多普勒激光雷达配合型工作方式与相位调制探测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多普勒激光雷达是运动目标速度测量和大气风场遥感的有力工具,根据工作原理其主要可分为直接探测多普勒激光雷达和相干探测多普勒激光雷达。这两类多普勒激光雷达各自存在显著优势的同时,各自也存在着难以克服的缺点。相干探测多普勒激光雷达由于其采用的探测方法对激光器线宽、频率稳定性以及光学对准的要求相当苛刻,使其难于在工程实践中广泛应用;直接探测多普勒激光雷达受其边缘滤波器透过率特性的限制,较难获得到很高的测量精度和测量范围。针对两种多普勒激光雷达各自存在的问题,本文从以下两个方面展开研究:
     首先,本文提出了直接探测米散射多普勒测风激光雷达的配合型工作方式,并对其进行了理论研究。该直接探测多普勒激光雷达采用的是Fabry-Perot干涉仪双边缘技术,其配合型工作方式是结合其自身的风速测量误差分布特点,根据实际风速测量的需要,通过动态调整出射激光频率在Fabry-Perot干涉仪透过率谱上的位置,来保证能始终利用Fabry-Perot干涉仪透过率曲线最高测量精度的部分对风速进行测量,从而达到提高测量精度、拓宽测量范围的目的。
     理论上证明,对于采用配合型工作方式的普通Fabry-Perot双边缘米散射直接探测多普勒测风激光雷达,其鉴频系统的参数设计可以不必考虑风速测量范围的限制来尽量提高测量精度,还可根据实际风速的需要调整自身的状态来获得最佳的测量结果。
     理论上证明,利用配合型工作方式设计的一种特殊角度调谐Fabry-Perot双边缘米散射直接探测多普勒测风激光雷达,与普通Fabry-Perot双边缘米散射直接探测多普勒测风激光雷达相比,具有相同的最小测量误差,但却具有更小的测量误差范围,两者的误差范围相差5.76倍。
     其次,本文提出了一种新的多普勒频移探测方法。该方法通过相位调制器使信号光在原有频率成分(载波)的基础上产生正负一阶边带,再通过在Fabry-Perot干涉仪对载波和边带的振幅和相位进行调整,使载波与边带产生固定频率的拍频信号,利用此拍频信号进行信号光多普勒频移测量。由于产生此拍频信号的光波是同一信号光的不同频率成分,它们经历相同的时间和空间,且相干性不会因探测距离的增加而降低,所以无需过高要求系统的光学结构和光源,自然可以获得极高的拍频效率,这就从根本上解决了相干探测方法存在的问题。
     理论与实验研究同时证明,信号光相位调制拍频信号的振幅与相位参量都可以用来进行多普勒频移测量;与Fabry-Perot干涉仪单边缘技术相比,拍频信号相位参量多普勒频移测量方法的测量范围提高了1倍,且无需对信号光进行能量检测。
     实验上,实现了利用基于LabView可视化语言与数据采集卡的虚拟数字锁相放大器,对相位调制拍频信号的振幅与相位两个多普勒鉴频参量的提取;证明了相位调制拍频信号振幅参量多普勒频移测量方法比普通边缘技术多普勒频移测量方法具有更高的抗外界电磁干扰能力,当外界具有高电磁干扰时,此拍频信号方法的测量精度可以比边缘技术方法的测量精度高约10倍左右。
     理论上,推导出相位调制拍频信号多普勒频移测量方法的测量误差公式;其仿真结果与实验结果相吻合;利用该公式获得了此种多普勒频移测量方法的最佳相位调制频率值和相位调制深度值。
Doppler Lidar is a powerful tool for velocity measurements of a moving target and wind. According to its working principle, it can be mainly divided into direct detection Doppler Lidar and coherent detection Doppler Lidar. Each of them has obvious advantages and insurmountable disadvantages as well. Coherent Doppler Lidar is difficulty to be applied in engineering practice widely, because its detective method requires a rigorous laser line width, a frequency stability, and optical alignment. Direct detection Lidar, for its edge filter transmittance characteristics restriction, is hard to reach high measuring accuracy and wide measuring range. According to this situation, this paper investigates two aspects of contents as followed:
     Firstly, this paper proposed a fitting type working manner for direct detection Mie Doppler wind Lidar that utilizes the Fabry-Perot interferometer double-edge technique, and theoretical research will be done at the same time. Based on the measuring error characteristics of the Doppler wind Lidar, the fitting type working manner, by changing the working point of outgoing laser on Fabry-Perot transmission curve for the requirement of real wind measurement, always uses the maximum accuracy curve party to measure the wind for increasing the measuring accuracy and range.
