三维结构特征CT重建算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文根据三维CT技术的发展现状和国内外对三维CT技术提出的需求,依赖被检测对象内部结构特征的先验知识和模型,在对射线图像增强及散射恢复等预处理技术研究的基础上,结合FDK重建算法,研究直接重建特征的三维高分辨率CT重建技术。
     特征CT重建的质量取决于投影图像特征的提取,然而从锥束CT系统的成像原理可知,许多因素会影响CT投影图像的性能。在对锥束数据获取和扫描方式研究的基础上,提出了一种基于区域连通修正H参数的分形图像增强算法。该算法首先建立投影信号的分形模型,计算H参数及分形维;之后,针对分形算法对噪声敏感性问题,利用滑动窗口内各点与中心点连通关系,对其H参数进行修正,对图像进行特征增强。实验结果表明,本方法既有效地抵抗了噪声的影响,同时又凸显了射线图像中灰度差别较小的目标边缘。
     利用偏振分析,研究了射线散射的影响,提出一种基于ICA的盲估计分离散射算法。该方法通过建立散射的ICA模型,对小波分解后高频域的子带图像,利用最小互信息熵做为盲估计的准则,推导出其优化的估计量。实验结果表明,该算法对投影图像因散射引起的模糊具有较好的恢复效果。
     在分析研究传统三维CT重建算法的基础上,以圆轨迹扫描方式为背景,结合FDK算法,提出一种三维特征重建算法,并从理论的角度进行了推导。基于特征重建的CT算法基本理论,结合小波变换在RADON变换前后的特性,对小波应用于三维CT重建算法进行了理论与实现的研究工作,利用二维小波的边缘检测方法实现结构特征提取,并将其所提取的特征应用于三维重建中,得到所感兴趣的重建结果。从通用性角度与多特征重建出发,将EMD引入三维特征CT重建算法并进行了理论推导,提出了基于信息熵结合PSNR的EMD最优分解控制方法,进一步通过实验验证了方法的有效性。实验结果分析表明,基于EMD的CT重建方法能够有效的重建出原始图像的多种特征信息。最后将三维特征CT算法与相关算法进行参数的比较,证明其具有高频保留好,抗噪能力强,滤波器易实现及运行速度快的优点。
According to the development of three-dimensional CT Technology and the domestic and abroad demands, relying on the prior knowledge and models of the internal structure of the object, on the study of x-ray image enhancement and scattering restoration, combined with FDK reconstruction algorithm, the three-dimensional high resolution CT reconstruction method to directly reconstruct the characteristics was studied.
     In the CT reconstruction, the quality depends on the feature extraction of projection images, but many factors will affect their performance from the imaging principle of cone beam CT system.On the introduction of the cone beam data acquisition and scanning, a fractal image enhancement method based on the regional connectivity amendment parameter was raised. The fractal model was firstly constructed and H parameters and fractal dimensions were computed. Considering its sensitivity to noise, the connectivity relationship between the center and ambient gray scale inner the slider windows was used to amend H parameters respectively, and further enhance the image for better results. The simulation results showed that the method can not only stress the edge of smaller gray-ray difference but also be of better noise immunity.
     The polarization analyzation was used to study the scattering and a new restoration method based on the blind separation was raised. An ICA (Independent Component Analysis) model was firstly constituted based on the radiograph mechanism and the sub-band images in high frequency domain by wavelet transform were utilized as estimating source. We utilized the least mutual information entropy as the criteria for blind separation and deduced to the optimization estimation. The experimental results showed that the method can effectively depress the scattering and improve the contrast.
     On the analyzing of the traditional three-dimensional CT reconstruction, based on the circular scanning, combined with FDK algorithm, a new 3D industrial CT reconstruction algorithm to directly reconstruct the characteristics was brought forward, and the feasibility of the new algorithm was theoretically deduced. Using the fundament of the new algorithm, contacted with the traint of the wavelet before and after RADON, it was deduced to use 2-D wavelet transform to extract the characteristics, and the characteristics were directly reconstruct in the 3D CT to obtain the interested parts. From the generability and multi-characteristics reconstruction EMD was applied in the theory and implementation of three-dimensional CT reconstruction. And an optimal EMD decomposing control method was proposed based on the combination of information entropy and PSNR, and further experimentally verified. The experiment results showed that the CT reconstruction method based on EMD can effectively reconstruct a variety of characteristic information of the original image. By the comparison with the related algorithms, the new method is proved of better preservation to the high frequency information, stronger resistance to noise, easier filter design and shorter time-consuming.
