高速大推力直线感应电机的电磁理论与设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直线电机是一种将电能直接转换为直线运动形式机械能的电力传动装置,其中,直线感应电机具有结构简单、运行可靠等优点,因而在伺服系统、轨道交通车辆牵引、工业自动化设备、传送与搬运装置中应用前景广阔。由于短初级直线感应电机制造成本和运行费用低、能量消耗少,因此在目前的研究和应用中,绝大部分以该结构为主,而在长初级结构中,次级重量轻,并且在供电时无需移动电缆或集电装置,供电可靠性高,因而在数控机床、电磁弹射系统、冲撞试验平台等短时间歇运行场合具有更大的优势。
     本文以高速、大推力长初级双边直线感应电机为研究对象,通过电磁场分析,对其磁场分布、性能计算、电磁设计和控制方法进行理论研究与仿真计算,主要工作包括以下几个方面:
     建立并求解长初级直线感应电机考虑纵向动态端部效应时的一维电磁场方程,计算电机在恒流源供电时的气隙磁密和各种性能(如电磁推力、功率和次级涡流等),分析电机设计参数对端部效应特征参数、推力和推力因数的影响,通过气隙磁密相量图,重点研究纵向动态端部效应对推力特性的影响,并提出增加推力的措施。根据二维电磁场理论,计算不计纵向动态端部效应时次级和气隙中的磁场分布以及施加于次级的推力。
     根据一维电磁场求出的复功率与等效电路求出的复功率相等的关系,建立长初级直线感应电机的等效电路,其中,纵向和横向端部效应的影响通过对励磁电抗和次级电阻进行修正加以考虑,无次级覆盖的初级无效部分的影响(如绕组和铁心)也体现在等效电路中。
     对长初级直线感应电机的电磁设计方法进行研究,包括主要尺寸、电磁负荷、次级导电板的尺寸和气隙长度等主要设计参数的选取,初级绕组型式和槽形的确定,磁路、等效电路参数、损耗及性能的计算方法。根据设计流程,使用MATLAB软件编写电磁设计核算程序,程序可根据计及端部效应的等效电路,计算在电压源或电流源供电时电机在任何速度下的各项特性,并设计出应用于电磁弹射系统的两台额定推力分别为4kN和1.345MN的样机。
     建立计及端部效应影响时,长初级直线感应电机在任意转速q-d-0坐标系下的动态数学模型,根据弹射系统中对加速度、速度和位移的要求,分别对电机在全压起动、速度开环和闭环恒压频比控制、次级磁场定向控制时的各项机械特性和电气特性进行仿真研究。
     通过研究表明,端部效应使长初级直线感应电机的推力特性变软,额定运行时的速度和电机的最大推力减小,电机效率有所降低,但其影响要远小于对短初级结构的影响,在电机设计时可通过合理选取设计参数抑制端部效应,在应用时没有必要增设补偿装置。
Linear motors (LMs) are the transmission devices that can convert electric power to mechanical work in the form of translational motion. Of the various types of LMs, the linear induction motors (LIMs) take the advantages of simple constructure and reliable operation, therefore, they are widely applied in servo drives, propulsion systems for ground transportation, industrial automation equipments and conveying and handling equipments, etc. To date, the extensive investigations and applications on the LIM have been mainly focused on the short primary LIM (SP-LIM) for its lower manufacturing and operating cost, as well as for the reduced energy consumption. However, although long primary LIM (LP-LIM) seems to be a costly choice as the primary windings need to be installed along the entire track, the weight of the conductive secondary can be significantly reduced, no sliding electric brushes or moving cables are required for power delivery and consequently, system reliability is greatly improved. These features make LP-LIM a prefer option in the applications with short-time or intermittent duty operation, such as numerical control machines, electromagnetic launching systems, impact extrusion test units, etc.
     The theoretical investigation and simulation analysis for the prediction of magnetic field distribution, performance calculation, electromagnetic design and control strategy of high-speed and high-thrust double-sided LP-LIM have been carried out by using the electromagnetic field technical theory. The research reported in this dissertation can be summarized as follows:
     The 1-d analytical governing field equations in the airgap region of LP-LIM, taking account of longitudinal dynamic end effect, are established and solved. Both the airgap magnetic flux density and the performances, such as thrust, active/reactive power, secondary eddy current, etc., under constant current excitation are formulated and validated against finite element calculations. The variations of motor design parameters on the end effect characteristic parameters as well as on the thrust and thrust ratio are analyzed. The influence of longitudinal dynamic end effect on the thrust-vs.-speed characteristics, with particular reference to the measures to improve the performances, based on the phasor diagram, is also investigated. The magnetic field distribution and thrust are also calculated in terms of quasi-2-d models, in which the short secondary is extended to infinity in the longitudinal direction.
