直接乙醇燃料电池的原位紫外拉曼光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接乙醇燃料电池使用的燃料乙醇是一种可再生能源,因其能够取代直接甲醇燃料电池,避免甲醇有毒,渗透等问题,而受到人们广泛的关注。到目前为止,研究人员已经运用各种分析手段对乙醇燃料电池展开了深入研究,其目的是提高乙醇燃料电池催化剂的活性,提高燃料电池的工作效率和使用寿命。对乙醇电催化氧化机理这一难题,进行深入研究探讨的报道还很少,而采用紫外拉曼光谱技术与原位单电池相结合的方式,对直接乙醇燃料电池机理进行研究,尚无报道。对乙醇燃料电池电催化氧化机理的探索和认识,有助于提高乙醇燃料电池的电化学反应速率,设计新型高效的乙醇燃料电池。
     本实验通过紫外拉曼光谱与气相色谱相结合的方法,研究乙醇燃料电池原位反应过程中,中间物种的生成及变化。其中,特别设计的原位反应单池,能够正常与紫外拉曼光谱结合使用,并且可以检测到有反应物,催化剂及中间物种产生的拉曼信号。
     燃料电池中的阳极燃料乙醇与阴极氧气在催化剂作用下发生反应,生成的CO2和水可由气相色谱检测到,说明电池性能和运行状态良好,并且乙醇已发生电催化氧化反应。在反应过程中,通过原位紫外拉曼光谱观察到1713 cm-1处出现了表征中间物种乙醛和乙酸的C=O峰。另外,本文在实验过程中优化各种反应操作条件,确定产物及中间物种的变化,有助于进一步观察乙醇燃料电池电催化氧化的过程,对乙醇机理的进一步分析和认识提供了帮助。
People pay much attention on direct ethanol fuel cells (DEFCs) as ethanol is a renewable and clean resource. The DEFCs is a potential replacement of methanol fuel cell due to its non-toxic and non-permission characters. Researchers have studied DEFCs using different techniques aiming at improving the activity of catalyst, the performance of the fuel cell and the operating life. There have been fewer reports on the mechanism of ethanol catalytic oxidation by far. The investigation on ethanol catalytic oxidation mechanism by UV-Raman spectroscopy technology combining with in-situ single cell has not been reported. The study on the mechanism of ethanol catalytic oxidation can improve the electrochemical reaction rate and design efficient ethanol fuel cells.
     In this study, the intermediates and products of the ethanol oxidation reaction were investigated by in-situ UV Raman spectroscopy and gas chromatography. The Raman signals of ethanol, catalyst and intermediates were successfully detected by the UV-Raman spectroscopy combined with specially designed in-situ single cell.
     CO2 and H2O produced in the catalytic oxidation reaction of ethanol can be detected by gas chromatography, indicating that the good operation condition of the fuel cell. A new peak at 1713 cm-1, which is assigned to stretching mode of C=O in acetaldehyde or acetic acid, is observed in Raman spectra. Furthermore, more about ethanol catalytic oxidation mechanism can be obtained by improving the conditions of experiment and observing the changes of the intermediates and products.
引文
[1]黄志.燃料电池-低碳经济的可行之选[J].科协论坛,2010,07-115-01.
    [2]DHAR H P, DARBY R, YOUNG V Y, et al. The effect of heat treatment atmospheres on the electrocatalytic activity of cobalt tetraazaannulenes:preliminary results [J]. Electrochimica Acta,1985,30:423-429.
    [3]WANG Z R,QIAN J Q, WANG S R, et al. Improvement of anode-supported solid oxide fuel cells [J]. Solid State Ionics,2008,179:1593-1596.
    [4]刘雁.燃料电池人类未来的能源终极解决方案[J].资源与人居环境,2007,34:28-31.
    [5]衣宝廉.燃料电池:原理·技术·应用[M].北京:化学工业出版社,2003.
    [6]孙艳,苏伟,周理.燃料电池[M].北京:北京化学工业出版社,2005,1-2.
    [7]APPLEBY A J. Fuel cell technology:status and future prospects [J]. Energy,1996, 21:521-653.