     Theoretically, it has been proved that normal Fabry-Perot double-edge Mie direct detection Doppler wind Lidar employing the fitting working manner, can improve the measuring accuracy as high as possible with no need to consider wind measuring range restrict when designing the system parameters, and can adjust its own state to suite the wind requirement for the best measuring result.
     It has been proved theoretically that the special angle tuned Fabry-Perot double-edge Mie direct detection Doppler wind Lidar designed with fitting working manner, comparing with the normal Fabry-Perot double-edge Mie direct detection Doppler wind Lidar, has the same minimum measuring error, but its measuring error range is5.76times less than the latter.
     Secondly, this paper proposed a new kind of Doppler shift detection method. It uses the phase modulator to make the signal light generate the first order sidebands from the original frequency component (carrier wave), then utilizes the Fabry-Perot interferometer to tune the amplitude and phase of them for generating the beat frequency signal with fixed frequency. This beat frequency signal is used to measure Doppler frequency shift. The beat frequency signal is generated from the different signal light frequency components, which undergo the same space-time and will not reduce coherence due to increase of detection range. No needing a tall order for optical structure and light source, extramly high beat frequency efficiency can be obtained spontaneously. This fundamentally solves the problems of coherent detection method.
     Theoretically and experimentally, it can be proved that the beat frequency signal amplitude and phase of phase modulation signal light can be used to measure the Doppler shift; measuring range of the Doppler shift measuring method using the beat frequency signal phase is twice as that of the Fabry-Perot single edge technique, and no needs to detect the energy of signal light.
     Experimentally, utilizing the virtual digital phase-locked amplifier based on LabView visual programming languages and Data Acquisition Card to extract the phase and amplitude of beat frequency signal of phase modulation has been realized; it has been proved that the Doppler shift measuring method of the beat frequency signal amplitude has a higher ability to resist external electromagnetic interference than the normal edge technique Doppler shift measuring method, the measuring accuracy of it is10times higher than that of normal edge technique under the condition of high external electromagnetic interference.
     In theory, Measurement error formula of phase modulation beat frequency signal Doppler shift measuring methods have been derived out; the simulation results of them fit the experimental results very well; by using these formula, the best phase modulation frequency and depth for this kind Doppler shift measuring method are gotten.
引文
[1] Rabinowiz P, Jacobs S, Targ R, et al. Homodyne Detection of Phase ModulatedLight[C]. Proc. IRE., Correspondence,1962.
    [2] Yeh Y, Cummins H. Localized Fluid Flow Measurements with a He-Ne LaserSpectrometer[J]. Appl. Phys. Lett.,1964(4):176-178.
    [3] Huffaker R M. Laser Doppler Detection Systems for Gas VelocityMeasurements[J]. Appl. Opt.,1970,21(9):1026-1039.
    [4] Huffaker R M, Jelalian A V, Thomson J A L. Laser-Doppler System forDetection of Aircraft Trailing Vortices[C]. Proc. of the IEEE,1970,58:322-326.
    [5] Post M J. Development of Coherent Laser Radar[C]. IEEE. InternationalGeoscience and Remote Sensing Symposium,1994,2:923-925.
    [6] Post M J, Richter R A, Hardesty R M. NOAA's Pulsed, Coherent IR DopplerLidar Characteristic Sand Data [C]. Proc. SPIE,1981,300:60-65.
    [7] Rothermel J, Olivier L D, Banta R M, et al. Remote Sensing of Multi-levelWind Fields with High-energy Airborne Scanning Coherent Doppler Lidar[J].Opt. Express,1998,2(2):40-50.
    [8] Kane T J, Kozlovsky W J, Byer R L, et al. Coherent Laser Radar at1.06μmUsing Nd: YAG Lasers [J]. Opt. Lett.,1987,12(4):239-247.
    [9] Kavaya M J, Hendesron S W, Magee J R, et al. Remote Wind Profiling with aSolid-state Nd:YAG Coherent Lidar System, Opt. Lett.,1989,14(6):776-778.
