Li. Iterative cyclic prefix reconstruction for coded single-carrier systems with frequency-domain equalization (SC-FDE). IEEE VTC 2003, Jeju, Korea, 2003, vol. 1, pp. 1841-1845.
    [44] C. Park, G. Im. Efficient cyclic prefix reconstruction for coded OFDM systems. IEEE Commun. Lett., vol. 8, no.5, pp. 274-276, May 2004.
    [45] Y. Li, S. McLaughlin, and D. Cruickshank. Bandwidth efficient single carrier systems with frequency domain equalization. Electronics Letters, vol. 41, no. 15, pp. 857-858, July 2005.
    [46] K. Hayashi, H. Sakai. Single carrier block transmission without guard interval. IEEE PIMRC 2006, Helsinki, Finland, 2006, vol. 1, pp. 11-15.
    [47] A. Gusmao, P. Torres, R. Dinis, N. Esteves. A reduced-CP approach to SC-FDE block transmission for broadband wireless communications. IEEE Trans. Commun., vol. 55, no. 4, pp. 801-809, Apr. 2007.
    [48] X. Wang, Y. Wu, J. Chouinard. On the comparison of the conventional MSE-OFDM systems. in Proc. IEEE Global Communications Conf. (Globecom), San Francisco, CA, Dec. 2003, Vol.1: 35–39.
    [49] X. Wang, Y. Wu, J. Chouinard, et al. On the design and performance analysis of multisymbol encapsulated OFDM systems. IEEE Trans. Veh. Technol., vol. 55, no. 3, pp. 990-1012, Mar. 2006.
    [50] H. Gacanin, S. Takaoka and F. Adachi. Bit error rate analysis of OFDM/TDM with frequency-domain equalization. IEICE Trans. Commun., Vol.E89-B No.2 pp. 509-517, Feb. 2006.
    [51] H. Gacanin, S. Takaoka and F. Adachi. BER performance of OFDM combined with TDM using frequency-domain equalization. Journal of Communications and Networking (JCN), vol. 9, no. 1, pp. 34-42, Mar. 2007.
    [52] E. Telatar, Capacity of multiantenna Gaussian channels. AT&T Bell Laboratories, Tech. Memo., Jun. 1995.
    [53] D. Gesbert, M. Shafi, and D. Shiu, et al. From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE J. Select Areas Comm. vol. 21, no. 3, pp. 281-302, Mar. 2003.
    [54] S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE J. Selec. Areas in Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
    [55] V. Tarokh, N. Seshadri, and A. Calderbank. Space–time codes for high data rate wireless communication: performance criterion and code construction. IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998.
    [56]程健,陈明,程时昕.无线通信领域中的空时编码技术[J],电路与系统学报, 2002, 7(1): 66-71.
    [57] B. Hassibi and B. M. Hochwald. High-rate codes that are linear in space and time, IEEE Transactions on Information Theory, vol. 48, no. 7, pp. 1804-4824, July 2002.
    [58] Hochwald BM, Marzetta TL. Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading. IEEE Transactions on Information Theory, vol. 46, no. 2, pp. 543-564, Feb. 2000.
    [59] R. W. Heath, and A. J. Paulraj. Linear dispersion codes for MIMO systems based on frame theory. IEEE Transactions on Signla Processing. vol. 50, no. 10, pp. 2429-2441, Oct. 2002.
    [60] H. Kim, and H. Park. Approaching maximum-likelihood performance with reduced complexity for a double space–time transmit diversity system. IET Commun., vol. 2, no. 5, pp. 682–689,May 2008.
    [61] B. Widrow. Thinking about thinking: the discovery of the LMS algorithm. IEEE Signal Processing Magazine, vol. 22, no. 1, pp. 100-106, Jan. 2005.
    [62] W. Li, Z. Wang, Y. Yan, et al. An efficient low-cost LS equalization in COFDM based UWB systems by utilizing channel-stateinformation (CSI). IEEE Vehicular Technology Conference, 2005. VTC-2005-Fall, 2005, vol. 4, pp. 2167- 2171.
    [63] G. Ysebaert, K.Vanbleu, G. Cuypers, et al. Combined RLS-LMS initialization for per tone equalizers in DMT-receivers. IEEE Transactions on Signal Processing. vol. 51, no. 7, pp. 1508-1521, July 2003.
    [64] B. Chun, B. Kim, and Y. Lee. Generalization of exponentially weighted RLS algorithm based on astate-space model. Proceedings of IEEE International Symposium on Circuits and Systems, 1998. Jun. 1998, vol. 5, pp. 198-201.
    [65] G. A. Halls. HIPERLAN: The high performance radio local area network standard. Electronics Commun. Eng. J., vol. 14, no. 1, pp. 289–296, Dec. 1994.
