冷弯薄壁斜卷边槽钢弹性畸变屈曲计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于高强度的开口冷弯薄壁型钢而言,畸变屈曲是一种重要的屈曲模式。在一定条件下,畸变屈曲可能成为居主导地位的屈曲模式,并对构件的极限承载力起到决定性的作用。近年来,随着钢材的强度逐步提高,冷弯薄壁型钢的板厚向超薄方向发展,构件的截面形式日趋复杂化,畸变屈曲正越来越受到人们的重视。
     国内外对于钢结构的整体屈曲与局部屈曲的研究比较成熟。与整体屈曲、局部屈曲相比,畸变屈曲被世人认识的时间相对较短,各国学者对畸变屈曲的研究也有待深入。我国现行国家标准《冷弯薄壁型钢结构技术规范》(GB50018-2002,简称GB50018)还没有针对畸变屈曲的相应的计算规定。目前针对畸变屈曲的成熟计算方法尚不多见,直接强度法(Direct Strength Method,简称DSM)是一种新的设计方法,DSM的一个特点是可用于畸变屈曲计算,目前已被北美和澳洲地区所采纳。该设计方法首先需要求出构件的弹性畸变屈曲值,然后将其值代入DSM中的设计公式进行设计计算,从而得出畸变屈曲设计值。作为一种发展中的计算方法,DSM值得进一步研究。
     弹性畸变屈曲的计算是DSM的关键,亦是本文研究的重要内容。DSM可采用相关计算程序,如CUFSM有限条等软件计算弹性畸变屈曲。有关学者也提出了近似模型计算法计算弹性畸变屈曲,并被有关国外规范采纳。近似模型计算法的不方便之处是计算较复杂,往往需迭代计算。
     广义梁理论(Generalized Beam Theory,简称GBT)已被提出二十余年,理论上GBT可用于求解弹性畸变屈曲问题,但计算上的复杂性阻碍了“广义梁理论”在弹性畸变屈曲计算方面的应用。
     冷弯薄壁卷边槽钢在实际工程中应用广泛,本文基于GBT和相关资料,对斜卷边冷弯薄壁槽钢弹性畸变屈曲进行重点研究。主要研究内容如下:
     (1)针对斜卷边冷弯薄壁槽钢轴压柱,推导出弹性畸变屈曲计算公式。除不考虑翼缘弯曲变形的刚体位移计算模型外,本文提出了两种考虑翼缘弯曲变形的新计算模型:横向弯曲铰支计算模型、横向弯曲固支计算模型。翼缘和卷边的交点在计算中被视为铰支座或者固定支座是横向弯曲铰支计算模型和横向弯曲固支计算模型的区别所在。在横向弯曲铰支计算模型计算中,翼缘和卷边的交点被视为铰支座;在横向弯曲固支计算模型计算中,翼缘和卷边的交点被视为固定支座。并分别推导了三种计算模型下的弹性畸变屈曲计算公式。
     与现有资料、其他方法进行计算对比,结果表明本文三种计算模型下的公式均具有较高的工程精度。从安全角度考虑,建议弹性畸变屈曲计算值采用横向弯曲铰支计算模型公式值、刚体位移计算模型公式值二者间的小值。
     (2)针对斜卷边冷弯薄壁槽钢绕弱轴纯弯梁,推导出弹性畸变屈曲计算公式。类似于轴压柱,除刚体位移计算模型以外,本文提出了绕弱轴纯弯梁弹性畸变屈曲的两种新计算模型:横向弯曲铰支计算模型和横向弯曲固支计算模型。并分别推导了三种计算模型的弹性畸变屈曲计算公式。
     计算对比表明,刚体位移模型公式计算值偏大,横向弯曲铰支模型和横向弯曲固支模型公式计算值比较准确,建议采用横向弯曲铰支计算模型公式计算值。
     (3)针对绕弱轴冷弯薄壁斜卷边槽钢压弯构件,推导出弹性畸变屈曲压弯构件计算公式。该计算公式中的弹性畸变屈曲轴压临界应力和纯弯临界应力可由前述相关公式计算得到。计算分析表明,弹性畸变屈曲压弯构件计算公式具有良好的计算精度。
     为与国情相符合,本文特意选取GB50018所附录的冷弯薄壁卷边槽钢进行计算,研究结果表明本文的弹性畸变屈曲轴压、纯弯、压弯计算公式均能很好地适用于上述槽钢。
     本文公式无需迭代计算,适于手算或简单编程计算。摆脱了对弹性畸变屈曲专用软件的依赖,促进DSM实用化进程。本文的计算思路可为后续研究提供借鉴,也可供工程设计人员和冷弯薄壁型钢设计规范修订作参考。
     总之,本文针对冷弯薄壁斜卷边槽钢建立了多种计算模型,推导了相对简便实用的计算公式。多种计算方法的对比,论证了本文计算公式的准确性。
The distortional buckling is one of the important buckling modes for high strength cold-formed thin-walled steel open cross-section members. It may become the dominating buckling mode and control the ultimate load-carrying capacity of members in some conditions. With the cold-formed thin-walled steel members tending to higher strength, thinner thickness and more complicate section shapes, the distortional buckling is receiving more attentions in recent years.
