用户名: 密码: 验证码:
变速恒频双馈风电机组并网控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风力发电规模的迅速发展,风电在电网中的比例越来越大,大型风力发电机组的并网运行控制问题目前得到了广泛的关注。双馈风力发电机组是目前最广泛采用的风电机组类型,由于其自身结构的特点,其大规模的应用会给机组自身控制和电网安全稳定运行带来一系列的问题。为满足未来电网并网规约对风电机组运行的要求,本论文对双馈风电机组的并网运行控制策略进行了研究。研究内容主要包括:
     建立了双馈发电机在电网同步坐标系下的数学模型,给出了双馈发电机阶段并网控制方法。根据双馈风力发电机运行的特点,针对双馈发电机并网前空载励磁阶段和并网后发电运行阶段分别采用了不同的无速度传感器矢量控制方案。在发电机并网前,根据双馈发电机空载时定子侧电压估计发电机并网前转速及转子位置,在并网运行阶段,采用一种基于双馈电机磁链关系的模型参考自适应方法进行转速及转子位置的跟踪。仿真和实验结果表明了这种方法的有效性。
     双馈发电机组电网故障情况下的低电压穿越控制问题是本文研究的重点。根据双馈风力发电机内部的电磁关系,分析了理想三相对称短路情况下双馈发电机运行状态对短路电流的影响。在此基础上本文提出了一种基于电网电压矢量定向的双馈发电机灭磁控制策略。研究表明这种方法可以在电网电压跌落程度较小的情况下有效地减小双馈风力发电机定子磁链中直流暂态分量的影响,提高双馈风电系统的稳定性。研究了电网对称故障情况下基于active crowbar的双馈发电机的控制策略。通过crowbar的合理设计和控制,可以实现电网严重对称故障情况下的低电压穿越运行。
     在风电机组的控制中,电网同步信息的准确获取是对风电机组控制的关键。针对传统的三相电网相角检测方法在电网波动及故障情况下的不足,本文提出了一种新型的数字锁相环设计方法。所提出的锁相环在正序负序双同步坐标系下,采用移相控制器消除电网不平衡电压带来的影响。针对电网频率偏移造成的移相的偏差,采用变周期采样的方法使系统有效的跟踪电网频率的变化。在电网不对称故障情况下,针对双馈发电机采用了正序和负序双同步坐标系下的矢量控制策略,分析了不同控制目标下所需的转子负序电流给定值。
     针对网侧变换器的控制,本文在传统的PWM整流器矢量控制方法的基础上,改进了正序负序双同步坐标系下的矢量控制方法,这种方法既可以根据不同控制目标对正序负序电流进行单独控制,也可以有效避免采用双同步坐标系可能带来的谐波问题。针对目前广泛采用的LCL滤波器,提出了一种不需添加额外传感器的有源阻尼控制方法,实验结果验证了这种方法的有效性。
     结合双馈风电机组的运行特点,提出了一种改进的配电网双馈风电场的电压控制策略。其中既包括传统的通过无功功率控制电网电压的方法也包括电网负序电压的补偿控制策略。给出了双馈风电机组不同运行状态下的无功功率的计算方法,阐述了双馈风电机组的无功功率控制方法及通过风电场无功功率控制电网电压的方法。针对电网电压不平衡的情况,给出了通过双馈风电机组抑制电网负序电压影响的控制方法,分析了双馈机组的控制电网负序电压的限制条件和控制策略。研究结果表明这种电压控制方法在风电场配电网连接条件下可以有效地提高风电场及机组运行的稳定性。
     研制了一套双馈风电机组实验室模拟平台。模拟平台上目前能够实现双馈发电机的无冲击并网运行控制,亚同步到超同步区间的变速恒频运行,发电机的有功无功功率解耦控制以及功率变换器的能量双向流动控制等功能。在实验室模拟平台基础上,以一个实际工程项目为背景研制了一套1.5MW双馈发电机组的功率变换器控制系统,并在试验站完成了部分地面测试。
With the development of wind power, the penetration of wind power in power grid increases rapidly. The grid connection operation of wind generator is paid great attention now. Doubly Fed Induction Generator (DFIG) is the most popular wind generator type adopted in the world. Because of its characteristic, the large-scale application of DFIG will bring many problems to the generator safety and power grid stability. In order to satisfy the grid code requirement, the grid connection control strategy of DFIG is researched in this dissertation. The main contents of this dissertation include:
     The mathematical model of DFIG in the synchronous coordinate system and the DFIG stage-wise control method are introduced. Due to the operation characteristics of DFIG, two close-loop control strategies are adopted respectively to estimate the rotor speed and position based on the generator grid-connect condition. Before the grid connection, the rotor speed and position are estimated through the stator voltage. When the generator is connected to the grid, the model reference adaptive control (MRAC) method based on the electromagnetism relationship of DFIG is used to estimate the rotor speed and position. The control strategy is verified by simulation and experimental results.