     Since the complex power derived based on 1-d electromagnetic field is identical to that from the circuit, the influence of both longitudinal and transverse end effect can be explicitly taken into account in the equivalent circuit of LP-LIM as being the modified coefficients of the magnetizing reactance and the secondary resistance. In addition, the primary winding and iron core uncovered by the secondary are also represented in the equivalent circuit.
     The electromagnetic design procedure for LP-LIM is described. It involves selection of main dimensions, electromagnetic load, secondary specification and the airgap length, determination the primary windings and slots, arid calculation of magnetic circuit, equivalent circuit parameters, copper losses as well as associated performances. According to the flow chart, a design procedure, based on the MATLAB platform, is programmed to predict the overall characteristics of LP-LIM under either constant voltage excitation or constant current excitation. A 4kN and a 1.345MN prototype were designed specifically for electromagnetic launching applications, respectively.
     The dynamic model of LP-LIM, accounting for the end effect, is developed in arbitrary q-d-0 reference frame and validated by line starting simulation. To evaluate the dynamic response of variable-speed LP-LIM drive systems, the dynamic simulation with several types of control strategies, such as open-and close-loop constant volts/Hz control, secondary flux-oriented vector control, on the basis of the requirements to the fast tracking to the commanded acceleration, velocity and displacement, are implemented on the MATLAB/Simulink environment.
     The thrust-vs.-speed characteristics of LP-LIM show that the end effect will lead to wider statically stable speed range of operation and slightly lower breakdown thrust, the rated operating speed could be far away from the synchronous speed, thereby resulting in the higher secondary copper losses and hence lower efficiency compared to LIM with negligible end effect. In general, however, the influence of end effect on LP-LIM is much less than that on SP-LIM, therefore, to alleviate the end effect, it is preferable to select the proper motor design parameters rather than equip with additional compensation units.
引文
[1]山田一.工业用直线电动机.薄荣志译.北京:新时代出版社,1986.
    [2]H. D. Fair. The science and technology of electric launch. IEEE Trans. Magn., vol. 37, no.1, pp.25-32, Jan.2001.
    [3]B. V. Jayawant, J. D. Edwards, L. S. Wickramaratne, et al. Electromagnetic launch assistance for space vehicles. IET Sci. Meas. Technol., vol.2, no.1, pp.42-52,2008.
    [4]R. R. Bushway. Electromagnetic aircraft launch system development considerations. IEEE Trans. Magn., vol.37, no.1, pp.52-54, Jan.2001.
    [5]张启平,罗勇忠,郭国才等.新一代航母电力推进系统技术展望.船电技术,2006,26(6):1-8.
    [6]于瀛,池建文,陈昕.电磁飞机弹射系统.舰船科学技术,2003,25(4):51-56.
    [7]郭国才,章国华.船舶电力系统在航母上应用趋势.船电技术,2005,3:1-4.
    [8]http://qnck.cyol.com/content/2009-09/08/content_2843653.htm
    [9]http://spectrum.ieee.org/aerospace/space-flight/a-hightech-launchsystem-for-carriers
    [10]http://www.globalsecurity.org/military/systems/ship/systems/emals.htm
    [11]J. F. Gieras. Linear Induction Drives. Oxford:Clarendon Press,1994.
    [12]M. R. Doyle, D. J. Samuel, T. Conway, et al. Electromagnetic aircraft launch system-EMALS. IEEE Trans. Magn., vol.31, no.1, pp.528-533, Jan.1995.
    [13]http://news.cyol.com/content/2008-09/11/content_2354731.htm
    [14]A. P. Johnson. High speed linear induction motor efficiency optimization:[master's thesis]. Cambridge:Massachusetts Ins. of Technology,2005.
    [15]D. Hall, J. Kapinski, M. Krefta, et al. Transient electromechanical modeling for short secondary linear induction machines. IEEE Trans. Energy Convers., vol.23, no.3, pp.789-795, Sep.2008.
    [16]D. C. Meeker, M. J. Newman. Indirect vector control of a redundant linear induction motor for aircraft launch. Proc. IEEE, vol.97, no.11, pp.1768-1776, Nov.2009.
    [17]S. Kuznetsov. Magnetic design of large linear induction machines for EM-catapult duty, in Proc. IEEE Conf. Electr. Mach Drives (IEMD'99), Seattle, WA,1999, pp. 577-579.
    [18]E. R. Laithwaite. Adapting a linear induction motor for the acceleration of large masses to high velocities. IEE Proc. Electr. Power Appl., vol.142, no.4, pp. 262-268, Jul.1995.
    [19]T. Onuki, E. R. Laithwaite. Optimised design of linear-induction-motor accelerators. Proc. Inst. Electr. Eng.,vol.118, no.2, pp.349-355, Feb.1971.