     Reseachers worldwide have studied the local buckling and the overall buckling for a long time and reached a significant conclusion. Howerver it is a relatively short period of time since the distortional buckling was recognized. And deeper study of the distortional buckling remains to be made. Mature computation methods for the distortional buckling are of rare occurrence in the present. There are no specific clauses for the calculation of distortional buckling in current Chinese national specification'Technical Code for Cold-Formed Thin-Walled Steel Structures" (GB50018-2002, abbr. GB50018). The Direct Strength Method (DSM) is a new design method of the cold-formed thin-walled steel and has been adopted in North America and Australia region. First the value of elastic distortional buckling of element must be calculated. Then the design value of distortional buckling is solved by introducing the value of elastic distortional buckling into the formulae of DSM. As a kind of computing method to be perfected DSM merits further investigation. Its major feature is to calculate the distortional buckling.
     The calculation of the elastic distortional buckling is the key for DSM and is the important subject in this paper. The current good method of calculating the elastic distortional buckling is numerical method such as the finite strip program of CUFSM. Proposed by scholars to calculate the elastic distortional buckling, approximation model method has been adopted by some foreign standards. As the computation process is iterative, approximate model method is inconvenient.
     Generalized Beam Theory (GBT) can be used for solving the elastic distortional buckling. But the calculation is a bit complicated, which holdbacks the application of GBT.
     The cold-formed thin-walled lipped channel steel has been applied widely in practical engineering.Based on GBT and related research data, this paper studies the elastic distortional buckling of cold-formed thin-walled lipped channels. The main contents are as follows:
     (1) The formulae of the elastic distortional buckling for cold-formed thin-walled channel columns with inclined simple edge stiffeners under axial pressure are derived. Except the calculating model of rigid body displacement not including the flange transverse bending,two new kinds of calculating model with the inclusion of the flange transverse bending are given, ie, the calculating model of hinged support and the calculating model of restrained support. The intersection of flange and stiffener is viewed as hinged support in the calculating model of hinged support. The intersection of flange and stiffener is regarded as restrained support in the calculating model of restrained support. Based on the three kinds of calculating model, the calculation formulae for the elastic distortional buckling of cold-formed thin-walled inclined lipped channel columns have been established respectively.
     The validity, accuracy and efficiency of the method are demonstrated by comparing the results from the presented formulae and the ones from existing data, other computing methods.It shows that the formulae are accurate and suitable for engineering application. The smaller value obtained from the calculating model of hinged support considering transverse bending and the calculating model of rigid body displacement is proposed in terms of safety.
     (2) The formulae of the elastic distortional buckling for cold-formed thin-walled pure bending channel beams with inclined simple edge stiffeners acted by moment in the weak plane are derived. Except the calculating model of rigid body displacement, this paper presents two new kinds of calculating model of elastic distortional buckling of cold-formed thin-walled inclined lipped channel beams, ie, the calculating model of hinged support and the calculating model of restrained support. And the related calculation formulae have been derived respectively.
     It is shown through the compared calculation that the value obtained from the calculating model of rigid body displacement is a bit larger than that obtained from other methods. The value obtained from other two calculating models is very close to that obtained from other calculation methods.So it is recommended that the calculating model of hinged support considering transverse bending be applicable for the elastic distortional buckling of pure bending channel beams acted by moment in the weak plane.
     (3) The linear formulae of the elastic distortional buckling for cold-formed thin-walled channels with inclined simple edge stiffeners subjected to eccentric loading in the symmetry plane are derived. Based on the formulae described above, the linear formulae are obtained. The calculated results indicate that the linear formulae are higher precision.
     The correctness of the above formulae is verified through the channel sections of the Appendix B.1.1-4 of GB50018. The results show that the presented formulae suit China's national conditions.
     The simple formulae in this paper are applicable to calculate by hand. The formulae are not only independent on the dedicated computer program but also avoid the redundant calculations. There is no need for the iterative calculation by the formulae. They are easy to apply, graspable easily for the disigner and may be directly used in practical design and incorporated into future design codes and guidelines. Therefore the formulae have the practical significance and will accelerate the utilization of DSM.
