电解磁铁矿制备高铁酸盐工艺及其电化学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文提出用隔膜式电解槽,在浓苛性碱溶液中,直流电解阳极氧化
    Fe_3O_4制备高铁酸盐的新工艺。并就Fe_3O_4电极的组成、电解质种类及浓度、
    电解液温度、表观阳极电流密度、电解时间等工艺因素,对生成高铁酸盐
    电流效率的影响,进行了较为系统的研究。研究了Fe、Fe_3O_4、Pt、GC电
    极在纯NaOH溶液中、及在含有FeO_4~(2-)或FeO_2~-的NaOH溶液中的循环伏
    安特性;首次以GC电极发现了FeO_4~(2-)的阳极生成峰并提出将氧气析出反
    应的阳极电流与生成FeO_4~(2-)的阳极电流分离开来的条件。
     不论是Fe电极或是Fe_3O_4电极在NaOH电解液中,生成FeO_4~(2-)的电流
    效率均比在KOH电解液中高出3-6倍。不同的温度下,NaOH电解液的浓
    度从32.0wt.%变化到49.0wt.%,电流效率先增大后减小,在42wt.%时,
    电流效率达到最高。在电解液中加入0.5wt.%的NaCl可以提高电流效率。
     反应温度为303K、313K、328K时,FeO_4~(2-)的生成电流效率随着温度
    的升高而逐渐降低。在电流密度等于10mA.cm~(-2),电解液浓度为42wt.%时,
    三个温度下的最高电流效率分别为44.1%,38.2%和31.6%。
     电流密度是影响电流效率的重要因素,当电流密度太小时,生成FeO_4~(2-)
    的速率低,电流效率较低;电流密度太大,析氧反应占阳极过程的主导地
    位,生成FeO_4~(2-)的电流效率也较低;只在适宜的电流密度下才能获得较高
    的电流效率。在温度为303、313、328K,电流密度为11.2,13.6,15mA.cm~(-2)
    时所得最大电流效率分别为:47.8、45.8、41.1%。
     随着电解时间的持续,由于较浓高铁酸盐分解速度的加剧和阳极再钝
    化的逐渐形成,生成高铁酸盐的电流效率逐渐降低,溶液中的总铁含量与
    高铁酸根含量之比逐渐增大。
     Fe和Fe_3O_4电极的循环伏安曲线上,在0.65-0.70V的区域出现了一折
    点,此折点为FeO_4~(2-)的生成峰;FeO_4~(2-)的阴极还原峰的峰电势在-0.15V附近。
     以玻碳电极所测FeO_4~(2-)的阳极生成峰的峰电势介于760-960mV,且该
    峰的峰电流密度随扫描速度、FeO_4~(2-)和FeO_2~-的浓度增大而增大;温度升高,
    峰电位负移;峰电流密度与扫描次数、扫描方向、电解液通N_2除氧与否等
    因素都有密切的联系。在FeO_4~(2-)的浓度为0.001-0.1mol/1时,以GC电极所
    测FeO_4~(2-)还原峰的峰电流密度与FeG_4~(2-)浓度成线性关系(相关系数
    R=0.998),这为定量分析FeO_4~(2-)的浓度提供了一种较为可靠的方法。
In this thesis, the technique for preparing sodium ferrate(VI) by electrolyzing
     magnetite anode directly in concentrated NaOH solution was proposed for the first
     time. A diaphragm cell was used, and the effect of preparing conditions was studied.
     The results suggested that the composition of magnetite anode, the concentration of
     NaOH, the temperature, the current density and the duration time of electrolysis were
     the inlportant parameters, since the current efficiency greatly depended on them.
    
     KOI-I and NaOH solutions were used as electrolyte. On the same conditions, the
     current efficiency for producing ferrate(VI) was higher in NaOH than in KOH with
     the ratio from 3 to 6. AS the concentration of electrolyte varied in the range of
     32.Owt% to 49.Owt.%, the current efficiency for producing ferrate (VI) firstly
     increased, then decreased, and it could be seen that the maximum current efficiency,
     for all temperatures used, was at 42wt.% NaOH.
    
     The current efficiency for producing ferrate (VI) decreased with temperature
     increasing. The highest current efficiency for the temperature range 303 to 328K was
     obtained after 60mm of electrolysis at an anodic current density of 1 OmA.cm2, they
     were 44.1%, 32.8% and 3 1.6% at 303,313 and 328K, respectively.
    