    [10] Henderson S W, Hale C P, Magee J R, et al. Eye-safe Coherent Laser RadarSystem at2.1μm Using Tm, Ho:YAG Lasers[J]. Opt. Lett.,1991,16(10):773-775.
    [11] Huffaker R M, Reveley P A. Solid-state Coherent Laser Radar Wind FieldMeasurement Systems[J]. Puer Appl. Opt.,1998,7(12):863-873.
    [12] Henderson S W, Hannon S M. Advanced Coherent Lidar System for WindMeasurements[C]. Proc. of SPIE,2005,5887:588-601.
    [13] Phillips M W, Henderson S W, Poling M, et al. Coherent LIDAR Developmentfor Doppler Wind Measurement from the International Space Station[C]. Proc.of SPIE,2001,4153:376-384.
    [14] Ishii S, Mizutani K, Itabe T, et al. Development of2μm Airborne CoherentDoppler Lidar at NICT [C]. Proc. of SPIE,2006,6409:64090J-1-64090J-8.
    [15] Asaka K, Yanagisawa T, Hirano Y.1.5-μm Eye-safe Coherent Lidar System forWind Velocity Measurement [C]. Proc. of SPIE,2001,4153:321-328.
    [16] Augere B, Cariou J P. All-fiber1.5μm CW Coherent Laser Anemometer forIn-flight Measurements [C]. Proc. of SPIE,2003,5086:121-128.
    [17] Pearson G N, Roberts P J, Eacock J R, et al. Analysis of the Performance of a1.548μm Coherent Pulsed Fiber Lidar for Aerosol Backscatter Applications[J].Appl. Opt.,2002,41(30):6442-6450.
    [18] Strand O T, Berzins L V, Goosman D R, et al. Velocimetry Using HeterodyneTechniques[C]. Proc. of SPIE,2005,5580:593-599.
    [19] Strand O T, Goosman D R, Martinez C, et al. Compact System for High-speedVelocimetry Using Heterodyne Techniques [J]. Rev. Sci. Instrum.,2006,77(083108):1-8.
    [20]李磊,赵长明,高岚,等.变光外差为电外差的双频激光探测[J].光学学报,2007,27(2):249-252.
    [21] Li J, Yang S H, Zhang H Y, et al. Diode-pumped Room Temperature SingleFrequency Tm:YAP laer[J]. Laser Physics Letters,2010,7(3):203-205.
    [22]张海洋,赵长明,蒋奇君,等.基于相干激光雷达的激光微多普勒探测[J].中国激光,2008,35(12):1981-1985.
    [23]张海洋,赵长明,杨苏辉.激光微多普勒探测系统中降低相位噪声影响的方法研究[J].光子学报,2011,40(5):753-757.
    [24]张海洋,赵长明,蒋奇君,等.1.06μm相干激光雷达动目标多普勒信号探测[J].光子学报,2009,38(3):507-511.
    [25]王建银.连续外差激光多普勒测风雷达[D].成都:四川大学光学学科硕士学位论文,2007:21-40.
    [26]张文睿,曾晓东,满祥坤.激光外差实验研究[J].红外与激光工程,2008,37:146-148.
    [27]杨德钊,宋凝芳,林志立,等.目标表面对FMCW激光雷达拍频信号的影响分析[J].北京航空航天大学学报,2011,37(9):1127-1131.
    [28]王希涛,刘秉义,吴松华,等.高精度1.55μm全光纤激光相干测速实验及数据分析[J].激光与光电子学进展,2011,48(6):060301.
    [29]竹孝鹏,刘继桥,刁伟峰,等.相干多普勒测风激光雷达研究[J].红外,2012,33(2):8-12.
    [30] Chanin M L, Garnier A, Hauchecorne A, et al. Doppler Lidar for MeasuringWinds in the Middle Atmosphere[J]. Geophys. Res. Let,1989,16(11):1273-1276.
    [31] Garnier A, Chanin M L. Description of a Doppler Rayleigh Lidar forMeasuring Winds in the Middle Atmosphere[J].Appl. Phys. B,1992,55:35-40.
    [32] Souprayen C, Garnier A, Hertzog A, et al. Rayleigh~Mei Doppler Wind Lidarfor Atmospheric MeasurementsⅠ. Instrumental Setup, Validation and FirstClimatological Results[J]. Appl. Opt.,1999,38(12):2410-2421.