     Based on GBT and related research data, the corresponding mechanics computational models have been proposed, the practical formulae under different loading states have been developed and analyzed in this paper. Compared with other methods, the calculation method proposed in this paper is proved to be reasonable and verified.
引文
[1]姜复生,袁晓光.我国冷弯型钢生产的特点及发展[J].钢铁,2000,35(9):73~77.
    [2]马广阅.低层建筑冷弯薄壁型钢结构构件的试验与理论研究[D].武汉:武汉理工大学,2010.
    [3]刘承宗.AISI冷弯型钢骨架结构住宅设计规范介绍(Ⅰ)[J].建筑钢结构进展.2003,5(增刊):79~88
    [4]刘承宗,欧阳坚.AISI冷弯型钢骨架结构住宅设计规范介绍(Ⅱ)[J].建筑钢结构进展.2004,6(2):47~59.
    [5]刘承宗,欧阳坚.AISI冷弯型钢骨架结构住宅设计规范介绍(Ⅲ)(续前)[J].建筑钢结构进展.2004,6(3):51~62.
    [6]弓晓芸,严虹.国外工业化钢结构住宅应用探讨[J].工业建筑.2001,31(8):17~19,35.
    [7]李悦,吴玉生,周孝军等.轻钢住宅体系的国内外发展与应用现状[J].建筑技术.2009,40(3):204~207.
    [8]陈骥.受弯的冷弯卷边槽钢畸变屈曲强度和其相关屈曲承载力[J].建筑钢结构进展.2009,11(1):9-15,27.
    [9]中华人民共和国国家标准.GB50017-2003钢结构设计规范[S].北京:中国计划出版社,2003.
    [10]陈雪庭,徐厚军.《冷弯薄壁型钢结构技术规范》在我国颁布实施40周年的回顾与展望[J].钢结构,2009,24(7):59~61,15.
    [11]侯娟,叶志明,侯军林.轻型钢结构中薄壁构件的应用研究[J].兰州铁道学院学报(自然科学版),2003,22(4):105-109.
    [12]建设部人事教育司,建设部科学技术司,建设部科技发展促进中心.MB轻型房屋钢结构建筑体系[M].北京:中国建筑工业出版社,2005:84-98.
    [13]陈骥.冷弯薄壁型钢构件的直接强度设计法[J].建筑钢结构进展.2003,5(4):5-13.
    [14]Schafer, B.W., Adany, S. Buckling analysis of cold-formed steel members using CUFSM: conventional and constrained finite strip methods[C]. Eighteenth International Specialty Conference on Cold-Formed Steel Structures, Orlando, FL. October 2006.
    [15]Johns Hopkins University.CUFSM (version 3.12)—Finite strip elastic buckling analysis program.http://www.ce.jhu.edu/bschafer/cufsm/,2008.
    [16]何保康,周天华.冷弯型钢截面局部屈曲和AISI规范有效宽度计算的统一法则[J].建筑钢结构进展.2005,7(4):6-10.
    [17]中华人民共和国国家标准.GB50018-2002冷弯薄壁型钢结构技术规范[S].北京:中国计划出版社,2002.
    [18]Von Karman T.. Sechler, E. E., Donnell L. H.The Strength of Thin Plates in Compression [J]. ASME Transactions,54(5) (1932):53-57.
    [19]Winter G. Strength of thin steel compression flanges [J]. Trans ASCE,1947,112:527-554.
    [20]Jeom Kee Paik. Some recent advances in the concepts of plate-effectiveness evaluation [J]. Thin-walled structures,2008,46(7-9):1035-1046.
    [21]余炜文.冷弯型钢结构设计[M].北京:中国水利水电出版社,2003.
    [22]陈绍蕃.钢结构稳定设计指南.2版.[M].北京:中国建筑工业出版社,2004:208.
    [23]C. Jiang and J. M. Davies. Design of Thin-Walled Purlins for Distortional Buckling [J]. Thin-Walled Structures,1997,29(1-4):189-202.
    [24]Ju Chen, Yong He, Wei-Liang Jin. Stub column tests of thin-walled complex section with intermediate stiffeners [J]. Thin-walled structures,2010,48(6):423-429.
    [25]王春刚,张耀春.直接强度法计算冷弯薄壁斜卷边槽钢轴压柱的承载力[J].工业建筑.2006,36(1):71~74
    [26]B. W. Schafer, T. Pekoz. Direct strength prediction of cold-formed steel members using numerical elastic buckling solutions. In:Shanmugam N, Liew J, Thevendran V, editors. Thin-walled structures, research and developments. New York: Elsevier; 1998. p.137-144.