     The current efficiency for producing ferrate (VI) greatly relied on the current
     density. If the current density was too small, the formation rate of ferrate (VI) was
     slow, so the current efficiency was not large enough. While the current density was
     too high, decrease in the ferrate (VI) yields by enhancement of the polarization and
     the parasitic oxygen evolution reaction. Therefore, there was one optimum current
     density at every temperature. The maximum current efficiency was 47.8%, 45.8% and
     41.1% for the case of at 303K and at 1l.2mA.cm , at 313K and at 13.6 mA.cm , at
     328K and at 15.0 niA.cm respectively.
    
     With increasing the electrolysis duration, the current efficiency decreased.
     Comparably the ratio of total iron to Fe6~ content in the anolyte increased.
    
     For the feature of the Cyclic Voltammetric curves for the stationary magnetlte
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
     3
    
    
    
    electrode, an inflection pint was observed in the potential range 650-700mv. And we
     also found a well-defined cathodic current peak at about ?0.1 5V vs. Hg/HgO in
     l6mol/l NaOH, corresponding to the reduction of ferrate(VI).
    
     Cyclic voltammetric curves were measured using stationary glass carbon (GC)
     electrode in I 6M NaOH solution containing Fe(TII) or Fe042 in the concentration
     range of 0.01?.02M and 0.00l--0.1M respectively. A previously no described anodic
     current peak clearly separated from that of oxygen evolution, with peak potential in
     the region of 740?60 mV vs. Hg/HgO(1 6M NaOH). was reported, which was
     identified as the oxidation of FeOj to Fe042. The current density (CD) and the peak
     potential of the anodic peak were dependent strongly on the electrolyte temperature,
     the scan rate and the cyclic number. A linear relationship with correlation coefficient
     R=O.998 was obtained between the cathodic peak CD and the concentration of Fe02
     over the range 0.O0l?.1 mol.1?in the 16 NaOH solution. This provided a base for
     quantitative analysis the concentration of Fe042 in alkaline solution
引文
[1] W. Levason, C. A. McAuliffe, Higher oxidation state chemistry of iron, cobalt, and nickel, Coord. Chem. Rev., 12, 151-184(1974)
    [2] 申泮文,赵建国,铁的高价氧化态化合物(+4,+5,+6),《无机化学丛书》,第九卷,科学出版社,pp.266-267(1998)
    [3] 李致远,赵建国,高铁酸盐制备、性质及应用,化学通报,7,19-23(1993)
    [4] 李志远;赵建国,氧化法生产高铁酸钾的研究,无机盐工业,6,10~12(1991)
    [5] 李志远,赵建国,韦丽红,过氧化钠法高铁酸盐转化的实验研究,无机盐工业,5,10-12(1995)
    [6] E. Martinez-Tamayo et al., Termochim. Acta., 91, 249 (1985)
    [7] J. M. Schreyer, Higher valence compounds of iron, Oregon State College, Corvallis, Oregon (1948)
    [8] H. J. Hrostowski, A. B. Scott, The Magnetic Susceptibity of Potassium Ferrate, J. Chem. Physics, 18, 105(1950)
    [9] G. W. Thompson, L. T. Ockerman, J. M. Schreyer, Preparation and purification of potassium ferrate(VI), J. Am. Chem. Soc., 73, 1379-1381(1951)
    [10] D. H. Willias, J.T. Riley, Preparation and Alcohol Oxidation Studies of the Ferrate(Ⅵ) iron Inorg. Chim. Acta 8, 177-183(1974)
    [11] Lionel Delaude, Pierre Laszlo, A novel oxidizing reagent based on potassium: ferrate(Ⅵ), J. Org. Chem., 61, 6360-6370(1996)
    [12] S. Vicente-Pere, A. Cabrera-Martin, E. Martinez, Analytical chemistry of uncommon valences synthesis and reactivity of ferrate(Ⅵ), Quim. Anal., 30(4), 189-92(1976)
    [13] J. R. Gump, W.F. Wagner, J.M. Schreyer, Preparation and analysis of barium ferrate(Ⅵ), Anal. Chem., 26, 1957(1954)
    [14] H. Firouzabadi, D. Mohajer, M. Entezari-Moghaddam, Barium Monohydrate BaFeO_4·H_2O, a Useful Oxidant for the oxidatio of Organic Compounds under Aprotic Conditions Bull. Chem. Soc. Jpn. 61, 2185-2189(1988)
    [15] S. Licht, Iron-based storage battery, US 6033343, 2000/1998
    [16] S. Ogasarawa, M. Tanako, Y. Bando, Bull. Inst. Chem. Res. Kyoto Univ., 66, 64-67(1988)
    [17] D. E. Sunko, Ferrate(Ⅵ) formation by hydrogen peroxide in presence of ethylenediaminetetraacetate, J. Am. Chem. Soc., 83, 2777(1961)
    
