复合高铁酸盐处理焦化废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以复合高铁酸盐作为混凝剂和氧化剂,对焦化废水中CODcr、NH_3-N、酚、色度、
    浊度等脱除效果进行研究,并对影响高铁酸盐氧化、絮凝的环境条件进行了较全面的考
    察,分析了各种因素对上述污染物指标去除率的影响。通过对高铁酸钾制备方法的改进,
    以复合高铁酸盐溶液代替纯的高铁酸钾晶体作为水处理剂,并采用紫外-可见分光光度
    法和循环伏安法研究了高铁水溶液的稳定性。试验研究表明:(1)用复合高铁酸盐溶
    液代替纯高铁酸钾晶体作为混凝剂,不仅可大大降低混凝剂处理焦化废水的成本,而且
    能保证一定的高铁有效浓度;(2)通过在复合高铁酸盐溶液中添加一种稳定助剂A,
    高铁的稳定性得到很大提高,且不会影响高铁的氧化、混凝效能,对于相同初始浓度的
    复合高铁酸盐溶液,当质量百分比浓度为10%的稳定助剂A的加入比例为1:10(V:V)
    时,当放置时间为200hr时高铁分解率可由84%降至40.2%,稳定性提高了50%;(3)
    对于初始CODcr=159.85mg/L,pH=6.86,T=25.4℃的焦化废水系统排放水,当废水中
    CFeO_4~(2-)=5.68mg/L时,CODcr脱除率可达49.21%,此时pH=12.49;当调节pH使废水的
    pH=7左右时,CODcr脱除率可达58.54%;(4)用复合高铁酸盐对氨氮不能达标的焦化
    废水系统排放水(氨氮浓度≤2.706mg/L)进行深度处理时,氨氮脱除率可以达到98%
    以上,处理后废水的氨氮浓度仅为0.0345mg/L,远低于国家排放标准,与投加其它类型
    混凝剂(如聚铁、聚铝加聚丙烯酰胺等)作为废水的三级处理方法相比,不仅药剂的投
    加量小,而且处理效果更加优异,处理成本也基本相当,并且不会产生二次污染,作为
    焦化废水的深度处理无疑具有重要的应用推广意义;(5)当用复合高铁酸盐处理高氨
    氮浓度的焦化废水(氨氮浓度≈2935.5mg/L)时,氨氮脱除率可达56%左右;处理后的
    废水中NH_3-N浓度基本可满足生化处理对氨氮的要求,作为生化处理前废水的预处理与
    传统的蒸氨工艺相比,该方法设备投资少,处理工艺更加简便,如果高铁的生产成本能
    进一步降低,可有望取代现有的蒸氨工艺;(6)复合高铁酸盐被用于处理原水色度为
    250,CODcr≈150mg/L的焦化废水时,当废水中高铁浓度为1.73mg/L,pH=6.17时,色
    度脱除率可达76.41%;pH=7.3时,脱色率为73.47%,脱色后的废水无色无刺激气味,
    色度指标优于国家废水排放标准,复合高铁酸盐作为一种理想的环保型水处理剂,应用
    
     广西大学硕士毕业论文:复合高铁酸盐处理焦化废水的研究
    于饮用水或工业废水处理时,-显示了优良的氧化和絮凝、凝聚效能,”且其分解产物为
    Fe’”和内)。,不仅具有电中和和吸附架桥作用,Fe’”对于 A/0法生物处理阶段还是一
    种不可或缺的元素;(7)通过与四种聚硅酸盐类絮凝剂处理的比较研究可知,当用复合
    高铁酸盐处理焦化废水时,其主要处理技术指标(如加人量、色度脱除率、剩余浊度等)
    均优于其它三种聚硅酸盐类絮凝剂,并且所形成的絮凝体颗粒小,数量少,沉降速度快,
    是一种新型、优良、实用的水处理剂。
STUDY ON THE COKING WASTEWATER TREATMENT BY USING COMBINED FERRATE
    ABSTRACT
    In this paper, the combined ferrate was used for the treatment of cocking wastewater as a flocculant and oxidant. The removal efficiency of CODcr, NHs-N, hydroxybenzene, chroma and turbidity were studied. Environmental conditions were investigated systematically, and all the effects on the contamination removal at different environmental conditions were analyzed. An improvement was adopted in the preparation of potassium ferrate and the combined ferrate was applied as a flocculant. The stability of the combined ferrate solution was analyzed by using the UV- Visible Spectrophotometer and the Cyclic Voltammograms. The experimental results showed that: (1) The cost of the treatment of cocking wastewater would decrease by use of the combined ferrate instead of the pure potassium ferrate as a flocculant, and the efficient concentration of Fe2O42" could also be kept at a certain degree more than that needed. (2) To the same initiative concentration of combined ferrate solutions, the stability of Fe2O42" could be improved at 50% level when a certain kind of additive (A) was added at the