    [27]B.W.Schafer. Distortional buckling of cold-formed steel columns [R].Final Report to the American Iron and Steel Institute. August 2000.
    [28]AISI S100-2007. North American specification for the design of cold-formed steel members [S]. American Iron and Steel Institute,2007
    [29]AS/NZS 4600:2005 Australian/New Zealand Standard: Cold-Formed Steel Structures[S]. Jointly published by Standards Australia and Standards New Zealand,30 December 2005.
    [30]Eduardo de Miranda Batista. Effective section method: A general direct method for the design of steel cold-formed members under local-global buckling interaction [J]. Thin-walled structures, 2010,48(4-5):345-356.
    [31]Cheng Yu, Weiming Yan. Effective Width Method for determining distortional buckling strength of cold-formed steel flexural C and Z sections [J]. Thin-walled structures,2011,49(2):233-238.
    [32]何保康,蒋路.冷弯薄壁型钢构件的直接强度法[J].建筑结构.2007,37(1):20~23
    [33]Demao Yang, Gregory J. Hancock. Compression Tests of High Strength Steel Channel Columns with Interaction between Local and Distortional Buckling [J]. Journal of structural engineering ? ASCE,130(12) (2004):1954-1963.
    [34]Shin-Hua Lin, Wei-Wen Yu, Theodore V. Galambos, Edward Wang.Revised ASCE specification for the design of cold-formed stainless steel structural members [J]. Engineering Structures.2005, 27(9):1365-1372.
    [35]M. Ashraf, L. Gardner, D.A. Nethercot.Compression strength of stainless steel cross-sections [J]. Journal of Constructional Steel Research,2006,62(1-2):105-115.
    [36]Maura Lecce.Distortional buckling of stainless steel sections [D]. University of Sydney, Australia, 2006.
    [37]Maura Lecce, Kim J. R. Rasmussen. Distortional Buckling of Cold-Formed Stainless Steel Sections:Experimental Investigation [J]. Journal of structural engineering ? ASCE,132(4) (2006):497-504.
    [38]Maura Lecce, Kim J. R. Rasmussen. Distortional Buckling of Cold-Formed Stainless Steel Sections:Finite-Element Modeling and Design [J]. Journal of structural engineering ? ASCE, 132(4) (2006):505-514.
    [39]Jurgen Becque, Maura Lecce, Kim J.R. Rasmussen.The direct strength method for stainless steel compression members [J]. Journal of Constructional Steel Research,2008,64(11):1231-1238.
    [40]Barbara Rossi, Jean-Pierre Jaspart, Kim J. R. Rasmussen.Combined Distortional and Overall Flexural-Torsional Buckling of Cold-Formed Stainless Steel Sections:Design[J]. Journal of structural engineering ? ASCE,136(4) (2010):361-369.
    [41]Maura Lecce, Kim J. R. Rasmussen. Design of Stainless Steel Roof Sections[R]. Research Report No 851, Department of Civil Engineering, University of Sydney, Sydney, October 2005.
    [42]Maura Lecce, Kim J. R. Rasmussen. Finite Element Modelling and Design of Cold-Formed Stainless Steel Sections [R]. Research Report No 845, Department of Civil Engineering, University of Sydney, Sydney, April 2005.
    [43]ABNT NBR 14762.Steel structures design of cold-formed members.Associacao Brasileira de Normas Tecnicas. Revision ed, September 2009 [in Portuguese].
    [44]Eduardo de Miranda Batista. Local-global buckling interaction procedures for the design of cold-formed columns:effective width and direct method integrated approach [J]. Thin-walled structures,2009,47(11):1218-1231.
    [45]European Standard EN 1993-1-3:2006/AC:2006.Eurocode3—design of steel structures—Part 1-3:general rules—supplementary rules for cold-formed members and sheeting [S].Brussels: European Committee for standardization,2006.
    [46]B.W. Schafer.Review: The Direct Strength Method of cold-formed steel member design [J]. Journal of Constructional Steel Research,2008,64(7-8):766-778.
    [47]P. Nandini, V.Kalyanaraman.Strength of cold-formed lipped channel beams under interaction of local, distortional and lateral torsional buckling [J]. Thin-walled structures,2010, 48(10-11):872-877.
    [48]M.R. Bambach. Photogrammetry measurements of buckling modes and interactions in channels with edge-stiffened flanges [J]. Thin-walled structures,2009,47(5):485-504.
    [49]张兆宇,姚谏.冷弯薄壁型钢畸变屈曲的研究进展[J].科技通报.2006,22(1):95~100
    [50]F.Roure, M.M.Pastor, M.Casafont, M.R.Somalo.Stub column tests for racking design: Experimental testing, FE analysis and EC3 [J]. Thin-walled structures,2011,49(1):167-184.