    [8]朱梅,徐献芝,苏润.燃料电池的研究现状与方向[J].科技进展.2003,26(2):85-87.
    [9]毛宗强.燃料电池[M].北京:化学工业出版社,2005:1-3.
    [10]DELIME F, LEGER J M, LAMY C. Optimization of platinum dispersion in Pt-PEM electrodes:application to the electrooxidation of ethanol [J]. J Appl Electrochemistry,1998,28:27-35.
    [11]URBAN P M,FUNKE A,MULLER J T, et al. Catalytic processes in solid polymer electrolyte fuel cell systems [J]. Applied Catalysis A:General,2001,211:459-470.
    [12]SONG C. Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century [J]. Catalysis Today,2002,77:17-49.
    [13]CARRETTE L, FRIEDRICH K A, STIMMING U. Fuel cells-fundamentals and applications [J]. Fuel cells,2001,1:5-39.
    [14]LEGER J M. Mechanistic aspects of methanol oxidation on platinum-based electrocatalysts [J]. Journal of Applied Electrochemistry,2001,31:767-771.
    [15]FUJIWARA N, FRIEDRICH K A, STIMMING U. Ethanol oxidation on PtRu electrodes studied by differential electrochemical mass spectrometry [J]. Journal of Electroanalytical Chemistry,1999,472:120-125.
    [16]LAMY C, LIMA A, LERHU V, et al. Recent advances in the development of direct alcohol fuel cells [J].J. Power Sources,2002,105:283-296.
    [17]SOUZA J P I, RABELO F J B, MORAES I R, et al. Performance of a co-electrodeposited Pt-Ru electrode for the electro-oxidation of ethanol studied by in situ FTIR spectroscopy [J]. J. Electroanal.Chem.,1997,420:17-20.
    [18]HIRSEHEHENHOFER J H, STAUFFER D B, ENGLEMAN R R, et al. Fuel Cell Handbook, Fourth Edition,1998.
    [19]CARRETTE L, FRIEDRICH K A, STIMMING U. Fuel cell:principles.types, fuels, and applications [J], Chemphyschem,2000,1:162-193.
    [20]苗青.直接甲醇燃料电池的建模与控制研究[D].上海:上海交通大学,2005.
    [21]贾林,邵震宇.燃料电池的应用与发展[J].煤气与热力,2005,25(4):73-74.
    [22]BUSSTEIN G T, MCINTYPE D R, VOSSEN A, et al. Relative activity of a base catalyst toward electro-oxidation of hydrogen ndmethanol [J]. Electrochemistry,2002,5: 80-83.
    [23]GENERAL M.GM delivers first fuel cell truck to US army [J]. Fuel Cells Bulletins, 2005,6:2-3.
    [24]TRIPKOVI A V, POPOVI K D, GRUGUR B N, et al. Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions [J]. Electrochimica Acta,2002,47:3707-3714.
    [25]Zhao X S, Li W Z, Jiang L H, et al. Multi-wall carbon nanotube supported Pt-Sn nanoparticles as an anode catalyst for the direct ethanol fuel cell [J]. Carbon, 2004,42:3263-3265.
    [26]Zhou W J, Li W Z, Song S Q, et al. Bi-and tri-metallic Pt-based anode catalysts for direct ethanol fuel cells [J].J Power Sources,2004,131:217-223.
    [27]于如军.管状直接甲醇燃料电池的研制及其建模与控制[D].上海:上海交通大学,2006.
    [28]SILVA A M, COSTA L O O, BARANDAS A P M G, et al. Effect of the metal nature on the reaction mechanism of the partial oxidation of ethanol over CeO2-supported Pt and Rh catalysts[J]. Catalysis Today,2008,133:755-761.
    [29]IWASITA T, PASTOR E. A dems and FTir spectroscopic investigation of adsorbed ethanol on polycrystalline platinum [J]. Electrochim. Acta,1994,39(4),531-537.
    [30]VARCOE J R, SLADE R C T, YEE E L H, et al. Investigations into the ex situ methanol, ethanol and ethylene glycol permeabilities of alkaline polymer electrolyte membranes[J]. J. Power. Sources,2007,173:194-199.