scale of 1 : 10 and the holding time of 200hr. And the oxidation and flocculation abilities of Fe2C>42" were not affected. (3) The CODcr removal rate could be reached to 58.54% when the CFeO42" = 5.68mg/L, pH=7, T=25.4*C and the initial CODcr = 159.85 mg/L. (4) The ammonia-nitrogen (NHs-N) removal rate could be reached to 98% when the initial NH3-N sS2.706mg/L, and the residual NH3-N was 0.0345mg/L . The results were better than that of other flocculants when they were used in the third-stage disposal. (5) When the combined ferrate was used in dealing with the high concentration of ammonia - nitrogen (NH3-N?2935.5mg/L), the removal rate could be reached to 56%. The residual NH3-N concentration could be met the microorganism need in A/O stages. This method was superior man the traditional technique, such as the investment of the equipment would be less. The feasibility would be realized easily when Ihe cost of the ferrate preparation was decreased and the stability would be better. (6) The chroma removal rate could be reached at 73.47% by 1.73mg/L ferrate when -the initial chroma was 250 and the pH=6.17, CODcr ? 150mg/L of the cocking wastewater. The disposed wastewater had no color and odor, having the characters as the clean water. The
    
    
    
    microorganism and the activejsludge. (7) The ferrate,was, a green flocculaht with more
    oxidation, coagulation-flocculation and adsorption abilities compared with the other kinds of
    organic or inorganic polymer flocculants.
引文
[1]Ganczarczyk. J.J., "Fate of Basic Pollutants in Treatment of Coke-Plant Effluents", Proc. 36th Ind. Waste Conf., Purdue University, 1981.
    [2]Thomas. A. and E. L. Stover. "Petroleum Processing and Synthetic Fuels" J. Water Pollu. Control Fed., Vol. 60, No. 6, 1988.
    [3]Makino. Y., etal., "Toxicity of Granular Activated Carbon Treated Coal Gasification Water as Determined by the Microtox Test and Esherichia Coll." J. Micro. Sci., Vol. 9, No. 1, 1986.
    [4]Cowan, B. W., "Petroleum Processing and Synthetic Fuels". J. Water Pollu. Control Fed., Vol. 59, No. 6, 1987.
    [5]沈伟文、李惠萍,“焦化厂酚氰污水三级处理效果”。冶金环境保护,第七期,1986。
    [6]Potts M, Churchwell D R. Water Enviro Res, 1994, 66(2): 107~109.
    [7]国家环境保护局,“钢铁工业废水治理”,中国环境科学出版社,1992:77~79。
    [8]C. H. 拉佑林 著,李哲浩译,“焦化厂废物处理”,冶金工业出版社,1984。
    [9]T. M. 莱温 著,戚辰生译,“钢铁企业污水污染水体的防治”,冶金工业出版社,1984。
    [10]张芳西 著,含酚废水的处理与利用,化学工业出版社,1984。
    [11]何苗,张晓健,焦化废水中芳香族有机物及杂环化合物在活性污泥法处理中的去除特性,中国给水排水,1997,Vol.13,No.1:14~16。
    [12]安阳钢铁集团公司环保处“安钢焦化废水处理系统存在问题及情况分析报告”,2000。
    [13]Ashmore, A. G., etal., "A Review of Methods for the Treatment of Liquid Effluents from the Carbonization Process." in "The Coke-Oven Manager's year Book." 1973.