    [51]Sandor Adany, Attila L.Joo, B.W. Schafer. Buckling mode identification of thin-walled members by using cFSM base functions [J]. Thin-walled structures,2010,48(10-11):806-817.
    [52]Gregory J. Hancock, Andrew J. Davids, Peter W. Key, Sammy C. W. Lau, Kim J. R. Rasmussen. Recent Developments in the Buckling and Nonlinear Analysis of Thin-Walled Structural Members [J].Thin-Walled Structures.1990,9(1-4):309-338.
    [53]S. C. W. Lau, G. J. Hancock. Buckling of Thin Flat-Walled Structures by a Spline Finite Strip Method [J]. Thin-Walled Structures,1986,4(4):269-294.
    [54]蒋路,何保康,张伟.冷弯薄壁型钢构件畸变屈曲试验和理论研究综述及分析[J].钢结构.2006,21(5):45~49
    [55]Sammy C. W. Lau, Gregory J. Hancock. Distortional buckling formulas for channel columns [J]. Journal of Structural Engineering, ASCE,113(5) (1987):1063-1078.
    [56]G.J. Hancock. Design for Distortional Buckling of Flexural Members [J]. Thin-Walled Structures, 27(1) (1997):3-12.
    [57]Gustavo Monteiro de Barros Chodraui,Jorge Munaiar Neto,Roberto Martins Goncalves, Maximiliano Malite.Distortional Buckling of Cold-Formed Steel Members [J]. Journal of structural engineering ? ASCE,132(4) (2006):636-639.
    [58]M.L. Sharp. Longitudinal Stiffeners for Compression Members [J]. Journal of the Structural Division, ASCE,92(5) (1966):187-211.
    [59]Jyrki Kesti, J. Michael Davies. Local and distortional buckling of thin-walled short columns [J].Thin-Walled Structures.1999,34(2):115-134.
    [60]J.M. Davies. Recent research advances in cold-formed steel structures [J]. Journal of Constructional Steel Research,2000,55(l-3):267-288.
    [61]R.Schardt. Generalized beam theory—an adequate method for coupled stability problems. Thin-Walled Structures,19 (2-4) (1994):161-180.
    [62]Schardt R. Verallgemeinerte technische biegetheorie [M].Berlin:Springer Verlag,1989 [in German].
    [63]Stanislav Rendek, Ivan Balaz.Distortion of thin-walled beams [J]. Thin-walled structures,2004, 42(2):255-277.
    [64]Nuno Silvestre, Dinar Camotim. Local-Plate and Distortional Postbuckling Behavior of Cold-Formed Steel Lipped Channel Columns with Intermediate Stiffeners [J]. Journal of structural engineering (?) ASCE,132(4) (2006):529-540.
    [65]J. M. Davies, P. Leach. First-order generalised beam theory, Journal of Constructional Steel Research,1994,31(2-3):187-220.
    [66]J. M. Davies, P. Leach. Second-order generalised beam theory, Journal of Constructional Steel Research,1994,31(2-3):221-241.
    [67]Dinar Camotim, Nuno Silvestre, Pedro Borges Dinis.Numerical analysis of cold-formed steel members [J]. Steel Structures,2005,5:63-78.
    [68]Rui Bebiano, Nuno Silvestre, Dinar Camotim.GBT Theoretical Background [OL]. http://www.civil.ist.utl.pt/gbt/.2008.
    [69]N. Silvestre, D. Camotim. Distortional buckling formulae for cold-formed steel C and Z-section members:Part Ⅰ—derivation [J].Thin-Walled Structures,2004,42(11):1567-1597.
    [70]J. M. Davies.Recent research advances in cold-formed steel structures [J]. Journal of Constructional Steel Research,55 (1-3) (2000):267-288.
    [71]P. Leach.The calculation of modal cross-section properties for use in the generalized beam theory [J]. Thin-Walled Structures,19(1) (1994):61-79.
    [72]Richard Schardt. Lateral torsional and distortional buckling of channel and hat-sections [J]. Journal of Constructional Steel Research,31 (2-3) (1994):243-265.
    [73]N.Silvestre, D.Camotim.Nonlinear generalized beam theory for cold-formed steel members [J].International Journal of Structural Stability and Dynamics,2003,3(4):461-490.
    [74]Nuno Silvestre, Dinar Camotim. Local-Plate and Distortional Postbuckling Behavior of Cold-Formed Steel Lipped Channel Columns with Intermediate Stiffeners [J]. Journal of structural engineering (?) ASCE,132(4) (2006):529-540.