    [20]B. Reck. First design study of an electrical catapult for unmanned air vehicles in the several hundred kilogram range. IEEE Trans. Magn., vol.39, no.1, pp.310-313, Jan. 2003.
    [21]G. Stumberger, M. T. Aydemir, D. Zarko, et al. Design of a linear bulk superconductor magnet synchronous motor for electromagnetic aircraft launch systems. IEEE Trans. Applied Supercond., vol.14, no.1, pp.54-62, Mar.2004.
    [22]鲁军勇,马伟明,李朗如.高速长初级直线感应电动机纵向边端效应研究.中国电机工程学报,2008,28(30):73-78.
    [23]鲁军勇,马伟明,许金.高速长定子直线感应电动机的建模与仿真.中国电机工程学报,2008,28(27):89-94.
    [24]上官璇峰,励庆孚,袁世鹰.多段初级永磁直线同步电动机驱动系统整体建模和仿真.电工技术学报,2006,21(3):52-57.
    [25]罗宏浩,吴峻,常文森.新型电磁弹射器的动态性能仿真.系统仿真学报,2006,18(8):2285-2288.
    [26]E. R. Laithwaite. The way ahead. IEEE Trans. Magn., vol.27, no.1, pp.7-10, Jan. 1991.
    [27]E. R. Laithwaite. Induction coil guns for hypervelocities. Proc. IEE Electr. Power Appl., vol.142, no.3, pp.215-221, May.1995.
    [28]B. Q. Kou, H. X. Wu, L. Y. Li, et al. The thrust characteristics investigation of double-sided plate permanent magnet linear synchronous motor for EML. IEEE Trans. Magn., vol.45, no.1, pp.501-505, Jan.2009.
    [29]H. Robertson, Lt. C. M. Bolton, Lt. M. Thompson. An advanced linear motor system for electromagnetic launch:development and oppotunities. in IEE Pulsed Power Symp.,2005, pp.29/1-29/6.
    [30]M. Mirzaei, S. E. Abdollahi, A. Vahedi. Permanent magnet DC linear motor for aircraft electromagnetic launcher. in Proc.14th Int. Electromagn. Launch Technol. Symp., Victoria, British Columbia, Jun.2008, pp.1-6.
    [31]L. Zheng, J. Jin, Y. Guo, et al. Design and electromagnetic analysis of a HTS linear synchronous motor. in Proc. IEEE Applied Supercond. Electromagn. Devices Int. Conf, Chengdu, China, Sep.2009, pp.5-10.
    [32]A. Balikci, Z. Zabar, L. Birenbaum. Improved energy utilization of linear induction launchers by considering each section as an individual sub-launcher. IEEE Trans. Magn., vol.45, no.1, pp.241-243, Jan.2009.
    [33]M. Mirzaei, S. E. Abdollahi. Design optimization of reluctance-synchronous linear machines for electromagnetic aircraft launch system. IEEE Trans. Magn., vol.45, no. 1,pp.389-395, Jan.2009.
    [34]L. Li, Y. Hu, X. Li. Research of novel electromagnetic catapults with many kinds of uses. IEEE Trans. Magn., vol.41, no.1, pp.474-477, Jan.2005.
    [35]M. P. Krefta, D. J. Hall, K. M. Eichler, et al. Linear position sensing system and coil switching methods for closed-loop control of large linear induction motor systems. U.S. Patent 6952086 B1, Oct.4,2005.
    [36]H. D. Fair. Electromagnetic launch science and technology in the United States enters a new era. IEEE Trans. Magn., vol.41, no.1, pp.158-164, Jan.2005.
    [37]J. F. Gieras, Z. J. Piech. Linear Synchronous Motors, Transportation and Automation Systems. Boca Raton:CRC Press,2000.
    [38]I. Boldea, S. A. Nasar. Linear Motion Electromagnetic Systems. New York:Wiley, 1985.
    [39]G. F. Nix, E. R. Laithwaite. Linear induction motors for low-speed and standstill application. Proc. Inst. Electr. Eng., vol.113, no.6, pp.1044-1056, Jun.1966.
    [40]梁得亮,陈世坤.直线感应电动机静态纵向边端效应的研究.微电机,1995,28(3):3-10.
    [41]上海工业大学,上海电机厂.直线异步电动机.北京:机械工业出版社,1979.
    [42]龙遐令.直线感应电动机的理论和电磁设计方法.北京:科学出版社,2006.
    [43]H. Bolton. Transverse edge effect in sheet-rotor induction motors. Proc. Inst. Electr. Eng., vol.116, no.5, pp.725-731, May.1969.
    [44]E. R. Laithwaite. Linear induction motors for high-speed vehicles. J. Electron. Power, vol.15, no.7, pp.230-233, Jul.1969.