     Low voltage ride through (LVRT) control of DFIG is a significant content in this dissertation. Based on the electromagnetic relationship in DFIG, the principle of DFIG short circuit current is analyzed when three-phase short circuit fault occurred in stator and the influence of generator pre-fault operation state on short current is also analyzed. The active crowbar control method in symmetrical grid fault condition is researched. Simulation results shows that with proper design and control, LVRT of DFIG can be achieved during serious grid fault. In unbalanced grid condition, dual vector control strategy in positive and negative synchronous coordinate frame is adopted. Different negative sequence rotor current references for special control targets are introduced.
     The transient DC flux component will emerge in DFIG stator because of the voltage change caused by grid fault, which makes the output power fluctuate and the electromagnetic torque vibrate. A novel flux damping control strategy of DFIG based on grid voltage oriented is proposed. Research result shows that the transient DC flux component can be eliminated quickly and the stability of system will be improved, so this method is helpful to achieve the LVRT operation of DFIG system.
     In grid-connected wind generation systems, the grid information is very important to the control of wind generators and converters. In grid distortion and fault condition, especially in unbalanced condition, the detection of grid synchronization information will be badly disturbed. A novel three phase PLL design method is proposed because of the drawbacks of conventional grid voltage detection method. The influence caused by unbalanced voltage is eliminated by a delayed signal cancellation (DSC) controller in double synchronous reference frame.A variable period sampling method is used to trace the frequency and eliminate phase shift offset which is caused by frequency deviation.
     Based on the conventional vector control strategy of the grid side converter, an improved positive and negative sequence double synchronous vector control method is proposed. Through this method, both positive and negative sequence current can be controlled respectively and the front-end voltage distortion introduced by double synchronous will be avoided. The LCL filter is widely used in three phase voltage source PWM converter for its good performance. A novel active damping control strategy is proposed and the capacitor current estimate method is adopted so no addition sensor is needed. The feasibility of the proposed method is verified through experimental results.
     An improved grid voltage control strategy of DFIG wind farm in distribution networks is proposed based on the DFIG operation characteristic. The voltage control methods of reactive power and negative sequence voltage compensation are included. A modified reactive power limit calculation method in different operation states of DFIG is analyzed and the reactive power control strategy is introduced. The negative sequence voltage compensation control strategy of DFIG is proposed for unbalanced grid voltage condition. The compensation limit is given based on the current margins and DC voltage limitation of grid side converter. The distribution algorithms of negative sequence current in the wind farm and in the generator system are also introduced. Research result shown that the stability of wind farm and DFIG ysytem is improved through the grid voltage method.
     An experimental platform of DFIG wind power generation system is developed. The grid-connection control, VSCF operation between sub-synchronous and super- synchronous, active and reactive power decoupled control and bidirectional operation of converter system are achieved. Based on the experimental platform, a 1.5MW DFIG control system is designed for a project, and the on-ground test is carried out in the test bench.