    [31]SIEBEN J M, DUARTE M M E, MAYER C E. Methanol oxidation on carbon supported Pt-Ru catalysts prepared by electrodeposition-evaluation of Nafion 117 film effect[J]. International Journal of Hydrogen Energy,2010,35:2018-2024.
    [32]DELUGA G A, SALGE J R, SCHMIDT L D, et al. Renewable hydrogen from ethanol by autothermal reforming[J]. Science,2004,303:993-997.
    [33]FILHO T G, GONZALE E R, MOTHEO A J, et al. Electro-oxidation of ethanol on gold: analysis of the reaction products and mechanism[J]. J Electroanal Chem,1998,444: 31-39.
    [34]KIM I, HAN 0 H, CHAE S A, et al. Catalytic reactions in direct ethanol fuel cells [J]. Angew. Chem.Int. Ed.,2011,50:2270-2274.
    [35]JR R S, ANJOS D M D, GERMANO T F, et al. Modeling and simulation of the anode in direct ethanol fuels cells[J]. J. Power. Sources.,2008,180:283-293.
    [36]Wang J T, WASMUS S,SAVINELL R F. Evaluation of ethanol,1-propanol, and 2-propanol in a direct oxidation polymer-electrode fuel cell [J]. J. Electrochem. Soc.,1995,142:4218-4224.
    [37]HE Z B, CHEN J H, LIU D Y, et al. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation [J]. Diamond and Related Materials,2004,13:1764-1770.
    [38]GHUMMAN A, PICTUP P G. Efficient electrochemical oxidation of ethanol to carbon dioxide in a fuel cell at ambient temperature [J]. J Power Sources,2008,179:280-285.
    [39]Li R, Yang C X. Effect of pH on PtRu electrocatalysts prepared via a polyol process on carbon nanotubes [J]. Electrochimica Acta,2008,17:5563-5568.
    [40]He Z B, Chen J H, Liu D Y, et al. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation [J].Diamond and Related Materials,2004,13(10):1764-1770.
    [41]ANTOLINI E. Catalysts for Direct Ethanol Fuel Cells [J]. J. Power Sources.2007, 170:1-12.
    [42]LAMY C, ROUSSEAU S, BELGSIR E M, et al. Recent progress in the direct ethanol fuel cell:development of new platinum-tin electrocatalysts [J]. Electrochim. Acta,2004,49:3901-3908.
    [43]Zhou W J, Zhou Z H, Song S Q, et al. Pt based anode catalysts for direct ethanol fuel cells [J].Applied Catalysis B:Envienmental,2003,46:273-285.
    [44]CAMARA G A, LIMA R B, IWASITA T. Catalysis of ethanol electrooxidation by PtRu: the Influence of Catalyst Composition [J].Electrochem. Commun.2004,6:812.
    [45]HOLZE R, CATTANEO B B. The oxidation state of upd-tin on a platinum electrode studied with surface raman spectroscopy[J]. Electrochimica Acta,1988,33:353-358.
    [46]MIN M K, CHO J, GHO K, et al. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications [J]. J. Electrochim. Acta,2000, (45): 4211-4217.
    [47]LAI S C S,KOPER M T M. Ethanol electro-oxidation on platinum in alkaline media[J]. Physical Chemistry Chemical Physics,2009,11:10446-10456.
    [48]LAI S C S,KLEYN S E F, ROSCA V, et al. Mechanism of the dissociation and electrooxidation of ethanol and acetaldehyde on platinum as studied by SERS[J].J. Phys. Chem. C,2008,112:19080-19087.
    [49]HOLROYD R P, BOWKER M. Molecular bean studies of alcohol (C1-C3)adsorption and reaction with oxygen pre-covered Pd(110) [J]. Surface Science,1997,377:8703-8713.
    [50]BOWKER M, HOLROYD R P, SHARPE R G, et al. Molecular beam studies of ethanol oxidation on Pd(110) [J]. Surface Science,1997,370:113-124.