    [45]E. R. Laithwaite, F. T. Barwell. Linear induction motors for high-speed railways. J. Electron. Power, vol.10, no.4, pp.100-103, Apr.1964.
    [46]E. R. Laithwaite, F. T. Barwell. Application of linear induction motors to high-speed transport systems. Proc. Inst. Electr. Eng., vol.116, no.5, pp.713-724, May.1969.
    [47]K. S. Lee, P. Didrikson. Traction system for advanced rapid transit. Keynote Address Int. Conf. Electr. Mach. Syst., Seoul, Korea, Oct.2007.
    [48]E. R. Laithwaite, D. Tipping, D. E. Hesmondhalgh. The application of linear induction motors to conveyors. Proc. Inst. Electr. Eng., vol.107, pt. A, no.33, pp. 284-294, Jun.1960.
    [49]P. K. Budig. The application of linear motors, in Proc.3rd Int. Conf. Power Electr. Motion Control, Beijing, China,2000, pp.1336-1341.
    [50]施俊.直线异步电机双边驱动电梯的控制系统研究:[博士学位论文].杭州:浙江大学,2004.
    [51]P. L. Jansen, L. J. Li, R. D. Lorenz. Analysis of competing topologies of linear induction machines for high-speed material transport systems. IEEE Trans. Ind. Appl, vol.31, no.4, pp.925-932, Jul./Aug.1995.
    [52]I. Boldea, S. A. Nasar. Linear electric actuators and generators. IEEE Trans. Energy Convers., vol.14, no.3, pp.712-717, Sep.1999.
    [53]E. R. Laithwaite. Linear induction motors. Proc. Inst. Electr. Eng., vol.104, pt. A, no. 18, pp.461-470, Dec.1957.
    [54]E. R. Laithwaite, S. A. Nasar. Linear-motion electrical machines. Proc. IEEE, vol. 58, no.4, pp.531-542, Apr.1970.
    [55]E. R. Laithwaite. Linear electric machines-a personal view. Proc. IEEE, vol.63, no. 2, pp.250-290, Feb.1975.
    [56]J. F. Eastham, E. R. Laithwaite. Linear induction motors as'electromagnetic rivers'. Proc. Inst. Electr. Eng., vol.121, no.10, pp.1099-1108, Oct.1974.
    [57]E. R. Laithwaite. Linear induction motors:a new species takes root. J. Electron. Power, vol.32, no.5, pp.355-360,1986.
    [58]E. M. Freeman, D. A. Lowther, E. R. Laithwaite. Scale-model linear induction motors. Proc. Inst. Electr. Eng., vol.122, no.7, pp.721-726, Jul.1975.
    [59]J. F. Eastham, E. R. Laithwaite. Linear-motor topology. Proc. Inst. Electr. Eng., vol. 120, no.3, pp.337-343, Mar.1973.
    [60]I. Boldea, S. A. Nasar. Optimum goodness criterion for linear-induction-motor design. Proc. Inst. Electr. Eng., vol.123, no.1, pp.89-92, Jan.1976.
    [61]R. M. Pai, S. A. Nasar, I. Boldea. A hybrid method of analysis of low-speed linear induction motors. IEEE Trans. Magn., vol. MAG-23, no.6, pp.3908-3915, Nov. 1987.
    [62]R. M. Pai, I. Boldea, S. A. Nasar. A complete equivalent circuit of a linear induction motor with sheet secondary. IEEE Trans. Magn., vol.24, no.1, pp.639-654, Jan. 1988.
    [63]I. Boldea, S. A. Nasar. Quasi-1-dimensional theory of linear induction motors with half-filled primary endslots. Proc. Inst. Electr. Eng., vol.122, no.1, pp.61-66, Jan. 1975.
    [64]J. F. Gieras. Simplified theory of double-sided linear induction motor with squirrel-cage elastic secondary. Proc. Inst. Electr. Eng., vol.130, pt. B, no.6, pp. 424-430, Nov.1983.
    [65]J. F. Gieras, G. E. Dawson, A. R. Eastham. Performance calculation for single-sided linear induction motors with a double-layer reaction rail under constant current excitation. IEEE Trans. Magn., vol. MAG-22, no.1, pp.54-62, Jan.1986.
    [66]J. F. Gieras. Analysis of multilayer rotor induction motor with higher space harmonics taken into account. Proc. Inst. Electr. Eng., vol.138, pt. B, no.2, pp. 59-67, Mar.1991.
    [67]J. F. Gieras. Analytical method of calculating the electromagnetic field and power losses in ferromagnetic halfspace, taking into account saturation and hysteresis. Proc. Inst. Electr. Eng, vol.124, no.11, pp.1098-1104, Nov.1977.