引文
1 Hansen AD, Hansen LH. Wind Turbine Concept Market Penetration over 10 Years (1995– 2004), Wind Energy, 2007, 10(1): 81-97
    2李俊峰,马玲娟,唐文倩. 2008年世界风电发展回顾与展望.中国科技投资. 2009, (3): 64-66
    3 Lars Gertmar, Lars Liljestrand, Heinz Lendenmann. Wind Energy Powers-That-Be Successor Generation in Globalization. IEEE Trans. on Energy Conversion. 2007, 22(1): 13-28
    4雷亚洲, Gordon Lightbody.风力发电与电力市场.电力系统自动化. 2005, 29(10): 1-5
    5李俊峰,高虎,施鹏飞,等.中国风电发展报告2007.北京中国环境出版社, 2008: 1-14
    6叶杭冶.风力发电机组的控制技术.第2版.机械工业出版社, 2006: 3-20
    7王兵.我国风电设备的发展途径与建议.电器工业. 2009, (1): 40-42
    8耿华,杨耕,马小亮.并网型风力发电机组的控制技术综述.电力电子技术, 2006, 40(6): 33-36
    9马洪飞,徐殿国,苗立杰.几种变速恒频风力发电系统控制方案的对比分析.电工技术杂志. 2000, (10): 1-4
    10 H.Li, Z.Chen. Overview of Different Wind Generator Systems and Their Comparisons. IET Renewable Power Generation. 2008, 2(2): 123-138
    11 Soter.S, Wegener.R. Development of Induction Machines in Wind Power Technology. IEEE Proceedings of IEMDS Conference.2007, (2): 1490-1495
    12 Bansal.R.C. Three Phase Self-Excited Induction Generators: An Overview. IEEE Trans. on Energy Conversion. 2005, 22(2): 292-299
    13 G. Tapia, A Tapia. Wind Generation Optimization Algorithm for a Doubly Fed Induction Generator. IEE Proceeding on Generation Transmission and Distribution. 2004, 152(2): 253-263
    14李辉,何蓓.双馈风力发电系统的最大风能控制策略.太阳能学报. 2008, 29(7): 797-80
    15 K. C. Kim, S. B. Lim, K. Jang. Analysis on the Direct-Driven High Power Permanent Magnet Generator for Wind Turbine. IEEE, 2005: 243-247
    16 Torrey DA. Switched Reluctance Generators and Their Control. IEEE Trans. on Industrial Electronics. 2002, 49 (1): 3-14
    17黄守道,王耀南,王毅.无刷双馈电机有功和无功功率控制的研究.中国电机工程学报. 2005, 25(4): 87-93
    18李建林,付鸿雁,田桂娥,等.大型变速恒频风力发电机组建模与仿真.太阳能学报. 2008, 29(1): 6-12
    19郎永强.交流励磁双馈风力发电系统控制系统研究.哈尔滨工业大学博士论文. 2006: 13-18
    20 Chen Y, Pollay P, Khan A. PM Wind Generator Topologies. IEEE Trans. On Industry Applications, 2005, 41(6): 1619–1626
    21 Carrasco. J.M, Franquelo. L.G, Bialasiewicz. J.T and etc. Power-Electronic Systems for the Grid Integration of Renewable Energy Sources: A Survey. IEEE Trans. on Industrial Electronics. 2006, 53(4): 1002-1016
    22迟永宁,王伟胜,刘燕华等.大型风电场对电力系统暂态稳定性的影响.电力系统自动化. 2006, 30(5): 10-14
    23 Rogrrio G.de Almeida, Edgardo D. Castronuovo, J.A. Pecas Lopes. Optimum Generation Control in Wind Parks When Carrying Out System Operator Requests. IEEE Tran. On Power System. 2006, 21(2): 718-725
    24迟永宁,关宏亮,王伟胜. SVC与桨距角控制改善异步机风电场暂态电压稳定性.电力系统自动化. 2007, 31(3): 95-100.
    25 Grijalva.S, Dahman. S.R, Patten. K.J, Visnesky.A.M. Large-Scale Integration of Wind Generation Including Network Temporal Security Analysis. IEEE Transa. on Energy Conversion. 2007, 22(1): 181-188
    26雷亚洲, Gordon Lightbody.国外风力发电导则及动态模型简介.电网技术. 2005, 25(12): 27-32
    27 llah.N.R, Thiringer.T, Karlsson.D. Voltage and Transient Stability Support by Wind Farms Complying With the E.ON Netz Grid Code. IEEE Trans. on Power systems. 2007, 22(4): 1647-1656
    28张红光,张粒子,陈树勇.大容量风电场接入电网的暂态稳定特性和调度对策研究.中国电机工程学报, 2007, 27(31): 47-53
    29 Z.Chen. Issues of Connecting Wind Farms into Power Systems. Proceedings of 2005 IEEE/PES Transmission and Distribution Conference & Exhibition.2005: 1193-1198.