    [51]PEREZ J M, BEDEN B, HAHN F. "In situ" infrared reflectance spectroscopic study of the early stages of ethanol adsorption at a platinum electrode in acid medium [J]. J. Electroanal. Chem.,1989,262:251-261.
    [52]SOUZA J P I, QUEIROZ S L, BERGAMASKI K, et al. Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques [J]. J. Phys. Chem. B,2002,106,9825-9830.
    [53]WANG H, JUSYS Z, BEHM R J. Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts:A quantitative DEMS study [J]. J. Power. Scources,2006,154,351-359.
    [54]SONG S Q, ZHOU W J, ZHOU Z H, et al. Direct ethanol PEM fuel cell:The case of platinum based anode [J]. Int.J. Hydrogen Energy,2005,30:995-1001.
    [55]VIGIER F, COUTANCEAU C,HAHN F, et al. On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts:electrochemical and in suit IR reflectance spectroscopy studies[J]. J. Electroanal. Chem.,2004,563:81-89.
    [56]HITIM H., BELGSIR E M, LEGER J M, et al. A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium [J]. Electrochim. Acta,1994,39:407-415.
    [57]MA Z F, ZHANG D Y, LONOVEL B, et al. Electrocatalytic oxiation reaction kinetics of ethanol on Pt electrode[C].206nd meeting of the ECS. Oct.3-8, USA,2004
    [58]陈玉伦.拉曼光谱仪的研制及预处理方法研究[D].浙江:浙江大学,2005.
    [59]张兵.有机小分子在铂基电极上吸附和反应的电化学和SERS研究[D].江西:江西师范大学,2004.
    [60]熊光.紫外拉曼光谱在分子筛和担载型氧化钼催化剂研究中的应用[D].辽宁:大连化学物理研究所,1999.
    [61]许莉莉.表面增强拉曼散射的温度效应及紫外拉曼光谱研究[D].北京:首都师范大学,2004.
    [62]STAIR P C. The application of UV Raman Spectroscopy for the characterization of catalysts and catalytic reaction [J]. Advance in Catalysis,2007,51:75-98.
    [63]FRANK C J, REDD D C B, GANSLER T S, et al. Characterization of human breast biopsy specimens with near-IR Raman spectroscopy [J]. Anal. Chem.,1994,66:319-326.
    [64]LI C, XIONG G, XIN Q, et al. UV Resonance Raman spectroscopic identification of titanium atoms in the framework of TS-1 zeolite [J]. Angew. Chem. Int. Ed.,1999,38: 2220-2222.
    [65]XIONG G, LI C, FENG Z C, et al. Surface coordination structure of molybdate with extremely low loading on Y-Alumina characterized by UV Resonance Raman spectroscopy [J]. J. Catal.,1999,186:234-237.
    [66]XIONG G, FENG Z C, LI J, et al. UV Resonance Raman spectroscopic studies on the genesis of highly dispersed surface molybdate species on Y-Alumina [J]. J. Phys. Chem.B.,2000,104:3581-3588.
    [67]江天籁.共振拉曼光谱学在化学中的应用[J].光谱学与光谱分析,1984,3:7-13.
    [68]柯惟中,衡航.显微拉曼光谱技术在司法文书中的一些应用[J].光散射学报,2008,20:136-141.
    [69]许永健,罗荣辉,郭茂田.共聚焦显微拉曼光谱的应用和进展[J].激光杂志,2007,28:13-17.
    [70]贾茹,崔启良,李芳菲.一套高温高压原位拉曼散射、布里渊散射测量系统[J].南华大学学报,2006,20:136-141.
    [71]CHI Z H, ASHER S A. Ultraviolet resonance raman examination of horse apomyoglobin acid unfolding intermediates [J]. Biochem.1999,38:8196-8203.
    [72]HARTMANN, MARTIN, KEVAN, et al. Transition-metal ions in aluminophosphate and silicoaluminophosphate molecular sieves:location, interaction with adsorbates and catalytic properties [J]. Chemical Reviews,1999,99:635-664.