    [68]J. F. Gieras, G. E. Dawson, A. R. Eastham. A new longitudinal end effect factor for linear induction motors. IEEE Trans. Energy Convers., vol. EC-2, no.1, pp.152-159, Mar.1987.
    [69]S. Yamamura. Theory of Linear Induction Motors,2nd ed. Tokyo, Japan:Univ. Tokyo Press,1978.
    [70]M. Poloujadoff. The Theory of Linear Induction Machinery. Oxford, U.K.: Clarendon Press,1980.
    [71]M. Poloujadoff, H. E. Khashab. A finite difference model of linear induction motors, taking into account the finite length of iron. IEEE Trans. Power Appar. Syst., vol. PAS-101, no.8, pp.2966-2974,1982.
    [72]G. W. McLean. Review of recent progress in linear motors. Proc. Inst. Electr. Eng., vol.135, pt. B, no.6, pp.380-416, Nov.1988.
    [73]王双全.大功率直线感应电机的电磁设计及其直接推力控制研究:[硕士学位论文].武汉:华中科技大学,2008.
    [74]B. T. Ooi, D. C. White. Traction and normal forces in the linear induction motor. IEEE Trans. Power Appar. Syst, vol. PAS-89, no.4, pp.638-645, Apr.1970.
    [75]J. Faiz, H. Jafari. Accurate modeling of single-sided linear induction motor considers end effect and equivalent thickness. IEEE Trans. Magn., vol.36, no.5, pp. 3785-3790, Sep.2000.
    [76]M. J. Balchin, J. F. Eastham. Model for transients in linear induction machines. IEEE Trans. Magn., vol.33, no.5, pp.4191-4193, Sep.1997.
    [77]S. A. Nasar, L. D. Cid. Propulsion and levitation forces in a single-sided linear induction motor for high-speed ground transportation. IEEE Proc., vol.61, no.5, pp. 638-644, May.1973.
    [78]S. A. Nasar, L. D. Cid, H. J. Holley. Computations of fields and forces in a two-sided linear induction motor. IEEE Trans. Power Appar. Syst., vol. PAS-92, no.4, pp. 1310-1315, Nov.1973.
    [79]C. Lu, T. R. Eastham, G. E. Dawson. Transient and dynamic performance of a linear induction motor. in Rec. Ind. Appl. Society Annual Meeting, Oct.1993, pp.266-273.
    [80]Z. Savickiene, A. J. Poska. Simplified calculation of linear induction drives characteristics. J. Electron. Electr. Eng., vol.5, no.77, pp.15-18,2007.
    [81]O. C. Coho, G. B. Kliman, J. I. Robinson. Experimental evaluation of a high speed double sided linear induction motor. IEEE Trans. Power Appar. Syst., vol.94, pt.1, no.1, pp.10-17,1975.
    [82]J. H. Dannan, R. N. Day, G. P. Kalman. A linear-induction-motor propulsion system for high-speed ground vehicles. Proc. IEEE, vol.61, no.5, pp.621-630, May.1973.
    [83]J. Jamali. End effect in linear induction and rotating electrical machines. IEEE Trans. Energy Convers., vol.18, no.3, pp.440-447, Sep.2003.
    [84]K. Adamiak, K. Ananthasivam, G. E. Dawson, et al. The causes and consequences of phase unbalance in single-sided linear induction motors. IEEE Trans. Magn., vol.24, no.6, pp.3223-3233, Nov.1988.
    [85]K. J. R. Wilkinson. End effects in series-wound linear induction motors. Proc. Inst. Electr. Eng., vol.129, pt. B, no.1, pp.35-42, Jan.1982.
    [86]M. E. Isma'eel. Theories of linear induction motors with completely filled and half filled end slots. Proc. Inst. Electr. Eng., vol.125, no.7, pp.657-665, Jul.1978.
    [87]M. E. Isma'eel. Travelling waves in linear induction machines. Proc. Inst. Electr. Eng., vol.125, no.6, pp.527-528, Jun.1978.
    [88]J. J. Stickler. Comparison of theories for high-speed linear induction motors. Trans. Veh. Technol., vol. VT-29, no.1, pp.65-71, Feb.1980.
    [89]M. Poloujadoff, B.Morel, A. Bolopion. Simultaneous consideration of finite length and finite width of linear induction motors. IEEE Trans. Power Appar. Syst., vol. PAS-99, no.3, pp.1172-1180,1980.
    [90]M. Iwamoto, E. Ohno, T. Itoh et al. End-effect of high-speed linear induction motor. IEEE Trans. Ind. Appl., vol. IA-9, no.6, pp.632-639, Nov.1973.
    [91]S. Yamamura, H. Ito, Y. Ishikawa. Theories of the linear induction motor and compensated linear induction motor. IEEE Trans. Power Appar. Syst., vol. PAS-91, no.4, pp.1700-1710, Jan.1972.