    30 Anaya Lara O, Jenkins N, McDonald.J.R. Communications Requirements and Technology for Wind Farm Operation and Maintenance. Proceedings of IEEE Conference on Industrial and Information System, 2006: 173-178
    31朱凌志,陈宁,王伟.兼顾接入地区无功需求的风电场无功控制策略.电力系统自动化. 2009, 33(5): 80-85
    32 O.Anaya Lara, F.M. Hughes, N.Jenkins and etc. Contribution of DFIG basedWind Farms to Power System Short-term Frequency Regulation. IEE Proceeding on Generation Transmission and Distribution. 2006, 153(2): 164-169
    33 El. Moursi.M, Joos. G, Abbey.C. A Secondary Voltage Control Strategy for Transmission Level Interconnection of Wind Generation. IEEE Trans. on Power Electronics. 2008, 23(3): 1178-1190
    34 Tao Sun, Zhe Chen, Frede Blaabjerg. Flicker Study on Variable Speed Wind Turbines with Doubly Fed Induction Generators. IEEE Trans. on Energy Conversion. 2005, 20(4): 896-905
    35关宏亮,赵海翔,迟永宁.电力系统对并网风电机组承受低电压能力的要求.电网技术. 2007, 31(7): 78-82
    36胡书举,李建林,许洪华.永磁直驱风电系统低电压运行特性的分析.电力系统自动化, 2007, 31(17): 73-77
    37 Ruben Pena, Roberto C ardenas, Jose Proboste, and etc. Wind–Diesel Generation Using Doubly Fed Induction Machines. IEEE Trans. on Energy Conversion. 2008, 23(1): 202-214
    38吴胜,周理兵,黄声华,李朗如.双馈电机的交直交控制.中国电机工程学报. 2005, 25(19): 146-151
    39杨淑英,张兴,张崇巍,等.变速恒频风力发电机投切控制策略.中国电机工程学报. 2007, 27(17): 103-109
    40邹旭东,赵阳,康勇,陈坚.并网型双馈发电机励磁控制技术研究.太阳能学报. 2007, 28(9): 1000-1007
    41林成武,王晓东,姚兴佳.双馈风力发电机功率特性的理论分析及实验研究.太阳能学报. 2008, 29(3): 328-331
    42张崇巍,张兴. PWM整流器及其控制.机械工业出版社, 2003: 2-12
    43金红元,邹云屏,林磊.三电平PWM整流器双环控制技术及中点电压平衡控制技术的研究.中国电机工程学报. 2006, 26(20): 64-68
    44 Ghodke.D.V, Chatterjee.K, Fernandes.B.G.. Three Phase Three Level, Soft Switched, Phase Shifted PWM DC–DC Converter for High Power Applications. IEEE Trans. on Power Electronics. 2008, 23(3): 1214-1227
    45 Marian P Kazmierkowski, Luigi Malesani. Current Control Techniques for Three Phase Voltage Source PWM Converter: A Survey. IEEE Trans. on Industrial Electronics. 1998, 45(5): 691-703
    46 Mariusz Malinowski, Marek Jasinski, Marian P. Kazmierkowski. Simple Direct Power Control of Three Phase PWM Rectifier Using Space-Vector Modulation (DPC-SVM). IEEE Trans. on Power Electronics. 2004, 51(2): 447-454
    47 Leonardo Augusto Serpa, Srinivas Ponnaluri, Peter Mantovanelli Barbosa, and etc. A Modified Direct Power Control Strategy Allowing the Connection of Three-Phase Inverters to the Grid through LCL Filters. IEEE Trans. on Industry Application. 2007, 43(5): 1388-1400
    48 Noguchi T, Tomiki H, Kondo S, Takahashi I. Direct Power Control of PWM Converter without Power-Source Voltage Sensors, IEEE Trans. Industry Applications. 1998, 34 (3): 473-479
    49 Liserre.M, Teodorescu.R, Blaabjerg.F. Stability of Photovoltaic and Wind Turbine Grid-Connected Inverters for a Large Set of Grid Impedance Values. IEEE Trans. on Power Electronics. 2006, 21(1): 263 - 272
    50沈国桥,徐德鸿. LCL滤波并网逆变器的分裂电容法电流控制.中国电机工程学报. 2008, 28(18): 36-41
    51陈瑶,金新民,童亦斌.三相电压型PWM整流器网侧LCL滤波器.电工技术学报. 2007, 22(9): 124-129
    52 L. Moran, P.D. Ziogas, G. Joos. Design Aspects of Synchronous PWM Rectifier-Inverter Systems under Unbalanced Input Voltage Conditions. IEEE Trans. on Industry Applications. 1992, 28(6): 1286-1293
    53 P. Rioual, H. Pouliquen, J. P. Louis. Regulation of a PWM Rectifier in the Unbalanced Network State Using a Generalized Model, IEEE Trans. Power Electron. 1996, (11): 495-502