    [33] Souprayen C, Garnier A, Hertzog A. Rayleigh-Mei Doppler Wind Lidar forAtmospheric Measurements.Ⅱ. Mie Scattering Effect, Theory, andCalibration[J]. Appl. Opt.,1999,38(12):2422-2431.
    [34] Korb C L, Gentry B M, Weng C Y. Edge Technique: Theory and Application tothe Lidar Measurement of Atmospheric Wind[J]. Appl. Opt.,1992,31(21):4202-4212.
    [35] Gentry B M, Korb C L. Edge Technique for High-accuracy DopplerVelocimetry[J]. Appl. Opt.,1994,33(24):5770-5777.
    [36] Korb C L, Gentry B M, et al. Spaceborne Lidar Wind Measurement with theEdge Technique. Lidar Techniques for Remote Sensing[C]. Proc. of SPIE,Rome, Italy.,1994:206-213
    [37] Korb C L, Gentry B M, Li S X. Edge Technique Doppler Lidar WindMeasurements with High Vertical Resolution[J]. Appl. Opt.,1997,36(24):5976-5983.
    [38] Korb C L, Gentry B M, Li S X, Flesia C. Theory of the Double EdgeTechnique for Doppler Lidar Wind Measurement[J]. Appl. Opt.,1998,37(15):3097-3104.
    [39] Flesia C, Korb C L. Theory of the Double-edge Molecular Technique forDoppler Lidar Wind Measurement[J]. Appl. Opt.,1999,38(3):432-440.
    [40] Flesia C, Korb C L, Hirt C. Doulbe-edge Molecular Measurement of LidarWind Profiles at355nm[J]. Opt. Lett.,2000,25(19):1466-1468.
    [41] Gentry B M, Chen H, Li S X. Wind Measurements with355-nm MolecularDoppler Lidar[J]. Opt. Lett.,2000,25(17):1231~1233.
    [42] Gentry B M, Chen H. Performance Validation and Error Analysis for a DirectDetection Molecular Doppler Lidar[C]. Lidar Remote Sensing for Industry andEnvironment Monitoring III, Proc. of SPIE, Hangzhou, China,2003:287-294.
    [43] Gentry B M, Chen H. Tropospheric Wind Measurements Obtained with theGoddard Lidar Observatory for Winds (GLOW): Validation and Performance
    [C]. Lidar Remote Sensing for Industry and Environment Monitoring II. SanDiego, CA, USA,2002:74-81.
    [44] Gentry B M, Chen H, Li S X. Glow-The Goddard Lidar Observatory forWinds[C]. Proc. of SPIE, Sendai, Japan,2001:314-320
    [45] Chen H, Gentry B. Preliminary Results of Wind Measurements by GlowSystem in Field Campaigns[C]. Lidar Remote Sensing for Industry andEnvironment Monitoring III, Proc. of SPIE,2003,4893:295-302.
    [46] Gentry B, McGill M. Development of an Airborne Molecular Direct DetectionDoppler Lidar for Tropospheric Wind Profiling[C]. Lidar Remote Sensing forEnvironmental Monitoring VIII, Proc. of SPIE,2007,61810B:1-7.
    [47] McGill M J, Skinner W R, Irgang T D. Validation of Wind Profiles Measuredwith Incoherent Doppler Lidar[J]. Appl. Opt.,1997,36(9):1928-1939.
    [48] McGill M J, Skinner W R, Irgang T D. Analysis Techniques for the Recoveryof Winds and Backscatter Coefficients from a Multiple-channel IncoherentDoppler Lidar[J]. Appl. Opt.,1997,36(6):1253-1268.
    [49] Dehring M T, Ryan J M, Hays P B,et al. GroundWinds Balloon Fringe-imagingDoppler Lidar Mission Concept and Instrument Performance[C]. Lidar RemoteSensing for Industry and Environmental MonitoringⅤ, Proc. of SPIE,2005,5653:210-219.
    [50] Irgang T D, Hays P B, Skinner W R. Two-channel Direct-detection DopplerLidar Employing a Charge-coupled Device as Detector[J]. Appl. Opt.,2002,41(6):1145-1154.
    [51] Yoe J G, Rama M K, Raja V, et al. Groudwinds2000Field Campaign:Demonstration of New Doppler Lidar Technology and Wind Lidar DateIntercomparison[C]. Proc. of SPIE,2003,4893:327-336.