    [92]N. Fujii, T. Harada. Basic consideration of end effect compensator of linear induction motor for transit. in Rec.35th IEEE Ind. Appl. Conf, Roma, Italy, pp.1-6, 2000.
    [93]N. Fujii, T. Kayasuga, T. Hoshi. Simple end effect compensator for linear induction motor. IEEE Trans. Magn., vol.38, pt.1, no.5, pp.3270-3272, Sep.2002.
    [94]J. Duncan. Linear induction motor-equivalent-circuit model. Proc. Inst. Elect. Eng., vol.130, pt. B, no.1, pp.51-57, Jan.1983.
    [95]龙遐令.初级铁心有限长的直线感应电动机的等值电路.电工技术,1981,3:16-21.
    [96]T. Hirasa, S. Ishikawa, T. Yamamuro. Equivalent circuit of linear induction motors with end effect taken into account. J. Electr. Eng. in Jpn., vol.100, no.2, pp.65-71, 1980.
    [97]M. Mirsalim, A. Doroudi, J. S. Moghani. Obtaining the operating characteristics of linear induction motors:a new approach. IEEE Trans. Magn., vol.38, no.2, pp. 1365-1370, Mar.2002.
    [98]S. J. Salon. Finite Element Analysis of Electrical Machines. Boston:Kluwer Academic Publishers,1995.
    [99]N. Bianchi. Electrical Machine Analysis Using Finite Elements. Boca Raton:CRC Press,2005.
    [100]A. B. J. Reece, T. W. Preston. Finite Element Methods in Electrical Power Engineering. Oxford, U.K.:Oxford Univ. Press,2000.
    [101]A. H. Selcuk, H. Kurum. Investigation of end effects in linear induction motors by using the finite-element method. IEEE Trans. Magn., vol.44, no.7, pp.1791-1795, Jul.2008.
    [102]胡敏强,杜炎森.实心次级双边直线电机电气参数的有限元计算.微电机,1995,28(1):12-15.
    [103]D. H. Im, C. E. Kim. Finite element force calculation of a linear induction motor taking account of the movement. IEEE Trans. Magn., vol.30, no.5, pp.3495-3498, Sep.1994.
    [104]T. Yamaguchi, Y. Kawase, M. Yoshida, et al.3-D finite element analysis of a linear induction motor. IEEE Trans. Magn., vol.37, no.5, pp.3668-3671, Sep.2001.
    [105]贾宏新.电梯用直线感应电机的优化设计及其控制系统研究:[博士学位论文].杭州:浙江大学,2002.
    [106]许智斌.直线电机的计算机辅助设计及研究:[硕士学位论文].北京:北京交通大学,2009.
    [107]G. A. Ducharme. Computer-aided design of linear induction motors:[master's thesis]. Ontario, Canada:Queen's Univ.,1993.
    [108]任晋旗,李耀华,王珂.直线异步电机在线搜索法效率优化控制.电工技术学报,2009,24(5):34-39.
    [109]贾宏新,叶云岳.直线感应电动机的全局优化设计研究.电工技术学报,2001,16(4):16-19.
    [110]焦留成,汪旭东,袁世鹰.直线感应电动机的优化设计研究.中国电机工程学报,1999,19(4):81-83.
    [111]P. D. Gjeltema. The design of a closed loop linear motor system:[master's thesis]. Cambridge:Massachusetts Ins. of Technology,1993.
    [112]B. K. Bose. High performance control and estimation in AC drives. in Proc.23rd Ind. Electr. Control Instru. (IECON'97) Int. Conf., New Orleans, LA, Sep.1997, pp. 377-385.
    [113]P. Vas, A. F. Stronach, M. Neuroth. DSP-controlled intelligent high-performance AC drives present and future. in IEE Colloq. Vector Control and Direct Torque Control of Induction Motors,1995, pp.7/1-7/8.
    [114]J. W. Finch. Scalar and vector:a simplified treatment of induction motor control performance. in IEE Colloq. Vector Control Revisited,1998, pp.2/1-2/4.
    [115]A. Gastli. Improved field oriented control of an LIM having joints in its secondary conductors. IEEE Trans. Energy Convers., vol.17, no.3, pp.349-355, Sep.2002.
    [116]R. Leidhold, P. Mutschler. Speed sensorless control of a long-stator linear synchronous motor arranged in multiple segments. IEEE Trans. Ind. Electron., vol. 54, no.6, pp.3246-3254, Dec.2007.
    [117]R. Krishnan, A. S. Bharadwaj. A review of parameter sensitivity and adaptation in indirect vector controlled induction motor drive systems. IEEE Trans. Power Electr., vol.6, no.4, pp.695-703, Oct.1991.