    [73]范峰滔,徐倩,夏海岸,等.催化材料的紫外拉曼光谱研究[J].催化学报,2009,30:717-739.
    [74]MESTL G,KLLOZINGER H,ERTL I, et al. Handbook of Heterogeneous Catalysis[M]. 1997.
    [75]刘卫峰.Pt/C及合金催化剂的研制[D].辽宁:中国科学院大连化学物理研究所,2002.
    [76]MARIE J, FABRY S B, ACHARD P, et al. Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cell-electrodes:comparison of two different synthesis paths [J]. Journal of Non-Crystalline Solids.2004,350:88-96.
    [77]PARK G G, SOHN Y J, YANG T H, et al. Effect of PTFE contents in the gas diffusion media on the performance of PEMFC [J]. Journal of Power Sources.2004,131:182-187.
    [78]TAY S W, ZHANG X H, LIU Z L, et al. Composite Nafion membrane embedded with hybrid nanofillers for promoting direct methanol fuel cell performance. Journal of Membrane Science.2008,321:139-145.
    [79]RADMILOVIC V, GASTEIGER H A, ROSS P N. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation [J]. Journal of Catalysis.1995,154(1):98-106.
    [80]RICE S F, CROISET E. Oxidation of simple alcohols in supercritical water Ⅲ. Formation of intermediates from ethanol [J]. Ind. Eng. Chem. Res.,2001,40:86-93.
    [81]YU Y, LIN K, ZHOU X G, et al. New C-H stretching vibrational spectral features in the Raman Spectra of gaseous and liquid ethanol [J]. J. Phys. Chem. C.,2007,111, 8971-8978.
    [82]邹晗,郑晓燕,潘玉莲.乙醇和甲醇混合溶液的拉曼光谱法研究[J].大学物理实验,2005,18:1-6.
    [83]BLATCHFORD M A, RAVEENDRAN P, WALLEN S. Raman spectroscopic evidence for cooperative C-H…O interactions in the acetaldehyde-C02 complex [J]. J. AM. CHEM. SOC.,2002,124:14818-14819.
    [84]KIM I, HAN 0 H, CHAS S A, et al. Catalytic reactions in direct ethanol Fuel Cells [J]. Angew.Chem. Int.Ed.,2011,50,2270-2274.
    [85]FILHO T G, GONZALEZ E R, MOTEO A J, et al. Electro-oxidation of ethanol on gold: analysis of the reaction products and mechanism [J]. J. Eletroanal. Chem., 1998,444,31-39.
    [86]CRUPI V, VENUTI V, MAJOLINO D, et al. Hydrogen bond interaction in bulk and confined liquid polymers studied by FT-IR and Raman spectroscopy[J]. Journal of Molecular Struture,1998,482:509-513.
    [87]NISHI N, NAKABAYASHI T, KOSUGI K. Raman spectroscopic study on acetic acid clusters in aqueous solutions:Dominance of acid-acid association producing microphases [J].J. Phys. Chem. A.,1999,103:10851-10858.
    [88]NAKABAYASHI T, NISHI N. States of molecular associates in binary mixtures of acetic acid with protic and aprotic polar solvents:A Raman spectroscopic study [J]. J. Phys. Chem. A.,2002,106,3491-3500.
    [89]NGJB, SHURVELL H F. Appllcation of factor analysis and band contour resolution techniques to the Raman spectra of acetic acid in aqueous solution [J]. J. Phys. Chem., 1987,:91:496-500.
    [90]吴建军,张元静.温度和浓度对直接甲醇燃料电池性能的影响[J].石家庄学院学报,2005,7(6):13-16.
    [91]HSU W Y, BARKLEY J R, MEAKIN P. Ion percolation and insulator-to-conductor transition in nafion perfluorosulfonic acid membranes [J]. Macromolecules,1980, 13:198-200.
    [92]JUNG D H, LEE C H, KIM C S, et al:Performance of a direct methanol polymer electorly fuel cell [J].J Power Sources,1998,71:169-173.
    [93]宋树芹,陈利康,刘建国等.直接乙醇燃料电池初探[J].电化学,2002,8:105-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700