引文
[1]R.S.Ledley, G.DiChiro, A.J.Luessenhop and H.L.Twigg, Computerized transaxial X-Ray tomography of the human body, Science,186(1974),207-212.
    [2]GN.Hounsfield, A method and apparatus for examination of a body by radiation such as X or gamma radiation. Image separation radiosocope scanning, Patent Specification 1283915, The patent office, London,England(1972).
    [3]G.N.Hounsfield, Computerized transverse axial scanning tomography:Part I, description of the system, Br.J.Radiol.,46(1973),1016-1022.
    [4]H. E. Martz, C. M. Logan et al, Digital Radiography and Computed Tomography with a 9-MV LINAC, UCRL-JC-131251.
    [5]G.S. Ramakrishna, Urnesh Kumar, S. S. Datta et al. Design and Applications of Computed Industrial Tomographic Imaging System (CTIS). In:Proceedings of 14th World Conference on NDT. New Delhi, India:1996,293-299.
    [6]Halmshaw R., Industrial Radiology-Theory and practice, Capman & Hall,2nd edition, 1995.
    [7]庞彦伟.工业CT技术研究_提高CT图像质量的几个途径[D].华北工学院硕士论文,2001.
    [8]黄魁东.锥束CT仿真系统关键技术研究[D].西北工业大学硕士学位论文,2006.
    [9]庄天戈.CT原理和算法[M].第一版.上海:上海交通大学出版社,1992,1-99.
    [10]邹晓兵.锥束工业CT扫描方式与近似重建算法的改进[D].重庆大学硕士学位论文,2007,3-5.
    [11]叶海霞.工业CT窄角扇束卷积反投影并行图像重建研究[D].重庆:重庆大学硕士学位论文,2003,3-8.
    [12]L.A.Feldkamp, L.C.Davis, J.W.Kress. Practical cone-beam algorithm[J]. Opt.Soc.Am., 1984,1(A),612-619.
    [13]Jiang Hsieh.Computed Tomography:Principle, Design, Artifacts and Recent Advances [M].北京:科学出版社,2006.
    [14]霍修坤.锥束CT直接三维成像算法研究[D].安徽大学博士学位论文.2005.
    [15]冀东江.三维锥束CT迭代重建算法的研究[D].重庆大学硕士论文
    [16]Bruno M.Carvalho, Gabor T. Herman. Helical CT reconstruction from wide cone-beam angle data using ARI[C]. Computer Graphics and Image Processing. IEEE,2003,363-370.
    [17]Maria Magnusson Seger, Per-Erik Danielsson and Johan Sunnegardh. Handling of Long objects in Iterative Reconstruction from Helical Cone-Beam Projections[C].The Eighth International Meeting on Fully Three-dimensional Image Reconstruction in Radiology and Nuclear Medicine,2005,75-79.
    [18]王召巴.基于面阵CCD相机的高能X射线工业CT技术研究,南京理工大学博士学位论文,2001.10.
    [19]陈树越.X射线数字图像质量改善研究,南京理工大学博士论文,2001.
    [20]丰国栋.数字化X线摄影图像增强方法研究[D].中国科学技术大学博士论文,2009,5,12-20.
    [21]韩焱,弹药装药高能X—射线数字图像处理技术[D],北京理工大学博士论文,1998.
    [22]D.G.Manolakis,John Orr.Low-cost automatic contrast enhancement for digital x-rays.SPIE,1992, Vol.1705,187-194.
    [23]M.Kamel,Lian Guan.Histogram equalization utilizing spatial correlation[J]. SPIE,1989, Vol.1199,712-721.