    
    [18] Johnson, Michael D., US 5746994, Method for synthesizing ferrate from ferric compounds by oxidation
    [19] J. C. Poggendorf, Pogg. Ann., 54,372(1841)
    [20] F. Haber, Z Elektrochem, 7,215(1900)
    [21] W. Pick,Z Elektrodiem, 7,713(1901)
    [22] G. Grube, H. Gmelin, Elektrochem, 26,153(1920)
    [23] A. S. Venkatadri, H. H. Bauer, W. F. Wagner, Potentiostatic anodic synthesis of ferrate(Ⅵ),J. Electrochem. Soc., 121(2) ,249-250 (1974)
    [24] J. Tousek, Coll. Czech. Chem. Comm. 27,914 (1962)
    [25] K. Bouzek, I. Rousar, Current efficiency during anodic dissolution of gray cast iron to ferrate(Ⅵ) in concentrated alkali hydroxide solutions, J. Appl. Electrochem., 26,919-923 (1996)
    [26] K. Bouzek, I. Rousar, Current efficiency during anodic dissolution of white cast iron to ferrate(Ⅵ) in concentrated alkali hydroxide solutions, J. Appl. Electrochem., 26,925-931 (1996)
    [27] K. Bouzek, I. Rousar, Current efficiency during anodic dissolution of pure iron to ferrate(Ⅵ) in concentrated alkali hydroxide solutions, J. Appl. Electrochem., 27,679-684 (1997)
    [28] K. Bouzek, I. Rousar, Current efficiency during anodic dissolution of iron to ferrate(Ⅵ) in concentrated alkali hydroxide solutions, J. Appl. Electrochem., 23,1317-1322 ( 1993)
    [29] K. Bouzek, I. Rousar, The study of electrochemical preparation of ferrte(Ⅵ) using alternating current superimposed on the direct current. frequency dependence of current yields, Electrochim. Acta, 38(13) , 1717-1720 (1993)
    [30] K. Bouzek, I. Rousar, Electrochemical production of ferrte(Ⅵ) using alternating current superimposed on the direct current: gray and white cast iron electrodes, Electrochim. Acta,. 44,547-557 (1998)
    [31] K. Bouzek, I. Rousar, Electrochemical production of ferrte(Ⅵ) using alternating current superimposed on the direct current. pure iron electrode, J. Appl. Electrochem., 29,569-576 (1999)
    [32] F. Beck, R. Kaus, M. Oberst, Electrochim. Acta., 30,173 (1985)
    [33] A. Demvor, D. Pletcher, Electrochemical generation of ferrate, Part Ⅰ: Dissolution
    
    of an iron wool bed anode, J. Appl. Electrochem., 26,815-822 (1996)
    [34] A. Demvor, D. Pletcher, Electrochemical generation of ferrate, Part Ⅱ: Influence of anode composition, J. Appl. Electrochem., 26,823-827 (1996)
    [35] K. Bouzek, I. Rousar, H. Bergman, K. Hertwig, The cyclic voltammetric study of ferrate(Ⅵ) production, J. Eclroanal Chem., 425,125-137 (1997)
    [36] J. P. Deininger, Process for making potassium ferrate [Fe( Ⅵ)] by the electrochemical formation of sodium ferrate, US: 4435256, 1984/1983
    [37] O. J. Evrard, Alkali or alkaline earth metai ferrates, their preparation and their industrial applications, US: 5284642, 1994/1992
    [38] J. P. Deininger, Process for making a calcium/sodium ferrate adduct by the electrochemical formation of sodium ferrate, US 4451338, 1984/1983
    [39] J. P. Deininger, Process for producing ferrate employing beta-ferric oxide, US 5202108, 1993/1990
    [40] J. P. Deininger, Process for producing ferrate employing beta-ferric oxide, US 5217584, 1993/1990
    [41] J. A. Thompson, Process for producing alkali metai ferrates utilizing hematite and magnetite, US 4545974, 1985/1984
    [42] J. A. Thompsom, Process for producing alkali metai ferrates, US 4385045,1983/1981
    [43] J. J. Kaczur, Production of high purity stable ferrate salts, US 4500499, 1985/1983
    [44] J. P. Deininger, Process for preparaing potassium ferrate (K2FeO4) , US 4405573, 1983/1981
    [45] P. G. Mein, Method of removing potassium hydroxide from crystallized potassium ferrate(Ⅵ), US 4304760, 1981/1980
    [46] J. P. Deininger, Process for the electrochemical production of sodium ferrate [Fe(Ⅵ)], US 4435257, 1984/1983
    [47] N.Rapp.Becarud, CEA-R-Fr., Comis. Energ. At., 2895(1966)
    [48] Z, Y. A Pustovarova, O.A. J.Org.Chem.USSR, 37,2645(1967)
    [49] R. J. Audette, J. W. Quail, P. J. Smith, Tetrahedron Lett., 279-282(1971)
    [50] R. J. Audette, J. W. Quail, P. J. Smith, Chem.Soc.,Chen. Commum, 38-39(1972)
    [51] A. Schiopescu, A. Albu, D. Sandulescu, Rev. Roum. Chim., 36,65-69(1991)
    