    [66] J. Tellado-Mourelo, E. K. Wesel, and J. M. Cioffi. Adaptive DFE for GMSK in indoor radio channels. IEEE J. Select. Areas Commun., vol.14, no. 4, pp. 492–501, Apr. 1996.
    [67] N. Benvenuto, and S. Tomasin. On the comparison between OFDM and single carrier modulation with a DFE using a frequency domain feedforward filter. IEEE Trans. Commun., vol. 50, no. 6, pp. 947–955, June 2002.
    [68] L. Tran, E. Hong, and H. Liu. Two-stage Hybrid Decision Feedback Equalization for DS-CDMA Systems. IEEE Transactions on Wireless Communications, vol. 7, no. 5, pp. 1490-1494, July 2008.
    [69] N. Benvenuto and S. Tomasin. Block iterative DFE for single carrier modulation. IEE Electron. Lett., vol. 39, no. 19, pp. 1144–1145, Sep. 2002.
    [70] S. Ariyavisitakul. A decision feedback equalizer with time-reversal structure. IEEE J. Sel. Areas Commun., vol. 10, no. 4, pp. 599–613, Apr. 1992.
    [71] J. Balakrishnan and C. R. Johnson. Bidirectional decision feedback equalizer: infinite length results,‖in Proc. Asilomar Conf. on Signals, Systems, and Computers, Nov. 2001, pp. 1450–1454.
    [72] C. S. McGahey, A. C. Singer, and U. Madhow. Bad: a bi-directional arbitrated decision feedback equalizer. in Proc. of CISS2000, Mar. 2000.
    [73] J. K. Nelson, A. C. Singer, U. Madhow, et al. BAD: Bidirectional Arbitrated Decision-Feedback Equalization. IEEE Trans. Commun.,vol. 53, no. 2, pp. 214-218, Feb. 2005.
    [74] C.M. Rader, L.B. Jackson. Approximating noncausal IIR digital filters having arbitrary poles, including new Hilbert transformer designs, via forward/backward block recursion. IEEE Trans.Circuits and Systems—I: Regular Papers, vol. 53, no. 12, pp. 2779-2787, Dec. 2006.
    [75] M. Sternad and A. Ahlen. The structure and design of realizable decision feedback equalizers for IIR channels with colored noise. IEEE Trans. Inform. Theory, vol. 36, no. 4, pp. 848–858, July 1990.
    [76] L. Jackson. Frequency-domain Steiglitz–McBride method for least-squares IIR filter design, ARMA modeling, and periodogram smoothing. IEEE Signal Processing Letters, vol. 15, no. 1, pp. 49-52, Jan. 2008.
    [77]陈芳炯,林耀荣,韦岗.基于输出过采样的IIR信道迫零盲均衡[J],电子学报,2006, 34(3): 441-444.
    [78] D.N. Godard. Self-recovering equalization and carrier tracking in two-dimensional data communication system. IEEE Trans. on Commun. , vol. 28, no.11, pp.1867-1875, Nov. 1980.
    [79] H. Lin, M. Amin, C. Reed, et al. A hybrid adaptive blind equalization algorithm for QAM signals in wireless communications. IEEE Trans. signal processing, vol. 52, no. 7, pp. 2058-2069, July 2006.
    [80]何振亚,刘琚,杨绿溪,蔚承建.盲均衡和信道参数估计的一种ICA和进化计算方法[J],中国科学(E辑), 2000, 30(2):142-149.
    [81] J. S. Thompson, P. M. Grant, and B. Mulgrew. Smart antenna arrays for CDMA systems. IEEE Pers. Commun., vol. 3, no. 10, pp. 16–25, Oct. 1996.
    [82] A. J. Paulraj and B. C. Ng. Space–time modems for wireless personal communications. IEEE Pers. Commun. Mag., vol. 5, no. 2, pp. 36–48, Feb. 1998.
    [83] M. Fang, J. Wang, K. Gong, et al. Optimal 2D-Rake receiver for coherent DS-CDMA in multipath. in Proc. Vehicular Technology Conf., vol. 1, Fall 1999, pp. 181–185.
    [84] M. Kang, and M. Alouini. Hotelling’s generalized distribution and performance of 2D-RAKE receivers. IEEE Trans. Inform. Theory, vol. 49, no. 1, pp. 317-323, Jan. 2003.
    [85] W. Choi and J. G. Andrews. Improved performance analysis for maximal ratio combining in asynchronous CDMA channels. IEEE Trans. Wireless Commun., vol. 6, no. 9, pp.3297-3305, Sep. 2007.
    [86] K. T. Wong and S. K. Cheung.―Fractional Self-Decorrelation‖to enhance single-user-type DS-CDMA detectors’output SINR in blind space-time RAKE receivers. IEEE Commun. Lett., vol. 8, no. 6, pp. 336-338, June 2004.