    [14]Freese, R. A., etal., "Wet Air Oxidation Studies of Coal Gasification Wastewaters." J. Hazard Mater., Vol. 8, No. 4, 1984.
    [15]Richard, W., etal., "Biological Treatment of Coal Gasification Waste Water. Wat. Res., Vol. 14, No. 8, 1980.
    [16]Luthy, G., "Biological Treatment of Coal Gasification Process Wastewater." War. Res., Vol. 14, No. 8, 1980.
    
    
    [17]Catchpode, J. K., etal., "The Bological Treatment of Carbonization Effluents-Ⅲ, New Advances in the Biochemical Oxidation of Liquid Wastes." Wat. Res., Vol. 6, No. 9, 1972.
    [18]Shivaraman, N., etal., "Microbial Degradation of Thiocyanate, Phenol and Cyanide in a Completely Mixed Aeration System." Environ. Poll. Series A, Vol. 39, No. 1, 1985.
    [19]Defalco, A. J., "Biological Treatment of Coke Plant Wastewaters." Iron and Steel Engineer, Vol. 52, No. 3, 1975.
    [20]Luthy, G., "Treatment of Coal Coking and Gasification Wastewaters." J. WPCF., Vol. 53, No. 3, 1981.
    [21]王克正,“焦化厂酚氰废水的两段生化处理”,化工环保,c
    [22]徐根良,“活性污泥法处理低浓度煤气化——焦化含酚废水”,环境污染与防治,Vol.12,No.4,1990.
    [23]Senetar, J.J., "Characterization and Treatment of Coal Gasification Condensate Waters." Diss. Abstr. Int. B, Vol. 47, No. 7, 1987.
    [24]Berndt. C.L. and Rollms. R. M., “新的污水处理方法”,国外环境科学技术,第四期(总第32期),1985。
    [25]Schultz, J.R., etal., "Powdered Activated Carbon Treatment Process Mechanisms." J. Water Pollut. Control Fed., Vol. 56, No. 2. 1984.
    [26]Bhattacharyya. A., and A.C. Middleton, "Development of a Biological Treatment System Achieving BATEA for Coke Plant Wastewater." 11~(th) Mid-Atlantic Ind. Wastewater Couf., Penn. St. University, State College, 1979.
    [27]Ganczarczyk. J.J., "Pilof Plant Studies on Secon Stage Activated Sludge Treatment of Coke Plant Effluents," Report to AISA, 1977.
    [28]Ganczarczyk. J.J., "Second-Stage Activated Sludge Treatment of Coke Plant Effluents." Water Research, Vol. 13, No. 2. 1979.
    [29]Blum, Diane J.W., and Richard Hergenroeder, "Anaerobic Treatment of Coal Conversion Wastewater Constituents: Biodegradability and Toxity." J. WPCF, Vol. 58, No. 2, 1986.
    
    
    [30]Healy Jr., "Catechol and Phenol Degradation by a Methanogenic Population of Bacteria." Appl. Environ. Microbiol., 35, 216, 1978.
    [31]Healy Jr., "Anaerobic Biodegradation of Eleven Aromatic Compound to Methane." Appl. Environ. Microbiol., 38, 84, 1979.
    [32]Rees, J. F., "The Dynamics of Anaerobic Phenol Biodegradation on Lower Greensand." J. Chem. Tech. Biotechnol., 31. 306, 1981.
    [33]Wang, yitin, "The Effect of Concentration of Phenols on Their Batch Methanogenesis." Biotech. Bioeng. Vol. 33, P1357~1358, 1989.
    [34]Suidan, M.T., "Anaerobic Filters for the Treatment of Coal Gasification Wastewater." Biotech. Bioeng. Vol. 25, p. 1581~1596, 1983.