    [118]S. C. Ahn, J. H. Lee, D. S. Hyun. Dynamic characteristic analysis of LIM using coupled FEM and control algorithm. IEEE Trans. Magn., vol.36, no.4, pp. 1876-1880, Jul.2000.
    [119]B. I. Kwon, K. I. Woo, S. Kim. Finite element analysis of direct thrust-controlled linear induction motor. IEEE Trans. Magn., vol.35, no.3, pp.1306-1309, May. 1999.
    [120]J. H. Lee, S. C. Ahn, D. S. Hyun. Dynamic characteristic analysis of vector controlled LIM by finite element method and experiment. in Proc.33rd Ind. Appl. Society Annual Meeting, St. Louis, MO, Oct.1998, pp.799-806.
    [121]D. K. Kim, B. I. Kwon. A novel equivalent circuit model of linear induction motor based on finite element analysis and its coupling with external circuits. IEEE Trans. Magn., vol.42, no.10, pp.3407-3409, Oct.2006.
    [122]郭庆鼎,王成元,周美文等.直线交流伺服系统的精密控制技术.北京:机械工业出版社,2000.
    [123]任晋旗,李耀华,王珂.动态边端效应补偿的直线感应电机磁场定向控制.电工技术学报,2007,22(12):61-65.
    [124]A. Gastli. Compensation for the effect of joints in the secondary conductors of a linear induction motor. IEEE Trans. Energy Convers., vol.13, no.2, pp.111-116, Jun.1998.
    [125]S. J. Hyoun, N. Kwanghee. A new approach to vector control for a linear induction motor considering end effects. in Proc.34th Ind. Appl. Conf, Phoenix, AZ, Oct. 1999, pp.2284-2289.
    [126]G. Kang, K. Nam. Field-oriented control scheme for linear induction motor with the end effect. IEE Proc. Electr. Power Appl., vol.152, no.6, pp.1565-1572, Nov. 2005.
    [127]A. Shanmugasundaram, M. Rangasamy. Control of compensation in linear induction motors. Proc. Inst. Electr. Eng., vol.135, pt. B, no.1, pp.22-26, Jan.1988.
    [128]S. A. Nasar, I. Boldea.直线电机.龙遐令,朱维衡,徐善纲等译.北京:科学出版社,1982.
    [129]M. Poloujadoff.直线感应电机理论.张春镐译.北京:科学出版社,1985.
    [130]叶云岳.直线电机原理与应用.北京:机械工业出版社,2000.
    [131]叶云岳等.直线电机技术手册.北京:机械工业出版社,2003.
    [132]叶云岳,杨贤诚.中国直线电机应用成果汇编.北京:冶金工业出版社,2000.
    [133]T. Yang, L. B. Zhou, L. R. Li. Performance calculation for double-sided linear induction motor with short secondary. in Proc.11th Conf. Electr. Mach. Syst., Wuhan, China,2008, pp.3478-3483.
    [134]B. Heller, V. Hamata. Harmonic Field Effects in Induction Machines. New York: Elsevier,1977.
    [135]陈丕璋,严烈通,姚若萍.电机电磁场理论与计算.北京:科学出版社,1986.
    [136]N. Ida, J. P. A. Bastos. Electromagnetics and calculation of fields,2nd ed. New York: Springer-Verlag,1997.
    [137]章名涛,肖如鸿.电机的电磁场.北京:机械工业出版社,1988.
    [138]R. C. Creppe, J. A. C. Ulson, J. F. Rodrigues. Influence of design parameters on linear induction motor end effect. IEEE Trans. Magn., vol.23, no.2, pp.358-362, Jun.2008.
    [139]T. Yang, L. Zhou, L. Li. Influence of design parameters on end effect in long primary double-sided linear induction motor. IEEE Trans. Plasma Sci., to be published.
    [140]颜威利,杨庆新,汪友华.电气工程电磁场数值分析.北京:机械工业出版社,2006.
    [141]P. C. Krause,O. Wasynczuk, S. D. Sudhoff. Analysis of Electric Machinery. New York:IEEE Press,1995.
    [142]吕凌.大功率直线感应电动机的电磁计算及设计研究:[硕士学位论文].武汉:华中科技大学,2007.
    [143]T. Onuki, Y. Kamiya, Y. Kurimoto, et al. A novel block feeding method in the single-sided linear induction motor with a short-secondary member. IEEE Trans. Energy Convers., vol.14, no.4, pp.1323-1328, Dec.1999.
    [144]傅丰礼,唐孝镐.异步电动机设计手册.北京:机械工业出版社,2001.
    [145]D. Patterson, A. Monti, C. Brice, et al. Design and simulation of an electromagnetic aircraft launch system. in Proc.37th Ind. Appl. Conf, Pittsburgh, PA,2002, pp. 1950-1957.