    [75]A.H.Chilver. The Behavior of thin-walled structural members in compression [J]. Journal of structural engineering,1951,77(3):281-282.
    [76]Van der Maas CJ.Charts for the calculation of the critical compressive stress for local instability of columns with hat sections [J]. Journal of the Aeronautical Sciences 1954; 21(6):399-403.
    [77]J.B. Dwight. Aluminum sections with lipped flanges and their resistance to local buckling [C]. Symposium on aluminum in structural engineering. London:1963.67-74.
    [78]Kunihiro TAKAHASHI, Masao MIZUNO.Distortion of thin-walled open section members [J]. Bulletin of the Japan Society of Mechanical Engineers,21 (160) (1978):1448-1454.
    [79]Murat Pala.A new formulation for distortional buckling stress in cold-formed steel members [J].Thin-Walled Structures,2006,62(7):716-722.
    [80]Thomas P.Desmond, Teoman Pekoz, George Winter.Edge stiffeners for thin-walled members [J]. Journal of the Structural Division, ASCE,107(ST2) (1981):329-353.
    [81]Murat Pala, Naci Caglar.A parametric study for distortional buckling stress on cold-formed steel using a neural network [J]. Journal of Constructional Steel Research,2007,63(5):686-691.
    [82]Murat Pala. Genetic programming-based formulation for distortional buckling stress of cold-formed steel members [J]. Journal of Constructional Steel Research,2008,64(12): 1495-1504.
    [83]Gregory J.Hancock. Distortional Buckling of Steel Storage Rack Columns [J]. Journal of the Structural Division, ASCE,111(12) (1985):2770-2783.
    [84]Gregory J.Hancock, Young B. Kwon, E. Stefan Bernard. Strength Design Curves for Thin-Walled Sections Undergoing Distortional Buckling [J]. Journal of Constructional Steel Research,1994, 31(2-3):169-186.
    [85]C.Jiang, J.M.Davies.Design of Thin-Walled Purlins for Distortional Buckling [J].Thin-Walled Structures.1997,29(1-4):189-202.
    [86]Cheng Yu, Benjamin W. Schafer.Distortional Buckling Tests on Cold-Formed Steel Beams [J]. Journal of structural engineering (?) ASCE,132(4) (2006):515-528.
    [87]Cheng Yu, Benjamin W. Schafer.Simulation of cold-formed steel beams in local and distortional buckling with applications to the direct strength method [J]. Journal of Constructional Steel Research,2007,63(5):581-590.
    [88]Young B. Kwon, Gregory J. Hancock.Tests of Cold-Formed Channels with Local and Distortional Buckling [J]. Journal of structural engineering (?) ASCE,117(7) (1992):1786-1803.
    [89]B. W. Schafer. Local, Distortional, and Euler Buckling of Thin-Walled Columns [J]. Journal of structural engineering (?) ASCE,128(3) (2002):289-299.
    [90]B. W. Schafer, T. Pekoz.Laterally Braced Cold-Formed Steel Flexural Members with Edge Stiffened Flanges [J]. Journal of structural engineering (?) ASCE,125(2) (1999):118-127.
    [91]Long-yuan Li, Jian-kang Chen.An analytical model for analysing distortional buckling of cold-formed steel sections [J].Thin-Walled Structures.2008,46(12):1430-1436.
    [92]B. W. Schafer, A. Sarawit, T. Pekoz.Complex Edge Stiffeners for Thin-Walled Members [J]. Journal of structural engineering (?) ASCE,132(2) (2006):212-226.
    [93]Long-yuan Li. Analyses of distortional buckling of cold-formed sigma purlins using EN 1993-1-3 [J]. Journal of Constructional Steel Research,2009,65(12):2099-2102.
    [94]Sandor Adany, B.W. Schafer.Buckling mode decomposition of single-branched open cross-section members via finite strip method:Derivation [J]. Thin-walled structures,2006,44(5):563-584.
    [95]Sandor Adany, B.W. Schafer.Buckling mode decomposition of single-branched open cross-section members via finite strip method: Application and examples [J]. Thin-walled structures,2006, 44(5):585-600.
    [96]Sandor Adany, B.W. Schafer.A full modal decomposition of thin-walled, single-branched open cross-section members via the constrained finite strip method [J]. Journal of Constructional Steel Research,2008,64(1):12-29.
    [97]Miquel Casafont, Frederic Marimon, Maria Magdalena Pastor. Calculation of pure distortional elastic buckling loads of members subjected to compression via the finite element method [J]. Thin-walled structures,2009,47(6-7):701-729.