    [35]秦麟源编著,废水生物处理,同济大学出版社,1989。
    [36]Sforza, M. P. and M. Catano, "Study of Integrated Biodisc Process for Coke-Oven Wastewater Treatment." Wat. Supply, Vol. 6, p. 175~180, 1988.
    [37]张秋波,“酚水及煤气化废水的湿式氧化处理”,环境科学学报,第七卷,第3期,1987。
    [38]Bhattacharyya. D., etal., "Reverse-Osmosis Membrane for Treathing Coal-Liquefaction Wastewater." Environ. Prog. Vol. 3. No. 2, 1984.
    [39]夏国寿,“过氧化氢水溶液在紫外光亚铁离子作用下处理难分解有机废水的研究”,中国环境科学,第8卷,第3期,1998。
    [40]James, C.H., et al., "Oxidation of Organic Compounds in Solvent-Refined Coal Wastewater via Ulrtaviolet Trradiation.", DOE/ET/10485-77, U. S. Dept. Energy, Washington. D. C., 1987.
    [41]Calabrese Ardrew, etc., J. Amer. Chem. Soc., 95(9), 2819-22, (1973)
    [42]R. H. Herbert and David Johnson, Inorg. Chem., 18, (10), 1979.
    [43]K. S. Kim, etc., Synthesis, 866, 1984.
    [44]K. S. Kim, etc., Tetrahedron Lett., 27(25), 2875-78, 1986.
    [45]Gilvert, M., etc., J. Am. Water Works Assoc., 68(9)495, 1976.
    
    
    [46]加藤健司,水处理技术,25,(1).9,1984.
    [47]Rice, R.G. etc., J. Am. Water Workers Assoc., 73, (1), 44, 1981.
    [48]Monscrictz, J. T., etc., J. Am. Water Workers Assoc., 73(2), 94, 1981.
    [49]曲久辉,路光杰,汤鸿霄,电解制备高效聚合铝的溶液化学因素,环境化学,1997,16(6):522~527。
    [50]曲久辉,雷鹏举,多功能高铁絮凝剂电化学合成的机理和条件。环境化学,1997,16(6):528~533。
    [51]L Caceres, R Contreras. Municipal wastewater treatment by lime/ferrous sulfate and dissolved air flotation(DAF): Water Science and Technology, 1995, 31(3~4):285~294.
    [52]K M Allal, M Ouchefoun, M Boumahrez. Oxidation of iron(Ⅱ)sulphate to iron(Ⅲ) sulphate and use in water treatment. Journal of Chemical Technology and Biotechnology, 1996, 96(4): 398~404.
    [53]汤鸿霄,“羟基聚和氯化铝的絮凝形态学”,环境科学学报,1998,18(1):1~10.
    [54]高宝玉,宋永会,聚硅酸硫酸铁混凝剂的性能研究,环境科学,1997,18(2):46~48.
    [55]王东升,吴奇藩,韦朝海,新型无机高分子絮凝剂含铁聚硅酸的研制及其性能,环境科学,1997,18(3):17~19.
    [56]袁相理,程里,石瑞英等,新型混凝剂聚硅酸硫酸铝的研究,城市环境与城市生态,1997,10(3):1~3。
    [57]F T Li, GD Ji,, G Xue. The preparation of inorganic coagulantpoly ferric sulfate. Journal of Chemical Technology and Biotechnology, 1997, 68(2): 219~221.
    [58]M C Koether, J E deutschman, G W Vanloon. Low-coast polymeric aluminum coagulant. Journal of Enviormental Engineering-ASCE, 1997, 123(9): 859~864.
    [59]Takao Hasegawa etal. [P]. US 4 923 629, 1990.
    [60]张魁禄,聚丙烯酰胺的合成和絮凝作用的应用,辽宁化工,1996,1:10~11。
    
    
    [61]董银卯,于鲲,梁颖州,新型阳离子有机絮凝剂的研制,工业水处理,1996,16(2):20~22。
    [62]杨通在,刘以农,杨君,阳离子型改性高分子絮凝剂对轻工废水的处理,工业水处理,1998,18(3):27~29。
    [63]H Ganjidoust, K Tatsumi, S Wada, et al. Role of peroxidase and chitosan in removing chlorophenols from aqueous solution. Water Science and Technology, 1996, 34(10): 151~159.