    [146]G. Stumberger, D. Zarko, M. T. Aydemir, et al. Design and comparison of linear synchronous motor and linear induction motor for electromagnetic aircraft launch system. in Proc. IEEE Int. Electr. Mach. Drives Conf. (IEMDC 2003), Madison, WI, 2003, pp.494-500.
    [147]杨万青,刘建忠等.实用异步电动机设计、安装与维修.北京:机械工业出版社,1996.
    [148]陈世坤.电机设计(第2版).北京:机械工业出版社,1997.
    [149]汤蕴璆,张奕黄,范瑜.交流电机动态分析.北京:机械工业出版社,2005.
    [150]E. R. Laithwaite, S. B. Kuznetsov. Power-factor improvement in linear induction motors. Proc. Inst. Electr. Eng., vol.128, pt. B, no.4, pp.190-194, Jul.1981.
    [151]E. Vassent, G. Meunier, J. C. Sabonnadiere. Simulation of induction machine operation using complex magnetodynamic finite elements. IEEE Trans. Magn., vol. 25, no.4, pp.3064-3066, Jul.1989.
    [152]谢德馨,姚缨英,白保东等.三维涡流场的有限元分析.北京:机械工业出版社,2001.
    [153]R. L. Russell, K. H. Norsworthy. Eddy currents and wall losses in screened-rotor induction motors. in Proc. IEE Power Eng., vol.105, no.20, pp.163-175,1958.
    [154]P. Zhou, J. Gilmore, Z. Badics, et al. Finite element analysis of induction motors based on computing detailed equivalent circuit parameters. IEEE Trans. Magn., vol. 34, no.5, pp.3499-3502, Sep.1998.
    [155]ANSYS, Inc. ANSYS Low-Frequency Electromagnetic Analysis Guide Release 9.0. SAS IP Inc.,2004.
    [156]ANSYS, Inc. ANSYS Theory Reference Release 9.0. SAS IP Inc.,2004.
    [157]R. D. Weerdt, E. Tuinman, K. Hameyer, et al. Finite element analysis of steady state behavior of squirrel cage induction motors compared with measurements. IEEE Trans. Magn., vol.33, no.2, pp.2093-2096, Mar.1997.
    [158]K. Adamiak, J. Mizia, G. E. Dawson, et al. Finite element force calculation in linear induction machines. IEEE Trans. Magn., vol. MAG-23, no.5, pp.3005-3007, Sep. 1987.
    [159]R. J. Elwell, R. W. Garman, M. Doyle. Thermal management techniques for an advanced linear motor in an electric aircraft recovery system. IEEE Trans. Magn., vol.37, no.1, pp.476-479, Jan.2001.
    [160]胡敏强,黄学良等.电机运行性能数值计算方法及其应用.南京:东南大学出版社,2003.
    [161]谢德馨.用有限元法计算矩形槽内载流导体的集肤效应.哈尔滨电工学院学报,1981,4(1):7-23.
    [162]谢德馨.用有限元法计算鼠笼转子凸形槽的运行和起动槽参数.哈尔滨电工学院学报,1981,4(2):37-45.
    [163]丁舜年.大型电机的发热与冷却.北京:科学出版社,1992.
    [164]孙建宏,丁文,鱼振民.扁平型直线异步电机温度场的计算与分析.电机与控制应用,2006,33(1):20-24.
    [165]李红涛.长初级直线感应电动机的设计及其电磁场与温度场研究:[硕士学位论文].哈尔滨:哈尔滨理工大学,2008.
    [166]曹君慈,李伟力,程树康等.复合笼条转子感应电动机温度场计算及相关性分析.中国电机工程学报,2008,28(30):96-103.
    [167]赵镇南.传热学.北京:高等教育出版社,2002.
    [168]S. E. Lyshevski. Electromechanical Systems and Devices. Boca Raton:CRC Press, 2008.
    [169]马志云.电机瞬态分析.北京:中国电力出版社,1998.
    [170]B. K. Bose.现代电力电子学与交流传动.王聪,赵金,于庆广等译.北京:机械 工业出版社,2005.
    [171]C. M. Ong. Dynamic Simulation of Electric Machinery Using MATLAB/Simulink. Englewood Cliffs, NJ:Prentice Hall,1998.
    [172]http://spectrum.ieee.org/green-tech/mass-transit/faster-than-a-speeding-bullet-train/m agsbl
    [173]R. Krishnan. Electric Motor Drives-Modeling, Analysis, and Control. New Jersey: Prentice Hall,2001.
    [174]胡崇岳.现代交流调速技术.北京:机械工业出版社,2003.
    [175]D. W. Novotny, T. A. Lipo. Vector Control and Dynamics of AC Drives. Oxford, U.K.:Oxford Univ. Press,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700