    
    [52] Y. Tsuda, S. Nakajima, Chem. Lett., 1397(1978)
    [53] J. N. Bemiller, V. G. Kumari, S. D. Darlington, Tetrahedron Lett., 4143-4146(1972)
    [54] K. S. Kim, Y. K. Chang, S. K. Bae, C. S. Hahn Selective Oxidation of Allyic and Benzylic Alcohols Using Potassium Ferrate under Phase-Tranfer Catalysis Condition synthesis. 866(1984)
    [55] H. Frouzabadi, D. Mohajer, M. Entezari Silver Ferrate Ag_2FeO_4, An Efficient Selective Oxidizing Agent for the Oxidation of Benzylic and Allyic Alcohols to their Corresponding Carbonyl Compounds in Aprotic Organic Solvents Synthetic Communications., 16(2), 211-223(1986)
    [56] Michael D. Johnson, John F. Read, Kinetics and mechanism of the ferrate oxidation of thiosulfate and other sulfur-containing species, Inorg. Chem., 35, 6795-6799(1996)
    [57] 马军;刘伟,李圭白,高铁酸盐复合药剂强化混凝处理低温低浊水的试验研究,给水排水,23(11)9-11(1997)
    [58] 马军;刘伟、刘惠,高铁酸盐复合药剂除污染效能研究,给水排水,(2)21-24(1998)
    [59] 马军,石颖,刘伟,高铁酸盐复合药剂参氧化除藻效能研究,中国给水排水 5,9-11(1998)
    [60] 马军 王东田,高铁酸盐氧化助凝效能研究,给水排水,8,14-17(1998)
    [61] 寇丽华,新型水处理剂—高铁酸钾,天津化工,4(4)14~17(1990)
    [62] 吴黎平,新型高效水处理剂—高铁酸钾,河南化工,2,22-23(1994)
    [63] 秦有峰,新型高效水处理剂—高铁酸钾及其生产工艺,轻工环保 16(2)14-15(1994)
    [64] 周厚安,多效水处理剂高铁酸钾的制备及应用,石油与天然气化工,25(2)86-87(1996)
    [65] 吴佑安,用高铁酸盐控制三氯甲烷的研究,成都环保3,13(1989)
    [66] 曲久辉,高铁酸盐的多功能水处理效果及其应用展望,中国给水排水,13(3)21~23(1997)
    [67] 冀亚飞,丁毅,张雁秋,铁酸钾的制备及在水处理中的应用,现代化工,3,17~19(1998)
    [68] 刘伟,肖树宏,高铁酸钾及其复合药剂的多功能净水效能研究动态,
    