    [64]A Ndabigengesere, KS Narasiah, BG Talbot. Active agents and mechanism of coagulation of tubid waters using Moriga oleifera. Wat. Res., 1995, 29(2): 703~710.
    [65]R Kurane, et al., "Purification and characterization of lipid bioflocculant produced by Rhodococcus erythropolis". Bioscience Biotechnology and Biochemistry, 1994, 58(11): 1977~1982.
    [66]张木兰,新型高效、无毒水处理剂——微生物絮凝剂的开发与应用,工业水处理,1996,16(1):7~8。
    [67]辛宝平,庄源益,李彤等,生物絮凝剂的研究和应用,环境科学进展,1998,6(5):57~62。
    [68]H H Suh, et al. Characterization of bioflocculant produced by Bacillus sp. DP-152. "Journal of Fermentation and Bioengineering," 1997, 84(2): 108-112.
    [69]B Uma, S Sandhya. "Pyridine degradation and heterocyclic nitrification by Bacillus coagulans", Canadian Journal of Microbiology, 1997, 43(6): 595-598.
    [70]G S Kwon, et al. "A novel flocculant biopolymer produced by Pestalotiopsis sp KCTC 8637P", Biotechnology Letters, 1996, 18(12): 1459-1464.
    [71]高廷耀,顾国维编,“水污染控制工程”(第二版),高等教育出版社,1999,3:206-210.
    [72]加藤健司,高铁酸钾的杀菌研究(Ⅰ),水处理技术(日),1983,24(12):929~934。
    
    
    [73]加藤健司,高铁酸钾的杀菌研究(Ⅱ),水处理技术(日),1984,25(1):9~15。
    [74]蒋兴锦,饮水的净化和消毒,北京,中国环境科学出版社,1989,195~196。
    [75]US, 4435526. 1984
    [76]Micheal E P, Duane R C. Water Enviran Res, 1994, 66(2): 107~109.
    [78]FR, 2654092, 1991.
    [79]石颖,马军,李圭白,pH值对高铁酸盐复合药剂强化除藻的影响,中国给水排水,2000,29(5):1~4.
    [80]JP, 316502, 1992.
    [81]加藤健司,高铁酸钾的杀菌研究(Ⅰ),水处理技术(日),1983,24(12):929~934。
    [82]加藤健司,高铁酸钾的杀菌研究(Ⅱ),水处理技术(日),1984,25(1):9~15。
    [83]蒋兴锦,饮水的净化和消毒,北京,中国环境科学出版社,1989,195~196。
    [84]US, 4435526. 1984
    [85]Micheal E P, Duane R C. Water Enviran Res, 1994, 66(2): 107~109.
    [86]FR, 2654092, 1991.
    [87]石颖,马军,李圭白,pH值对高铁酸盐复合药剂强化除藻的影响,中国给水排水,2000,29(5):1~4.
    [88]JP, 316502, 1992.
    [89]R. J. Audette and J. W. Quail, "Potassium, Rubidium, Cesium, and Barium Ferrate(Ⅵ). Preparation, Infrared Sepctra, and Magnetic Susceptibilities" Inorganic Chemistry, Vol. 11, No. 8, 1972: 1904~1908.
    [90]Rolfe H. Herber and David Johnson, "Lattic Dynamic and Hyperfine Interaction in M2FeO4(M=K+, Rb+, Cs+) and M' FeO4(M'=Sr2+, Ba2+), Inorganic Chemistry, Vol. 18, No. 10, 1979: 2786~2789.
    [91]Andrew Calabrese and Robert G. Hays, "Studies of the Valence Electron Level of Cr042-, Cr2072-,Mn04-, V042-, and Fe042- by X-Ray Photoelectron Spectroscopy", Journal of the American Chemical Society, 95: 9, May 2, 1973: 2819~2822.