    [52] McGill M J, Spinhirne J D. Comparison of Two Direct-detection Doppler LidarTechniques[J]. Opt. Eng.,1998,37(10):2675-2686.
    [53] McGill M J, Hart W D, Mckay J A, et al. Modeling the Performance ofDirect-detection Doppler Lidar Systems Including Cloud and SolarBackground Variability[J]. Appl. Opt.,1999,38(32):6388-6397.
    [54] McGill M J, Skinner W R, Irgang T D. Validation of Wind Profiles MeasuredWith Incoherent Doppler Lidar[J]. Appl. Opt.,1997,36(9):1928-1939.
    [55] McKay J A. Modeling of Direct Detection Doppler Wind Lidar I. The EdgeTechnique[J]. Appl. Opt.,1998,37(27):6480-6486.
    [56] McKay J A. Modeling of Direct Detection Doppler Wind Lidar II. The FringeImaging Technique[J]. Appl. Opt.,1998,37(27):6487-6492.
    [57] McKay J A. Comment on “Theory of the Double-edge Molecular Techniquefor Doppler Lidar Wind Measurement”[J]. Appl. Opt.,2000,39(6):993-996.
    [58] McKay J A. F-P Etalon Aperture Requirements for Direct Detection DopplerWind Lidar from Earth Orbit[J]. Appl. Opt.,1999,38(27):5859-5866.
    [59] McKay J A. Assessment of a Multibeam Fizeau Wedge Interferometer forDoppler Wind Lidar[J]. Appl. Opt.,2002,41(9):1760-1766.
    [60] Norrie C J, Marini A E, Armandillo E. European Space Agency TechnologyActivities for Spaceborne Doppler Wind Lidar[C]. Lidar Techniques forRemote Sensing, Proc. of SPIE,1994,6753:170-173.
    [61] Durand Y, Culoma A, Meynart R, et al. Pre-development of a Direct DetectionDoppler Wind Lidar for ADE/AEOLUS Mission[C]. Sensors, Systems andNext-Generation Satellites VII, Proc. of SPIE,2004,5234:354-363.
    [62] Durand Y, Meynart R, Culoma A, et al. Results of Pre-development ofALADIN, the Direct Detection Doppler Wind Lidar for ADE/AEOLUS[C].Sensors, Systems and Next-Generation Satellites VIII, Proc. of SPIE,2004,5570:93-104.
    [63] Durand Y, Chinal E, Ecdemann M, et Al. Aladin Airborne Demonstrator: aDoppler Wind Lidar to Prepare ESA’s ADE-Aeolus Explorer Mission[C]. EarthObserving Systems XI, Proc. of SPIE,2006,62961D:1-13.
    [64] Endemann M. ADM-Aeolus: the First Spaceborne Wind Lidar[C]. LidarRemote Sensing for Environmental Monitoring VII, Proc. of SPIE,2006,64090G:1-15.
    [65] Durand Y, Bézy J L, Meynart R. Laser Technology Developments in Supportof ESA's Earth Observation Missions[C]. Solid State Lasers XVII: Technologyand Devices, Proc. of SPIE,2008,68710G:1-12.
    [66] Yasukuni S, Chikao N, et al. Wind Measurement Accuracy With IncoherentDoppler Lidar Using an Iodine Vapor Filter[C]. Lidar Remote Sensing forIndustry and Environment Monitoring III, Proc. of SPIE,2003,4893:529-536.
    [67] Shibata Y, Nagasawa C. Incoherent Doppler Lidar Using355-nm Wavelengthfor Wind Measurement[C]. Lidar Remote Sensing for Industry andEnvironment Monitoring, Proc. of SPIE,2001,4153:615-622.
    [68] Masaharu I, Sun D, et al. Direct-detection Doppler Lidar for Two-dimensionalWind Field Measurements of the Troposphere[C]. Lidar Remote Sensing forIndustry and Environment Monitoring III, Proc. of SPIE,2003,4893:303-310.
    [69] Kawai H, Iwasaki Y, Imaki M, et al. Ultraviolet High-spectral Resolution Lidarwith Polarization Detection for Accurate Measurement of Optical Properties ofAerosol and Clouds[C]. Lidar Remote Sensing for Environmental MonitoringVIII, Proc. of SPIE,2007,668103:1-9.