    中国给水排水,6,31-32(1998)
    [69] R. H. Murmann, et al., Water Research., 8(δ),543(1974)
    [70] T. D. Waite et al., WPCF, 50(3) (1978) ,543
    [71] M. Gilbert, et al.,AWWA., 68(9) ,495(1976)
    [72] 加藤健司,水处理技术24(12) ,13(1983)
    [73] S. Licht, B. H. Wang, S. Ghosh, Energetic iron(Ⅵ) chemistry: The Super-Iron Battery, Science, 285(13) ,1039-1042(1999)
    [74] W.Heister., Tech.Mitt.Krupp.,7(2) ,162-74(1954)
    [75] J.P.特开昭57-11124(1982)
    [76] M. Herren, H. U. GUdel, Ferrate(Ⅵ), a novel infrared luminophore, Inorg. Chem., 31(18) , 3683-4(1992)
    [77] Martin L.Hoppe, Acta. Cryst., B38, 2237(1982)
    [78] Harold Golf, PB-238057 31(1974)
    [79] 冯长春,周志浩,蒋凤生,杜春萍, 高铁酸钾的结构研究, 化学世界,1991(3) ,102-106
    [80] W. P. Griffit, J. Chem. Soc. A., 1467(1996)
    [81] R. J. Audette, J. W. Quail Potassium, Rubidium, Cesium, and Barium Ferrate(Ⅵ). Preparations, Infrared Spectra, and Magnetic Susceptibilities, Inorg. Chem., 11(8) 1904(1972)
    [82] Henry J.Hrostowski, Allen B.Scott, The Magnetic Susceptibiity of Potassium Ferrate, J. Chem. Phys. 18,105-107(1950)
    [83] Robert H.Wood, The heat, free energy and entropy of the ferrate (Ⅵ) ion, J. Am. Chem. Soc. 80,2038(1958)
    [84] R. Scholder, H. V. Bunsen, F. Kinder-Vater, W.Zeiss Z.anorg.u.allgem.chem. 282,268-79(1955)
    [85] H. Rose, Pogg. Ann., 59,315-24(1843)
    [86] J. M. Scheryer, L. T. Oxkwerman, Stability of the ferrate(Ⅵ) ion in aqueous solution, Andi. Chem., 23,1312-1314(1951)
    [87] W. F. Wagner, K. R. Gump, E. N. Hart, Factors affecting the stability of aqueous potassium ferrate(Ⅵ) solutions, Anal. Chem., 24, (1952) 1497-1498
    [88] Ernst, Teresa, Wawrzenczyk, Miroelawa, Cyfert Maria, Effect of pH on the kinetics of ferrate(Ⅵ) decomposition, Bull. Acad. Poc . Sci. Ser. Sci. Chim,
    
    27(10), 773-8(1979)
    [89] M. Wronska, Bull. Acad, Polon. Sci., 7, 137-42(1959)
    [90] B. Jexowska, Decomposition of potassium ferrate(Ⅵ) in concentrated potassium hydroxide solution, Bull. Acad. Polon. Sci., 5, 659-62(1957)
    [91] V. Ettel, J. Veprek-Siska, Reactions of very pure substances Ⅴ. decomposition of ferrates in alkaline solutions, Collect. Czech. Chem. Commun., 3498, 2182-8(1969)
    [92] J. M.Screyer, G. W. Tompson, T. Ockerman, Ferrate Oxidimetry: Oxidation of Arsenite with Potassium Ferrate(Ⅵ), Anal. Chem., 22(5), 691-692 (1950)
    [93] M. Screyer, G. W. Tompson, T. Ockerman, Oxidation of chromium with potassium ferrate(Ⅵ), Anal. Chem., 22(11), 1426-1427 (1950)
    [94] A. S. Venkatadri, W. F. Wagner, H. H. Bauer, Ferrate analysis by cyclic voltammetry, Anal. Chem., 43(8), 1115-1119 (1971)
    [95] 贾汉东,杨新玲,杨勇,高玉峰,高铁酸盐的直接分光光度法测定,分析化学,617(1995)
    [96] J. de Mollins, Bull. Soc. Chim., 16(2), 246(1871)
    [97] 贾汉东,尚中峰,杨新玲,邵海峰,高铁酸盐的量气分析法,分析化学,26(4),493(1998)
    [98] W. Schmickter, J. W. Chultze, "Electron transfer reactions on oxide covered metal electrodes", In "Modern Aspects of Electrochemistry", No. 17 Edited by J. O'M. Bockris, B. E. Conway, R. E. White. Plenum Press, New York, pp388-405(1986)
    [99] A. J. Appplely, "Electrocatalysis" In "Modern aspects of electrochemistry" No. 9, Edited by B. E. Conway, J. O'M Bockris, Plenum Press, New York, pp. 369-470(1974)
    [100] M. R. Tarasevich, and E. I. Khrushcheva, "Electrocatalytic properties of carbon materials", In "Modern Aspects of Electrochemistry", No. 19, Edited by B. E. Conway, J. O'M. Bockris, R. E. White. Plenum Press, New York, pp.315(1989)
    [101] 贾汉东 马宁 孙红宾 FeO_4~(2-)离子在水溶液中稳定性的研究 郑州大学学报31(1),66-69(1999)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700