    [24]Yunqing Li,Wenjun Wang,Daoyin.Application of adaptive histogram equalization to X-ray chest image[J]. SPIE,1994, Vol.2321,3-4.
    [25]Stephen M.Pizer,E.Philip Amburn, John D.Austin,Robert Cromartie.Adaptive histogram equalization and its variations [J]. Computer Vision, Graphics and Image Processing(CVGIP),1987,39,355-368.
    [26]王彦臣.基于多尺度数字X光图像增强方法的研究[D],中国科学院博士学位论文,2005.
    [27]张大鹏,王义,李元景等.数字x射线图像综合校正方法研究[J].核电子学与探测技术,28(1),46-51.
    [28]Vincent L., Soille P..Watersheds in digital spaces:an effieient algorithm based on immersion simulations[J].IEEE Transaetions on Pattern Analysis and Machine Intelligenee, 1991,13(6),583-598.
    [29]Haris K, Efstratiadis SN. Hybrid image segmentation using watersheds and fast region merging[J].IEEE Transactions on image Processing,1998,7(12),1684-1699.
    [30]Chanda B, Kundu MK, Padmaha YV.A multi-scale morphologic edge detector[J].1998, Pattern Recognition,31(10),1469-1478.
    [31]Selesnick IW, Baraniuk RG,Kingsbury NG.2005.The dual-tree complex wavelet transforms a coherent framework for multiscale signal and image Proeessing.IEEE Signal Proeessing Magazine,22(6),123-151.
    [32]Andrews H.C., Digital image restoration:a survey, Comput.,7,36-45,1974.
    [33]Cunningham I.A., Fenster A., A method for modulation transfer function determination from edge profiles with correction for finite element differentiation, Med.Phys.1987,14(4), 533-537
    [34]Fishman A., Feldman U., Notea A., Segal Y., Point Spread Function Due to Photon Scattering in Iron Radiography, Mat. Eval 1983,41(9),1201-1207.
    [35]李永利,桂志国等,X射线检测中散射模型的理论分析,华北工学院测试技术学报,2000,14(1),12-17.
    [36]Lee H. C., Review of image-blur models in photographic system using principles of optics, Opt. Eng.,1990,29(4),22-31.
    [37]Hiroshi Fujita,Du-Yih Tsai et al., A simple Method for Determining the Modulation transfer Function in Digital Radiography, IEEE Trans. On Medical Imaging,1992,11(1), 34-39.
    [38]Karin Knessaurek, Two new experimental methods of calculating scatter fraction as a function of depth in scattering media:A comparison study, Med. Phys.1992,19(3),591-598.
    [39]Axelsson J.A., Generalized scatter correction method in SPECT using point scatter distribution function, J. Nucl. Med.,1987,28,1861-1869.
    [40]葛云,图像恢复在工业CT中的应用研究[D],东南大学硕士论文,1996.3
    [41]Peters T.M., Spatial filtering to improve transverse tomography [J], IEEE Trans Bio Med. Eng. BME.,21(3),1974,214-219.
    [42]潘晋孝,工业CT重建算法及其误差分析[D],华北工学院博士学位论文,2002.
    [43]邹谋炎,反卷积和信号复原,北京:国防工业出版社,2001,161-290.
    [44]杨军.点模型的降噪与三维重建算法研究[D],西南大学博士论文,2004.
    [45]L.Alan Love, Robert A.Kruger. Scatter estimation for a digital radiographic system using convolution filtering, Med.Phys.14(2),1987,178-185.
    [46]Fishman A.,Wajnberg S.,Notea A., Segal Y.. Extraction of dimensions from Radiographs, Mat.Eval,1981,39(7),744-747.
    [47]Karin Knessaurek. Two new experimental methods of calculating scatter fraction as a function of depth in scattering media:A comparision study, Med.Phys.1992,19(3),591-598.
    [48]Frederiek C.Wagner, Albert Maeovski, and Dwight G.Nishimura, A CharaeteriZation of the Scatter Point-Spread-Function in Terms of Air Gaps, IEEE Trans.On Medical Imaging.vol.7.NO.4,1988,337-344.