    [70] Imaki M, Kobayashi T. Ultraviolet High-spectral-resolution Doppler Lidar forMeasuring Wind Field and Aerosol Optical Properties[J]. Appl. Opt.,2005,44(28):6023-6030.
    [71] Sun D S, Zhong Z Q, Zhou J, et al. Accuracy Analysis of the Fabry-PerotEtalon Based Doppler Wind Lidar[J]. Opt. Rev.,2005,12(5):409-414.
    [72] Shen F, Cha H, Sun D, et al. Low Tropospheric Wind Measurement with MieDoppler Lidar [J]. Opt. Rev.,2008,15(4):204-209.
    [73] Xia H, Sun D, Yang Y, et al. Fabry–Perot Interferometer Based Mie DopplerLidar for Low Tropospheric Wind Observation[J]. Appl. Opt.,2007,46(29):7120-7131.
    [74] Tang L, Shu Z, Dong J, et al. Mobile Rayleigh Doppler Wind Lidar Based onDouble-edge Technique [J]. Chin. Opt. Lett.,2010,8(8):726-731.
    [75] Xia H, Dou X, Sun D, et al. Mid-altitude Wind Measurements with MobileRayleigh Doppler Lidar Incorporating System Level Optical FrequencyControl Method[J]. Opt. Express,2012,20(14):15286-15300.
    [76] Liu Z S, Wu D, Liu J T, et al. Low-Altitude Atmospheric Wind Measurementfrom the Combined Mie and Rayleigh Backscattering by Doppler Lidar with anIodine Filter [J]. Appl. Opt.,2002,41(33):7079-7086.
    [77] Liu Z S, Liu B Y, Wu S H, et al. High Spatial and Temporal Resolution MobileIncoherent Doppler Lidar for Sea Surface Wind Measurements[J]. Opt. Lett.,2008,33(13),1485-1487.
    [78]卜令兵,刘继桥,陈卫标.基于菲索干涉义与多通道光电倍增管阵列的多普勒频移技术[J].光学学报,2007,27(3):379-383.
    [79]刘继桥,陈卫标,胡企铨.基于菲索干涉仪的直接探测多普勒测风激光雷达[J].大气科学,2004,28(5):762-770.
    [80]陈卫标,周军,刘继桥,朱小磊.多普勒激光雷达及其单纵模全固态激光器[J].红外与激光工程,2008,37(1):57-60.
    [81] Li Y C, Wang C H, Qu Y, et al. Numerical Investigation of Multi-beam LaserHeterodyne Measurement with Ultra-precision for Linear ExpansionCoefficient [J]. Chin. Phys. B,2011,20(1):014208-1-014208-7.
    [82] Li Y C, Wang C H. A Method of Measuring Micro-impulse with TorsionPendulum Based on Multi-beam Laser Heterodyne[J]. Chin. Phys. B,2012,21(2):020701(1-6).
    [83] Bai Y, Ren D M, Zhao W J, et al. Heterodyne Doppler Velocity Measurementof Moving Targets by Mode-locked Pulse Laser [J]. Opt. Express,2012,20(2):764-768.
    [84] Bai Y, Ren D M, Zhao W J, et al. Research on Heterodyne Detection of aMode-locked Pulse Laser Based on an Acousto-optic Frequency Shift [J]. Appl.Opt.2010,49(20):4018-4023.
    [85] Xia H, Zhang C. Ultrafast and Doppler-free Femtosecond Optical RangingBased on Dispersive Frequency-modulated Interferometry[J]. Opt. Express,2010,18(5):4118-4129.
    [86] Gao L, Wang C, Li Y, et al. Investigation of Cross-Polarized HeterodyneTechnique for Measuring Refractive Index and Thickness of glass panels [J].Optics Communications,2010,283(17):3310-3314.
    [87] Gao L, Wang C, Li Y, et al. Fiber-coupled Near-infrared Laser HeterdyneInterfermetry with Fast Optical Scanning [J]. J. Opt. Soc. Am. B,2010,27(12):2499-2504.
    [88] Gao L, Wang C, Li Y, et al. Investigation of Glass Panels Thickness Profile byFiber-coupled Dignal Heterdyne Interfermetry[J]. Opt. Rev.,2010,17(6):549-552.