    
    
    [92]Harold Goff and R. Kent Murnann, "Studies on the Mechanism of Isotopic Oxygen Exchange and Reduction of Ferrate (Ⅵ) Ion (Fe042-)", Journal of American Chemical Society, 93: 23, 10, 17, 1971: 6058~6065.
    [93]冀亚飞,高铁酸盐的制备及在水处理中的应用,现代化工,1998,3:17~19.
    [94]US, 4435256, 1984.
    [95]US, 4435257, 1984.
    [96]US, 4451338, 1984.
    [97]Kopelev N S, Perfiliev Y D, Kiselev Y M. Moessbauer study of sadium ferrates (Ⅳ) and (Ⅵ). J Radioanal Nucl Chem., 1992, 162(2): 235-251.
    [98]G. W. Thompson, L. T. Ockerman, J. M. Schrever, "Preparation and Purification of Potassium Ferrate (Ⅵ)", J. Am. Chem. Soc., 1951, 79, 1379~1381.
    [99]Louis T. Ockerman, "Janes M. Schreyer, Preparation of Sodium Ferrate (Ⅵ)", J. Amer. Chem. Soc., 1951, 73: 5478.
    [100]覃长森,刘玉莲,非氯型消毒剂高铁酸钾的合成,精细化工,1997,14(5):1~2。
    [101]G. W. Thomopson, etal; Preparation and Purification of Potassium Ferrate (Ⅵ), J. Am. Chem. Soc, 1951, 73: 1379~1981;
    [102]Thomopson J. A., "Process for Producing Alkali Metal Ferrate", U. S. Patent4385045, 1983.
    [103]雷鹏举,曲久辉,多功能复合高铁水处理药剂的电解制备研究,环境科学学报,1998,18(4)。
    [104]贾汉东,高铁直接分光光度法测定,分析化学,1999,27(5):617。
    [105]贾汉东,杨勇,“Fe(Ⅲ)催化下FeO_4(?)的分解反应动力学研究”,广州化工,1999年增刊:122-123。
    [106]Ye Baoxian, Xia Ping, Determination of the neurotransimitter-norepinephrine in the presence of ascorbic acid using carbon fiber microelectrodes activated by potentiostat, Microchemical Journal 64(2000), 125-130.
    
    
    [107]刘瑛,聚合物薄膜修饰电极的研制及其电催化性能研究,郑州大学研究生硕士论文,1998。
    [108]冶保献,张娟,聚亚甲蓝修饰碳纤维微电极的性质及对多巴胺的电催化测定,天津师大学报,2000(1),11-14。
    [109]Michael D. Johnson; Brooks J. Hornstein, Unexpected selectivity in the oxidation of arylamines with ferrate-preliminary mechanistic considerations, J. Chem. Soc. Chem. Commun. 1996, 8: 965~966.
    [110]Lionel Delaude; Pierre Laszlo; Pascal Lehance, Oxidation of Organic Substrates with Potassium Ferrate(Ⅵ)in the Presence of the K10 Montmorillonite, Tetrahedron Lett. 1995, 36: 46 8505~8508.
    [111]、国家环保局,水和废水监测分析方法,第三版,中国环境科学出版社,1997.
    [112]、国家环境保护局,钢铁工业废水治理,中国环境科学出版社,1992:77~79.
    [113]、安钢集团焦化厂工程信息,2000.10.
    [114]、秦麟源编著,废水生物处理,同济大学出版社,1989:89~91,202~203。
    [115]、孙剑辉,许毅,聚硅酸盐类絮凝剂的研究进展,工业水处理,2000,20(3):4~5;
    [116]、Waite T, J. Enviro Eng, 1979, 105(12): 1023~1034;
    [117]、冀亚飞,高铁酸钾的研制与应用实践,现代化工,1998,12:21~22;
    [118]、马英歌,樊耀亭,高铁酸盐处理焦化废水的研究,河南省2000年化学会论文集.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700