    [49]Feldman U., Bushlin Y., Notea A..Effects of finite dimensions of an object on radiographic imaging, NDT Int.1988,21(6),415-421.
    [50]Hamid Fahimi, Algert Macovske.Reducing the effects of scattered photons in X-ray projection imaging,IEEE Trans, Medical Imaging, vol 8, No.1,1989,56-63.
    [51]郭武,张鹏,王润生.独立分量分析及其在图像处理中的应用现状[J].计算机工程与应用,2008,44(23),172-176.
    [52]K. C. Tam, J. W. Eberhard, K. W. Mitchell. Incomplete Data CT Image Reconstruction in Industrial Applications. IEEE Transactions on Nuclear Science,1990,37(3),1490-1499.
    [53]张慧滔,迭代法在图像重建中的研究与应用[D],首都师范大学硕士论文,2005.5
    [54]Herman G T. Imaging reconstruction from projections [M], Academic Press., New York, 1980.
    [55]R.M. Lewitt, M.R. Mckay, Description of a software package for computing cone-beam x-ray projections of time-varying structures, and for dynamic three-dimensional image reconstruction, Department of Computer Science Tech. Rep. MIPG45(State University of New York at Buffalo, Bufflo, N.Y., May,1980)
    [56]Grangeat G, Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform, Mathematical Methods in Tomography. Lecture Notes in Math, Vol.1497 (G. T. Herman, A. K. Louis, and F. Natterer, eds.),1991.
    [57]王黎明.基于数字平板探测器的工业DR/CT技术研究[D],中北大学博士学位论文,2005,17-31.
    [58]A.M.Cormack, Representation of a function by its line integrals with some radiological application, J.Appl.Phys.,34(1963),2722-2727
    [59]Y. Ye and G. Wang:Exact FBP CT reconstruction along general scanning curves, Med. Phys.32 (2005),42-48.
    [60]王璟,李政,离散Radon变换卷积分配性及在从投影直接提取CT图像边缘的应用,核电子学与探测技术,2004,24(4):359-362
    [61]林世明,W.-M.Boerner,离散Radon变换,西北工业大学学报,1988,6(2),173-180.
    [62]Jesse Kolman. Waleed S. Haddad, Dennis M. Goodman. Application of a Constrained Optimization Algorithm to Limited View Tomography. SPIE,1994,2299,270-279.
    [63]R. Gordon. A Tutorial on ART (Algebraic Reconstruction Techniques). IEEE Transactions on Nuclear Science,1974, NS-21,78-93.
    [64]H. E. Knutsson, P. Edholm, G. H. Granlund, C. Petersson, Ectomography-a new radiographic reconstruction method,Ⅰ., Ⅱ., IEEE Trans. on Biomed. Eng.1980, BME-27, 640-655.
    [65]O. Nalcioglu, Z. H. Cho, Reconstruction of 3-D objects from cone-beam projections, Proc.1978, IEEE66,1584-1588.
    [66]G. N. Minerbo, Convolutional reconstruction from cone-beam projection data, IEEE trans. Nucl. Sci.1979,NS-26,2682-2684.
    [67]Zang Hee Cho, Ed X. Wu, Sadek K. Hilal. Weighed Back-projection Approach To Cone Beam 3D Projection Reconstruction For Truncated Spherical Detection Geometry. IEEE Trans. Med. Imaging,1994,13(1),110-121.
    [68]B. D. Smith, Chen J, Implementation Investigation and improvement of a Novel Cone-Beam Reconstruction Method. IEEE Transactions on medical imaging,1992, 11(2),260-266.
    [69]惠苗.锥形束三维XCT重建算法研究,中北大学硕士学位论文,2006.
    [70]王春燕等.X射线成像系统的非线性特性,核电子学与探测技术,2002,22(6),496-498.
    [71]Clack R, Defrise M, Cone-beam reconstruction by the use of Radon transform intermediate functions, Journal of Optical Soc.Am.A,1994.
    [72]Tuy H K, An inversion formula for cone-beam reconstruction, SIAM Journal on Applied Mathematics,1983,43,546-552.