    [87] S. Y. Wang, C. Huang, and C. C. Quek. A two-dimensional RAKE receiver architecture with an FFT-based matched filtering. IEEE Trans. Veh. Technol., vol. 54, no. 1, pp. 224-234. Jan. 2005.
    [88] P. Pirinen, and S. Glisic. Capacity losses in wireless CDMA networks using imperfect decorrelating space-time Rake receiver in fading multipath channel. IEEE Trans. Wireless Commun., vol. 5, no. 8, pp. 2072-2081, Aug. 2006.
    [89] J. Baek, and J. Seo. Efficient design of block adaptive equalization and diversity combining for space-time block-coded single-carrier systems. IEEE Trans. Wireless Commun., vol. 7, no. 7, pp. 2603-2611, July 2008.
    [90] H. Boujermaa. Exact and asymptotic BEP of cooperative DS-CDMA systems using decode and forward relaying I the presence of multipath propagation. IEEE Trans. Wireless Commun., vol. 8, no. 9, pp. 4464-4469, Sep. 2009.
    [91] G. J. Foschini, M. Gans. On limits of wireless communications in a fading environment when using multiple antennas, wireless pers. commun., vol. 6, no. 3, pp. 311335, Mar. 1998.
    [92] G. J. Foschini. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Tech. J., vol. 1, no. 9, pp. 41-59, 1996.
    [93] G. J. Foschini, G. D. Golden, R. Valenzula, et al. Simplified processing for high spectral efficiency wireless communication employing multi-element arrays. IEEE J. Select areas Commun., vol. 17, no. 11, pp. 1841-1852, Nov. 1999.
    [94] V. Tarokh, H. Jafarkhani, et al. Space-time block codes from orthogonal designs. IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456-1467, May 1999.
    [95] N. Al-Dhahir. Single-carrier frequency-domain equalization for space–time block- coded transmissions over frequency-selective fading channels. IEEE Commun. Lett., vol. 5, no. 7, pp. 304-306, July 2001.
    [96] W. M. Younis, A. H. Sayed, and N. Al-Dhahir. Efficient adaptive receivers for joint equalization and interference cancellation in multiuser space-time block-coded systems. IEEE Trans. Sign. Process., vol, 51, no. 11, pp. 2849-2862, Nov 2003.
    [97] M. Morelli, L. Sanguinetti, and U. Mengali. Channel estimation for adaptive frequency-domain equalization. IEEE Trans. Wire. Commun., vol. 4, no. 11, pp. 2508–2518, Nov. 2005.
    [98] D. Wang, S. Fu. Asynchronous cooperative communications with STBC coded single carrier block transmission. IEEE GLOBECOM 2007: IEEE press, 2007, vol. 4: 2987-2991.
    [99] J. Coon, S. Armour, M. Beach, et al. Adaptive frequency-domain equalization for single-carrier multiple-input multiple-output wireless transmissions. IEEE Trans. Signal Process., vol. 53, no. 8, pp. 3247-3256, Aug. 2005.
    [100] J. S. Baek, J. S. Seo. A weighted STBC-block adaptive frequency domain equalization for single-carrier systems in frequency-selective time-varying channels. In proceedings of WCNC 2007: IEEE press, 2007, vol. 3: 1456-1461.
    [101] J. S. Baek, J. S. Seo. Efficient design of block adaptive equalization and diversity combining for space-time block-coded single-carrier systems. IEEE Trans. Wire. Commun., vol. 7, no. 7, pp. 2603-2611, July 2008.
    [102] L. Song, R. de Lamare, A. G. Burr. Successive interference cancellation schemes for time-reversal space-time block codes. IEEE Trans. Veh. Technol., vol. 57, no. 1, pp. 642-648, Jan. 2008.
    [103] S. Zhou and G. G. Giannakis. Single-carrier space-time block-coded transmissions over frequency-selective fading channels. IEEE Trans. Information Theory, vol. 49, no. 1, pp. 164-179, Jan. 2003.
    [104] N. Wang, S. D. Blostein. Comparison of CP-based single carrier and OFDM with power allocation. IEEE Trans. Commun., vol. 53, no. 3, pp. 391-394, Mar. 2005.
    [105] Z. Liu. Maximum diversity in single-carrier frequency-domain equalization. IEEE Trans. Inf. Theory, vol. 51, no. 8, pp. 2937–2940, Aug. 2005.
    [106] W. Zhang. Comments on―maximum diversity in single-carrier frequency- domain equalization‖. IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1275-1277, Mar. 2006.
    [107] T. Walzman and M. Schwartz. Automatic equalization using the discrete frequency domain. IEEE Trans. Inform. Theory, vol. 19, no. 1, pp. 59–68, Jan. 1973.