    [89] Li X, Yu J, Chi N. The Reduction of LO Number for Heterodyne CoherentDetection[J]. Opt. Express,2012,20(28):29613-29619.
    [90] Luo H, Yuan X H, Zeng Y. Rang Accuracy of Photon Heterodyne Detectionwith Laser Pulse Based on Geiger-mode APD[J].Opt. Express,2013,21(16):18983-18993.
    [91] Mansurova S, Moreno Z P, Rodriguez P. Non-steady-state PhotoelectromotiveForce Effect under Linear and Periodical Phase Modulation: Application toDetection of Doppler Frequency Shift[J]. Opt. Lett.,2012,37(3):383-385.
    [92] Vidal S, Luce J, Hocquet S. Distortion Cancellation of Frequency ConvertedPulses with Simple Linear Signal Processing and Application to FrequencyModulation to Amplitude Modulation Conversion in High Power Lasers[J].Appl. Opt.,2012,51(24):5818-5825.
    [93] Dong Z, Li X, Yu J. Generation and Transmission of8x112-Gb/sWDMPDM-16QAM on25-GHz Grid with Simplified Heterodyne Detection[J].Opt.Express,2013,21(2):1773-1778.
    [94]费业泰.误差理论与数据处理[M].北京:机械工业出版社,1981:58-84.
    [95] Kim D, Kwon S, Cha H, et al. A Newly Designed Single Etalon Double EdgeDoppler Wind Lidar Receiving Optical System[J]. Rev. Sci. Instrum.,2008,79(12):123111(1-4).
    [96] Ren D, Chen Z, Du J, et al. Research on the Transmission Characteristic ofAngle Tuning F-P Etalon[C].2012International Conference on Optoelectronics and Microelectronics,2012,93793:177-181.
    [97] Eric D B. A Introduction to Pound-Drever-Hall Laser FrequencyStabilization[J]. Am. J. Phys,2000,69(1):79-87.
    [98]闫行.微弱电流信号检测系统的设计[D].山西:中北大学电路与系统学科硕士学位论文,2011,14-25.
    [99] Hisatake S, Nagatsuma T. Continuous-wave Terahertz Field Imaging Based onPhotonics-based Self-heterodyne Electro-optic Detection[J]. Opt. Lett.,2013,38(13):2307-2310.
    [100]赵俊杰.数字锁相放大器的实现研究[D].大连:大连理工大学电路与系统学科硕士学位论文,2011:6-20.
    [101] Lin C E, Yu C J, Chen C C. Design of a Full-Dynamic-Range BalancedDetection Heterodyne Gyroscope with Common-Path Configuration[J].Opt.Express,2013,21(8):9947-9958.
    [102]任成,杨星团,张书练.宽频带空间光外差信号采集系统[J].清华大学学报(自然科学版),2013,53(1):106-110.
    [103] Aharon A, Rozban D, Kopeika N S. Heterodyne Detection at300GHz UsingNeon Indicator Lamp Glow Discharge Detector[J]. Appl. Opt.,2013,52(17):4077-4082.
    [104]王春晖,高龙,庞亚军,刘磊,李彦超,曲杨.光束分束比对2μm平衡式探测系统信噪比影响的实验研究[J].光学学报,2011,31(11):1104002(1-6).
    [105]杨彦玲,王春晖,李彦超.相干激光雷达平衡外差探测方法的数值仿真研究[J].红外与激光工程,2011,40(10):1918-1922.
    [106]张可可.光谱吸收式光纤气体检测理论及技术研究[D].哈尔滨:哈尔滨工程大学通讯与信息系统学科博士学位论文,2012:46-60.
    [107] Yang Y, Petrillo K G, Ting H F. Experimental Demonstration of CoherentOCDMA Using Heterodyne Detection[J]. Opt. Lett.,2013,38(13):2351-2353.
    [108]孙秀桂,张洪斌,孙江波.一种基于虚拟仪器技术的双锁相放大器的设计[J].测控技术,2011,30(8):14-18.
    [109]赵玲,田小建,梁磊,郑传涛,王一丁.基于自动频率跟踪的虚拟数字锁相放大器[J].吉林大学学报(信息科学版),2012,30(1):5-11.
    [110]孙秀桂,张洪斌,张树朝.基于LabVIEW的软件数字锁相环实现[J].科学技术与工程,2010,10(1):76-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700