    [73]Smith B, Image reconstruction from cone-beam projections:necessary and sufficient conditions and reconstruction methods, IEEE Trans. Med. Imaging,1985,4,14-25.
    [74]Kudo H, Noo F and Defrise M, Cone-beam filtered-backprojection algorithm for truncated helical data, Phys. Med. Biol.,1998,43,2885-2909.
    [75]Kudo H, Noo F and Defrise M, Quasi-exact filtered backprojection algorithm for long object problem in helical cone-beam tomography, IEEE Trans. Med. Imaging,2000, 19,902-921.
    [76]Gullberg G T, Zeng G L, Christian P E, Tsui B M W, and Morgan H T. Single photon emission tomography of the heart using cone beam geometry and noncircular detector rotation[C].In Proc.11th Int.Conf. On Information Processing in Medical Imaging, 1991,123-138.
    [77]Gullberg G T and ZengG L. A cone beam filtered backprojection reconstruction algorithm for cardiac single photon emission computed tomography [J].IEEE Trans.Imag., 1992,11(1),91-101.
    [78]Wang G, Lin T H, Cheng P C.A general cone-beam reconstruction algorithm[J].IEEE Tans. On Medical Imaging,1993,12(3),486-295.
    [79]Ying Liu, et al. Half-scan Cone-beam CT fluoroscopy with multiple X-ray sourse.J, MedPhys,2001,28,1466.
    [80]Katsevich A, Theoretically exact filtered backprojection-type inversion algorithm for Spiral CT, SIAM Journal on Applied Mathematics,2002,62,2012-2026.
    [81]Katsevich A, Improved Exact FBP algorithm for Spiral CT, Adv. Appl. Math.32(2004), 681-697.
    [82]Katsevich A, A General Scheme for Constructing Inversion Algorithm for cone beam CT. Int. J. Math. Sci.2003,21,1305-1321.
    [83]Zou Y and Pan X C, Exact image reconstruction on PI-lines from minimum data in helical cone-beam CT, Phys. Med. Biol.,2004,49,941-959.
    [84]中国机械工程学会无损检测分会编,射线检测,机械工业出版社,1997
    [85]叶侠娟等.CT系统的能谱估计及射束硬化校正算法,CT理论与应用研究,2003,12(2),10-15.
    [86]刘德镇,现代射线检测技术,中国标准出版社,1999:52-109.
    [87]R. Halmshaw Industrial Radiology:Theory and Practice. Applied Science Publishers, Barking, Essex,1995
    [88]屠耀元等,射线检测技术,世界图书出版公司,1997,32-35.
    [89]中华人民共和国国家军用标准,工业射线层析成像(CT)检测,国防科学技术工业委员会.
    [90]李征,基于非晶硅TFTs射线成像系统的校正方法研究,华北工学院硕士论文,2003.3.
    [91]R.Fischer,M.Akay.Improved Estimators for Fractional Brownian Motion Via the Expectation-maximization Algorithm[J].Medical Engineering & Physics,2002,24(2),77-83.
    [92]李水根,吴纪桃.分形与小波[M],科学出版社,2002,11-61.
    [93]赵健,雷蕾,蒲小勤.分形理论及其在信号处理中的应用[M].清华大学出版社,2008,22-43.
    [94]S.Stach,J.Cybo.Multifractal Description of Fracture Morphology[M].Theoretical Basis.Materials Characterization,2003,51 (3),79-86.
    [95]C.H.Luo et al.Measuring the Fractal Dimension of Diesel Soot Agglomerates by Fractional Brownian Motion Processor[J].Atmospheric Environment,2005,39(2),3565-3572.
    [96]Guy jumarie.Random Time-dependent Brownian Motion a New Approach to Fractals of Order n[J].Chaos,Solitons and Fractals,2002,14(6),715-724.
    [97]李莉.基于分形维数和分形布朗运动的原木缺陷图像处理[D],东北林业大学硕士论文,2007,42-48.
    [98]张东衡,沈永增,张敏捷.基于分形的低反差图像增强方法[J],浙江工业大学学报,34(3),266-268
    [99]李清顺,杨定楚,秦前清。基于分形小波变换的医学图像增强[J],计算机工程与设计,2005,26(3),807-809.