    54 H. S. Song, K. Nam. Dual Current Control Scheme for PWM Converter under Unbalanced Input Voltage Conditions. IEEE Trans. on Industrial Electronics. 1999, 46(5): 953-959
    55 G. Saccomando, J. Svensson. Transient Operation of Grid-connected Voltage Source Converter under Unbalanced Voltage Conditions. IEEE Industry Application Society Annual Meeting. 2001, (4): 2419-2424
    56 M. Bongiorno, J. Svesson, A. Sannino. Dynamic Performance of Vector Current Controllers for Grid-connected VSC under Voltage Dips. Industry Applications conference. 2005, (2): 904-909.
    57 A. Fainan. Magueed, A. Sannino, J. Svensson. Transient Performance of Voltage Source Converter under Unbalanced Voltage Dips. 35th Annual IEEE Power Electronics Specialists Conference. 2004, (2): 1163-1168
    58 Bo Yin, Ramesh Oruganti, Sanjib Kumar Panda, Ashoka K. S. Bhat. An Output Power Control Strategy for a Three Phase PWM Rectifier under Unbalanced Supply Conditions. IEEE Trans. on Industrial Electronics. 2008, 55(5): 2140-2150
    59伍小杰,柴建云,王祥珩.变速恒频双馈风力发电系统交流励磁综述.电力系统自动化. 2000, 28(23): 92-96
    60杨淑英.双馈型风力发电变流器及其控制.合肥工业大学博士论文. 2007: 17-25
    61刘其辉.变速恒频风力发电系统运行与控制研究.浙江大学博士论文. 2005: 82-83
    62卞松江,吕晓美,相会杰,等.交流励磁变速恒频风风力发电系统控制策略的仿真研究.中国电机工程学报. 2005, 25(16): 57-62
    63 Xing Zuoxia, Yao Xingjia, Sui Hongxia. DTC in Doubly-fed VSCF wind turbine control system. Proceeding of IEEE ICIT. 2006: 2715-2718
    64 Lie Xu, Phillip Cartwright. Direct Active and Reactive Power Control of DFIG for Wind Energy Generation. IEEE Trans. on Energy Conversion. 2006, 21(3): 750-758
    65 Datta R, Ranganathan V T. Direct Power Control of Grid-connected Wound Rotor Induction Machine without Rotor Position Sensors. IEEE Trans. on Power Electronics. 2001, 16(3): 390-399
    66郭晓明,贺益康,何奔腾.双馈异步风力发电机开关频率恒定的直接功率控制.电力系统自动化. 2008, 32(1): 61-65
    67 Krzeminski Z. Sensorless Multiscalar Control of Double Fed Machine for Wind Power Generators. Proceedings of Power Conversion Conference. 2002, (1): 334-339
    68 B.Hopfensperger, D.J.Atkinson, R.A. Lakin. Stator flux oriented control of a doubly-fed induction machine with and without position encoder. IEE Proc-Electr Power Appl. 2000, 147(4): 241-250
    69闫耀民,范瑜,汪至中.无速度传感器的双馈电机在风力发电系统中的应用研究.太阳能学报. 2003, 24(3): 432-436
    70杨春,梁中华,任敏.双馈风力发电机无位置传感器矢量控制的策略.沈阳工业大学学报. 2006, 28(2): 54-58
    71李楠,姚兴佳,邢作霞.双馈风力发电机无速度传感器矢量控制.可再生能源. 2006, (5): 83-85
    72 Roberto Cardenas, Ruben Pena, Jose Proboste, and etc. MRAS Observer for Sensorless Control of Standalone Doubly Fed Induction Generators. IEEE Trans on Energy Conversion. 2005, 20(2): 710-718
    73 Pedro Rodriguez, Adrian V. Timbus, Remus Teodorescu, and etc. Flexible Active Power Control of Distributed Power Generation Systems during Grid Faults. IEEE Trans. on Industrial Electronics. 2007, 54(5): 2583-2592
    74 Alan Mullane, Gordon Lightbody, R. Yacamini. Wind Turbine Fault RideThrough Enhancement. IEEE Trans. on Power System. 2005, 20(4): 1929-1937
    75 L. Holdsworth, X.G.Wu, J.B.Ekanayake and etc. Comparison of Fixed and Doubly Fed Wind Turbines during Power System Disturbances. IEE Proceeding on Generation Transmission and Distribution. 2003, 150(3): 343-352
    76向大为.双馈感应发电机特殊运行工况下励磁控制策略研究.重庆大学博士论文. 2006: 4-9
    77 Johan Morren, Sjoerd W.H de Haan. Ride-through of Wind Turbines with Doubly- fed Induction Generator during a Voltage Dip. IEEE Trans. on Energy Conversion. 2005, 20(2): 435-441.