    [98]Z.Li, B.W.Schafer.Application of the finite strip method in cold-formed steel member design [J]. Journal of Constructional Steel Research,2010,66(8-9):971-980.
    [99]Serrette RL, Pekoz T.Distortional buckling of thin-walled beams/panels.I:theory [J]. Journal of structural engineering ? ASCE,121(4) (1995):757-766.
    [100]Serrette RL, Pekoz T.Distortional buckling of thin-walled beams/panels. II:design methods [J]. Journal of structural engineering ? ASCE,121(4) (1995):767-776.
    [101]Z.Vrcelj, M.A.Bradford.Elastic distortional buckling of continuously restrained I-section beam-columns [J]. Journal of Constructional Steel Research,2006,62(3):223-230.
    [102]N. Silvestre, D. Camotim. Distortional buckling formulae for cold-formed steel C and Z-section members:Part Ⅱ—Validation and application [J]. Thin-Walled Structures,2004, 42(11):1599-1629.
    [103]N. Silvestre. Distortional mechanics of restrained steel sections [J]. Journal of Constructional Steel Research,2010,66(7):873-884.
    [104]N. Silvestre, D. Camotim.On the mechanics of distortion in thin-walled open sections [J].Thin-Walled Structures,2010,48(7):469-481.
    [105]苏明周,陈绍蕃.卷边槽钢梁受压翼缘畸变屈曲时的屈曲系数[J].西安建筑科技大学学报,1997,29(2):119~124.
    [106]陈绍蕃,苏明周.冷弯型钢檩条的有效截面[J].建筑结构学报,2003,24(6):63~66.
    [107]陈绍蕃.卷边槽钢的局部相关屈曲和畸变屈曲[J].建筑结构学报,2002,23(1):27~31.
    [108]陈骥.冷弯薄壁槽钢斜卷边对截面畸变屈曲的影响和构件的稳定承载力[J].钢结构增刊,2004:76~87.
    [109]张耀春,王海明.冷弯薄壁型钢C形截面构件受弯承载力试验研究[J].建筑结构学 报,2009,30(3):53~61.
    [110]Haiming Wang, Yaochun Zhang.Experimental and numerical investigation on cold-formed steel C-section flexural members [J]. Journal of constructional steel research,2009,65(5):1225-1235.
    [111]王海明,张耀春.直卷边和斜卷边受弯构件畸变屈曲性能研究[J].工业建筑,2008,38(6):106~109.
    [112]王海明,张耀春.冷弯型钢C形截面受弯构件平面内稳定性能研究[J].建筑结构,2009,39(4):87~91.
    [113]蒋路,何保康,马荣奎,杨松龄.中美规范关于卷边槽形受弯构件承载力比较分析[J].工业建筑,2007,37(6):91~94.
    [114]何保康,蒋路,姚行友,周天华,王彦敏.高强冷弯薄壁型钢卷边槽形截面轴压柱畸变屈曲试验研究[J].建筑结构学报,2006,27(3):10~17.
    [115]董震,张其林.铝合金轴压构件屈曲荷载计算方法[J].结构工程师,2008,24(2):28~34,47.
    [116]王平.铝合金槽型和加劲槽型截面构件数值模拟和设计方法研究[D].哈尔滨:哈尔滨工业大学.2010.
    [117]J.G. Teng, J. Yao, Y.Zhao. Distortional buckling of channel beam-columns [J], Thin-walled structures,2003,41(3):595-617.
    [118]蒋路.卷边槽形冷弯薄壁型钢轴压柱畸变屈曲的试验和理论分析[D].西安:西安建筑科技大学.2007.
    [119]姚谏.普通卷边槽钢的弹性畸变屈曲荷载[J].工程力学,2008,25(12):30~34.
    [120]罗洪光,马石城.卷边槽钢纯弯构件畸变屈曲板组约束系数的直接强度法计算[J].纲结构,2008,23(2):1-3.
    [121]罗洪光,郭耀杰,徐芸,谢津成.冷弯薄壁卷边槽钢梁弹性畸变屈曲拟合计算[J].钢结构,2010,25(11):12~14,45.
    [122]王海明.冷弯薄壁型钢受弯构件稳定性能研究[D].哈尔滨:哈尔滨工业大学.2009.
    [123]石宇,周绪红,苑小丽,聂少锋.冷弯薄壁卷边槽钢轴心受压构件承载力计算的折减强度法[J].建筑结构学报,2010,31(9):78~86.
    [124]王海明,张耀春.冷弯薄壁型钢受弯构件受弯承载力实用计算方法研究[J].建筑结构学报(增刊1),2010:178~183.