    [108] V. Diaz. Method transmitter and receiver for digital spread spectrum communications using Golay sequences. PCT Patent PCT/ES0100160, Aug. 2000.
    [109]赵东峰,李道本.OVTDM系统的一个性能界[J],北京邮电大学学报, 30(4): 103-106, 2007.
    [110]易克初,王勇,易鸿锋等.准正交时分复用及其系统[P].中国: No.200510042910, 2005,7.
    [111]孙恩昌.准正交时分复用技术研究[D].西安电子科技大学博士学位论文,2008.
    [112]易鸿锋,谷春燕,易克初等.一种高精度的符号定时同步方法[J].西安电子科技大学学报, 32(6): 915-919, 2005.
    [113] S. Thoen, L. Deneire, and L. Perre, et al. Constrained least squares detector for OFDM/SDMA-based wireless networks. IEEE Trans. Wireless Commun., vol. 2, no. 1, pp. 129-140, Jan. 2003.
    [114] C. Chang and K. Chen. requency-domain approach to multiuser detection in DS-CDMA communications. IEEE Communications Letters, vol. 4, no. 11, pp. 331-333, Nov. 2000.
    [115] C. Chang and K. Chen. Frequency-domain approach to multiuser detection over frequency-selective slowly fading channels‖, in Proc. PIMRC 2002, IEEE Communications Society, 2002, vol. 1, pp. 1280-1284.
    [116] R. Dinis, D. Falconer, C. Lam, et al. A multiple access scheme for the uplink of broadband wireless systems. Globecom 2004, IEEE Communications Society, 2004, vol. 1, pp. 3808-3812.
    [117] Z. Liu, D.A. Pados. Near-ML multiuser detection with linear filters and reliability-based processing. IEEE Trans. Commun., vol. 51, no. 9, pp. 1446-50, Sep. 2003.
    [118] L. Rugini, P. Banelli, and G. B. Giannakis. Local ML detection for multicarrier DS-CDMAdownlink systems with grouped linear precoding. IEEE Trans. Wireles. Commun., vol. 5, no. 2, pp. 306-311, Feb. 2006.
    [119] V. Erceg, K. Hari, M. S. Smith, D. S. Baum, et al. Channel models for fixed wireless applications. IEEE 802.16.3c-01/29r1, Feb. 2001.
    [120] G. Stuber, J. Barry, S. McLaughlin, et al. Broadband MIMO-OFDM wireless communications. Proceedings of IEEE, vol. 92, no. 2, pp. 271-294, Feb. 2004.
    [121] Y. Peng, M. D. Armour, and J. McGeehan. An investigation of dynamic subcarrier allocation in MIMO–OFDMA systems. IEEE Transactions on Vehicular Technology, vol. 56, no. 5, pp. 2990-3005, May 2007.
    [122] H. Kim, J. Kim, S. Yang, et al. An effective MIMO–OFDM system for IEEE 802.22 WRAN channels. IEEE Transactions on Circuits and Systems II, vol. 55, no. 8, pp. 821-825, Aug. 2008.
    [123] R. L. Valcarce. Realizable linear and decision feedback equalizers: properties and connections. IEEE Trans. Signal Process., vol. 52, no.3, pp. 757-773, Mar. 2004.
    [124] S. Manohar, V. Tikiya, R. Annavajjala, et al. BER-optimal linear parallel interference cancellation for multicarrier DS-CDMA in Rayleigh fading. IEEE Trans. Wireless Commun., vol. 55, no. 6, pp. 1253-1265, June 2007.
    [125] A. Bentrcia, A. U. Sheikh, A. Zerguine. A new ordering and grouping algorithm for the linear weighted group matched filter successive interference cancellation detector. IEEE Trans. Vehi. Tech., vol. 55, no. 2, pp. 704 -709, Feb. 2006.
    [126] A. F.Naguib, N.Seshadri, and A. R. Calderbank. Applications of space-time block codes and interference suppression for high capacity and high data rate wireless systems. In Proc. 32nd Asilomar Conf. Signals Syst. Comput. Pacific Grove: CA, 1998, vol.1: 1803–1810.
    [127] E. Haas. Aeronautical channel modeling. IEEE Trans. Vehicular Technology, vol. 51, no. 2, pp. 254-264, Mar. 2002.
    [128]罗骥,袁东风,吴大雷. COST207频率选择性信道下实现多级编码和空时编码的级联方案[J],通信学报, 2005, 26(6): 137-141.
    [129] S. Ohno, Performance of single-carrier block transmissions over multipath fading channels with linear equalization. IEEE Trans on Signal Processing, vol. 54, no. 10, pp. 3678-3687, Oct. 2006.
    [130]网络资料,http://202.194.26.100/duyan/file/pub/4G和B3G移动通信,山东大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700