    78王伟,孙明冬,朱晓东.双馈式风力发电机低电压穿越技术分析.电力系统自动化. 2007, 31(23): 84-89
    79姚骏,廖勇.基于crowbar保护控制的交流励磁风电系统运行分析.电力系统自动化. 2007, 31(23): 79-83
    80 Mustafa kayikci, Jovica V.Milanovic. Reactive Power Control Strategies for DFIG Based Plants. IEEE Trans. on Energy Conversion. 2007, 22(2): 389-396
    81 Abbeyc, Joos.G. Short-Term Energy Storage of Wind Energy Applications. Proceedings of Conference Record of the Industry Applications Conference. 2005, (3): 2035-2042.
    82 Dittrich.A, Stoev.A. Comparison of Fault Ride Through Strategies for Wind Turbines with DFIM Generators. Proceedings of 11th European Conference on Power Electronics and Applications. 2005: 1-8
    83胡家兵,孙丹,贺益康,赵仁德.电网电压骤降情况下双馈风力发电机建模与仿真.电力系统自动化. 2006, 30(8): 21-26
    84向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的系统仿真研究.中国电机工程学报. 2006, 26(10): 130-135.
    85姚骏,廖勇,唐建平.电网短路故障时交流励磁风力发电机不脱网运行的励磁控制策略.中国电机工程学报, 2007, 27(30): 64-71
    86 Marques.G.D. Comparison of Active Stabilization Methods for the Doubly-Fed Induction Generator Quadrature Versus Direct Inner Control Loops. European Conference on Power Electronics and Applications. 2007: 1-10
    87 Seman.S, Niiranen.J, Arkkio, A. Ride-Through Analysis of Doubly Fed Induction Wind-Power Generator under Unsymmetrical Network Disturbance. IEEE Trans. on Power Systems, 2006, 21(4): 1782-1789
    88 Xu.L. Enhanced Control and Operation of DFIG-Based Wind Farms during Network Unbalance. IEEE Trans. on Energy Conversion. 2008, 23(4): 1073-1081
    89胡家兵,贺益康,郭晓明,年珩.不平衡电压下双馈异步风力发电系统的建模与控制.电力系统自动化. 2007, 31(14): 47-56
    90郭晓明,贺益康,何奔腾,胡家兵.不对称电网电压下双馈风力发电机的直接功率控制.电力系统自动化. 2008, 32(13): 86-91
    91 J.Svensson. Synchronization Methods for Grid Connected Voltage Source Converters. IEE Proc. Gener. Transm. Distrib, 2001, 148 (30): 229-235
    92陈海荣,徐政,钱向明.空间矢量法自适应检测基波正负序及谐波分量.高电压技术. 2006, 32(10): 85-90
    93 Se-Kyo Chung. A Phase Tracking System for Three Phase Utility Interface Inverters. IEEE Trans. on Power Electronics. 2000, 15(3): 431-438
    94 M.Karimi Ghartemani. A Novel Three-Phase Magnitude Phase Locked Loop System. IEEE Trans. on Circuits and Systems. 2006, 53(8): 1792-1802
    95王茂海,孙元章.基于DFT的电力系统相量及功率测量方法.电力系统自动化. 2005, 29(2): 20-24
    96 IEEE Standard for Synchrophasors for Power Systems. IEEE Power Engineering Society. IEEE Std C37.118, 2005
    97周林,夏雪,万蕴杰,张海,雷鹏.小波变换在三相不对称系统谐波检测中的应用.高电压技术. 2007, 33(3): 109-113
    98 Chompoo inwai. C, Yingvivatanapong.C, Methaprayoon.K and Wei-Jen Lee. Reactive Compensation Techniques to Improve the Ride-Through Capability of Wind Turbine during Disturbance. IEEE Trans. on Industry Applitions. 2005, 41(3): 666-672