    [100]Pentland P. Fractal-based descriptions of natural scenes[J]. IEEE PAMI,1984,6 (6),661-674.
    [101]J. Brewer,L.Di Girolamo.limitations of Fractal Dimension Estimation Algorithms with Implications for Cloud Studies[J].Atmospheric Research,2006,23(9),201-228.
    [102]Donald R.McGaughey,G.J.M.Aitken.Geneating Two-dimensional Fractional Brownian Motion Using the Fractional Gaussian Process(FGp) Algorithm[J].Physica A,2002,311(8),369-380.
    [103]Roberts S J, Everson R. Independent component analysis:Principles and practice[M]. UK:Cambridge University Press,2001.
    [104]Y.Y.Schechner, S.Narasimhan, Polarization-based vision through haze, App.Opt, 2003,42,511-525.
    [105]E.Namer and Y.Y.Schechner.Advanced visibility improvement based on polarization filtered images[C].In Proc.SPIE,2005,5888,36-45.
    [106]Jing Lin, Aimin Zhang. Fault feature separation using wavelet-ICA filter[J], NDT&E International 38 (2005),421-427.
    [107]王乐,顾学迈.基于小波变换和ICA的卫星测控信号盲识别算法[J],南京航空航天大学学报,2009,41(1),59-61.
    [108]Eero P. Simoncelli. Statistical models for images:Compression, restoration and synthesis[J].31st Asilomar Conf on Signals, Systems and Computers,1997,673-678.
    [109]冉启文、谭立英,小波分析与分数傅里叶变换及应用,国防工业出版社,2002.
    [110]李建平,小波分析与信号处理,重庆出版社,1997.
    [111]王兰.基于小波变换的图像边缘检测算法研究[D],武汉科技大学硕士论文,2009.
    [112]康颐.基于小波变换的医学图像边缘检测技术研究[D],成都理工大学硕士论文,2008.
    [113]HUANG N E, SHEN Z, LONG S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proc Roy Soc London A, 1998,454(1),903-995.
    [114]谭善文.多分辨希尔伯特—黄(Hilbert-huang)变换方法的研究[D].重庆大学博士论文,2001.5
    [115]陈方林.直接重建目标特征的CT算法研究[D],中北大学硕士论文,2009,36-42.
    [116]朱雪龙.应用信息论基础[M].清华大学出版社.
    [117]KirillovA A. On a problem of I.M.Gel'fand[J].Sov Math Dokl 1961,2,268~269.
    [118]K.C.Tam. Helical and Circle Scan Region of Interest computerized tomogramphy. U.S.Pat.5 United States Patent 5463666,1995.
    [119]S Schaller, T Flohr and P Steffen, "New, Efficient Fourier-reconstruction Method for Approximate Image Reconstruction in Spiral Cone-Beam CT at Small Cone Angles", In SPIE Medical Imaging, Newport Beach, California, USA,1997.
    [120]Henrik Turbell. Cone2beam reconstruction using filtered backprojection[D]. Sweden: Department of Electrical Engineering LinkEpings universitet,2001.
    [121]Grass M, et al.3D cone-beam CT reconstruction for circular trajectories [J]. Physics in Medicine and Biology,2000,45 (2),329-347.
    [122]Grass M, et al. Angular weighted hybrid cone beam CT reconstruction for circular trajectories [J]. PhysMed Biol,2001,46 (6),1595-1610.
    [123]Siemens AG, Erlangen. An efficient Fourier method for 3-D radon inversion in exact cone-beam CT reconstruction. IEEE transactions on medical imaging.1998,17 (2),244-50.
    [124]Hiroyuki Kudo, Tsuneo Saito. Derivation and Implentation of a Cone-Beam Reconstruction Algorithm for Nonplannar Orbits[J]. IEEE Trans Med Imag 1994,13,196-211.
    [125]Emil Y. Sidky, Chien-Min Kao, Xiaochuan Pan. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT[J]. Journal of X-Ray Science and Technology,2006,14(2),119-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700