    [125]徐翔,郝际平.关于截面可变形薄壁梁的方法论研究[J].西安建筑科技大学学报(自然科学版).2008,40f2):176~183.
    [126]徐翔.薄壁梁变形分析的基本理论[D].西安:西安建筑科技大学.2008.
    [127]姚谏,腾锦光.冷弯薄壁卷边槽钢弹性畸变屈曲分析中的转动约束刚度[J].工程力学,2006,25(4):65~69.
    [128]程婕,姚谏.弯曲应力作用下的腹板转动约束刚度研究[J].工程力学,2010,27(11):94~98,105.
    [129]罗洪光,郭耀杰,刘华琛.冷弯薄壁轴压柱畸变屈曲直接强度法和有效面积法对比分析[J].建筑结构,2011,41(2):56~58.
    [130]何保康,蒋路.冷弯薄壁型钢构件的直接强度法[J].建筑结构,2007,37(1):20~23.
    [131]张壮南,张耀春,王春刚.斜卷边槽钢偏心受压构件的稳定性分析[J].哈尔滨工业大学学报,2010,42(12):1866~1869,1976.
    [132]姚行友,李元齐,沈祖炎.高强冷弯薄壁型钢卷边槽形截面轴压构件畸变屈曲性能研究[J].建筑结构学报,2010,31(11):1-9.
    [133]李元齐,王树坤,沈祖炎,姚行友.高强冷弯薄壁型钢卷边槽形截面轴压构件试验研究及承载力分析[J].建筑结构学报,2010,31(11):17~25.
    [134]杨晓通,姚谏.加连杆的冷弯薄壁卷边槽钢受压性能试验研究与有限元分析[J].科技通报,2007,23(5):729~735.
    [135]顾建飞,姚谏,钱国帧.冷弯薄壁槽钢柱畸变屈曲的有限元分析及一种控制措施[J].科技通报,2007,23(1):111~115.
    [136]孙觅,王广,姚谏.加设隔板的卷边槽钢受压弹性畸变屈曲[J].低温建筑技术,2008,124(4):79~81.
    [137]李元齐,刘翔,沈祖炎,姚行友,秦雅菲.高强冷弯薄壁型钢卷边槽形截面轴压构件畸变屈曲控制试验研究[J].建筑结构学报,2010,31(11):10~16.
    [138]王广.冷弯薄壁卷边槽钢受压畸变屈曲性能分析[D].杭州:浙江大学.2007.
    [139]杨晓通.卷边加连杆的冷弯薄壁C型槽钢受压性能试验研究与有限元模拟[D].杭州:浙江大学.2006.
    [140]占冠元.冷弯薄壁卷边槽钢构件受压畸变屈曲性能及加固控制措施分析[D].合肥:合肥工业大学.2009.
    [141]Goncalves R, Dinis P.B, Camotim D. GBT formulation to analyse the first-order and buckling behaviour of thin-walled members with arbitrary cross-sections [J]. Thin-Walled Structures,2009, 47(5):583-600.
    [142]S.铁摩辛柯,S.沃诺斯基.板壳理论[M].北京:科学出版社,1977.
    [143]Silvestre N, Camotim D. First-order generalised beam theory for arbitrary orthotropic materials [J]. Thin-Walled Structures,2002,40(9):755-789.
    [144]Jeppe Jonsson. Distortional warping functions and shear distributions in thin-walled beams [J]. Thin-Walled Structures,1999,33(4):245-268.
    [145]Jeppe Jonsson.Distortional theory of thin-walled beams [J]. Thin-Walled Structures,1999, 33(4):269-303.
    [146]陈伟,叶继红.卷边槽钢压弯构件弹性畸变屈曲研究[J].土木工程学报,2009(12):51~60.
    [147]龙驭球,包世华.结构力学教程[M].北京:高等教育出版社,1988.
    [148]孙训方,方孝淑,关来泰.材料力学[M].北京:高等教育出版社,1994.
    [149]Young Ben, ASCE M, Hancock Gregory J. Compression Tests of Channels with Inclined Simple Edge Stiffeners [J]. Journal of Structural Engineering,2003,129 (10):1403-1411.
    [150]Papangelis J. P, Hancock G. J. Computer analysis of thin-walled structural members [J]. Computers & Structures,1995,56(1):157-176.
    [151]王春刚,张耀春.冷弯薄壁斜卷边槽钢轴压构件的稳定性分析[J].哈尔滨工业大学学报,2009,41(12):14~19.
    [152]同济大学建筑工程系,博思格建筑系统住宅部.高强冷弯薄壁型钢C型截面偏压构件承载力试验研究[R].高强冷弯薄壁型钢成套技术研究系列报告No.3,2007(6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700