    99 Mustafa kayikci, Jovica V.Milanovic. Reactive Power Control Strategies for DFIG Based Plants. IEEE Trans. on Energy Conversion. 2007, 22(2): 389-396
    100 Cartwright.P, Holdsworth.L, Ekanayake.J.B, and etc. Co-ordinated Voltage Control Strategy for a Doubly-fed Induction Generator (DFIG)-based Wind Farm. Generation, Transmission and Distribution, IEE Proceedings. 2004, 151(4): 495-502
    101申洪,王伟胜,戴慧珠.变速恒频风力发电机组的无功功率极限.电网技术, 2003, 27(11): 60-63
    102严干贵,王茂春,穆钢,等.双馈异步风力发电机组联网运行建模及其无功静态调节能力研究.电工技术学报. 2008, 23(7): 98-104
    103李建林,高志刚,赵斌,许洪华.双馈感应发电机风能无功快速响应系统的研究.高电压技术. 2007, 33(11): 164-168
    104 Tapia A, Tapia G, Ostolaza J X. Reactive Power Control of Wind Farms for Voltage Control Applications. Renewable Energy. 2004, (29): 377-392
    105秦涛,吕跃刚,徐大平.采用双馈机组的风电场无功功率控制技术.电网技术. 2009, 33(2): 105-110
    106 Yi Wang, Lie Xu, Williams.B.W. Control of DFIG-based Wind Farms for Network Unbalance Compensation. IEEE Power Electronics Specialists Conference. 2008: 113-119
    107高景德,王祥珩,李发海.交流电机及其系统的分析.第2版.清华大学出版社. 2005: 383-395
    108汤蕴璆,张奕黄,范瑜.交流电机动态分析.北京:机械工业出版社. 2005: 33-66
    109郎永强,徐殿国, Hadianmrei S.R,马洪飞.交流励磁双馈电机分段并网控制策略.中国电机工程学报. 2006, 26(19): 133-138
    110 Johan Morren, Sjoerd W.H.de Haan. Short circuit current of wind turbines with doubly fed induction generator. IEEE Trans. on Energy Conversion. 2007, 22(1): 174-180
    111 Mark.F.McGranaghan, David R.Mueller, Marek J. Samotyj. Voltage Sags in Industrial Systems. IEEE Trans. On Industry Application. 1993, 29(2): 397-403
    112 Myo Thu Aung, Jovica V. Milanovic. The Influence of Transformer Winding Connections on the Propagation of Voltage Sags. IEEE Trans. on Power Delivery. 2006, 21(1): 262-269
    113 E.on Netz, Grid Code, High and extra high voltage. April. 2006, www.eon-netz.com
    114 Karimi-Ghartemani.M., Iravani.M.R. A Method for Synchronization of Power Electronic Converters in Polluted and Variable Frequency Environment. IEEE Trans. on Power Systems. 2004, 19(3): 1263-1270
    115 P. Rodriguez. J. Pou, J. Bergas. J. I. Candela, R. P. Burgos, and etc. Decoupled double synchronous reference frame PLL for power converters control. IEEE Trans. Power Electron.2007, 22(2): 584–592
    116王锋,姜建国.风力发电机用双PWM变换器的功率平衡联合控制策略研究.中国电机工程学报. 2006, 26(22): 134-139
    117张宪平,林资旭,李亚西,许洪华. LCL滤波的PWM整流器新型控制策略.电工技术学报. 2007, 22(2): 74-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700