基于反推技术的永磁直线同步电机控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数控机床用永磁直线电机伺服系统由于省掉了机械传动机构,使系统对模型不确定性及外部扰动更加敏感。为解决不确定因素对直接驱动系统的影响,本文在国家自然科学基金项目和辽宁省优秀人才支持计划项目的资助下,以反推技术为基础,结合现代控制理论、智能控制方法,对存在参数变化、端部效应及负载扰动等不确定因素的直线伺服系统位置跟踪控制策略进行研究。主要研究内容包括以下几个方面:
     1.针对永磁直线同步电机伺服系统的位置跟踪问题,提出首先从位置跟踪误差开始设计虚拟控制器,然后选择虚拟误差、位置误差构成新的子系统设计新的虚拟控制器,通过递推依次对得到的虚拟控制器逐步修正算法,最终设计出实际控制器。最后利用李亚普诺夫稳定性理论对设计的控制系统进行稳定性分析。仿真结果表明,该方法有效削弱了时变外力扰动对系统的影响。
     2.为了提高永磁直线同步电机伺服系统位置跟踪鲁棒性,提出采用位置、速度误差设计滑模面函数,构建位置误差、滑模面函数子系统方法设计位置控制器,这样可保证最初的控制器的稳定性和对未知外部扰动的鲁棒性。设计自适应反推滑模观测器观测不确定上界,利用李亚普诺夫稳定性理论对设计的控制系统稳定性进行分析。仿真结果验证了算法可行性。
     3.针对永磁直线同步电机伺服系统精确位置跟踪要求,提出用反推控制和智能方法相结合应用于永磁直线同步电机位置跟踪控制。对影响系统跟踪性能的参数摄动、摩擦力及外部负载扰动等不确定因素,采用递归模糊神经网络观测器智能观测不确定上界。递归模糊神经网络输入为位置误差及其导数,输出为不确定上界观测值。网络的递归环将输出信息反馈回输入,可实时捕获不确定因素动态信息。仿真结果表明,该观测器可实时逼近不确定上界,大大提高了补偿精度,从而使系统位置跟踪精确。
     4.以DSP TMS320F2812为核心构建永磁直线电机伺服系统实验平台,采用在直线电机动子平台上加质量块改变动子总质量M的变化。分别在额定参数和动子质量变化情况下,针对自适应反推控制和自适应反推滑模控制算法进行实验验证,结果表明理论研究及仿真结果的有效性。
     上述研究成果对于直线伺服系统补偿策略实用化,开发高性能智能伺服驱动系统奠定了一定的理论与实践基础。
Permanent magnet linear synchronous motor drive system without mechanical transmission on CNC is more sensitive to model uncertainty and external disturbances. In order to solve the above problems, this dissertation combines some modern control theories and intelligent control methods, with the supports of projects of National Natural Science Foundation of China and Outstanding Talents of Liaoning Province, based on backstepping control, to research the precision positioning control strategy of linear servo system with lumped uncertainties such as parameter variations, end-effects and load disturbances. The main contents are as following:
     For position tracking of permanent magnet linear synchronous motor servo system, a virtual controller was proposed by constituting a subsystem of position error, followed by a new virtual controller which is designed by selecting the virtual and position errors to constitute a new sub-system, and an actual controller was obtained by revising algorithm of the virtual controller gradually through recursion. Finally the stability of the proposed control scheme was analyzed through Lyapunov stability theory. Simulation results show that the proposed method is effective to restrain the time-varying load disturbances.
     In order to improve the robustness of position tracking in permanent magnet linear synchronous motor servo system, a position controller is proposed by constituting a subsystem including position error and sliding-mode surface by means of sliding-mode surface function adopting position and speed errors. The stability and robustness of the original controller are ensured. As for the unknown upper bound of lumped uncertainties, an adaptive observer is proposed to estimate it. The stability of the proposed control scheme is analyzed by Lyapunov stability theory. Finally, the feasibility of algorithm was verified by simulations.
     For exact position tracking of permanent magnet linear synchronous motor servo system, a position tracking controller is proposed by combining backstepping control with intelligent method. A recurrent fuzzy neural network observer is proposed to estimate the upper bound of the lumped uncertainties with parameter perturbation, friction force and external load perturbation. The inputs of recurrent fuzzy neural network are the position error and its derivative, the output is the estimated value of the lumped uncertainties. The output feedback to input by recursive loop of network, the dynamic information of the lumped uncertainties is obtained in real-time. The simulation results show that accurate position tracking was achieved by approaching the upper bound of lumped uncertainties in real-time.
     The experiment platform of permanent linear motor servo system is built by taking DSP TMS320F2812 as main controller. Put a mass on linear motor mover platform to change the total mass M. Adaptive backstepping and adaptive backstepping sliding-mode control were verified by experiments with rated parameters and mover variation, which shows the effectiveness of theoretical and simulation results
     The theoretical and practical bases were founded for compensation strategies of linear servo systems to develop practical high-performance and intelligent servo drives.
引文
[1]刘强,陈静.高性能数控机床几项关键设计技术的研究应用进展.航空制造技术,2009,(5):42-45.
    [2]唐振宇.直线电机进给驱动技术在数控机床上的应用.机床与液压,2009,37(3):62-64.
    [3]潘超,左健民,汪木兰.直线电动机在数控机床中的应用的特殊性问题研究.机床与液压,2007,35(10):55-59.
    [4]蓝益鹏,孙文义.数控机床直线伺服系统非线性自适应鲁棒控制的研究.制造技术与机床,2009(2):146-149.
    [5]郭庆鼎,孙艳娜,刘惠严.数控机床用直线式交流伺服电机及其控制策略.组合机床与自动化加工技术,2000,(5):35-36,44.
    [6]闵惠芬,蒋伟.伺服系统在数控中的应用.机械制造与自动化,2007,36(2):10-13.
    [7]遇立基,杨春林.米兰EM02003国际机床展综述.世界制造技术与装备市场,2003,69(6):27-28.
    [8]李绪成.直线电机在数控机床中的应用及发展趋势.世界制造技术与装备市场,2005, (6)71-74.
    [9]国外永磁交流伺服系统产品概况. http://www.gkcity.com/n-i-85422-c-MarketResearch. 2008-11-09.
    [10]王先逵,陈定积,吴丹.机床进给系统用直线电动机综述.制造技术与机床,2001, (8)18-21.
    [11]李佳特.伺服系统应用案例. http://www.cnctechnet.com/post.2007-6-13.
    [12]王红旭,魏巍.直接驱动技术的发展及其应用前景.制造技术与机床,2008,(6):150-154.
    [13]李庆民,张俊洪,赵镜红.永磁直线同步电机位置伺服系统的模糊PID控制.航电技术,2008,28(4):201-204.
    [14]T H Liu, K L Wang, C G Chen. A novel two-degree-of-freedom controller design for a permanent magnet linear synchronous motor control system. International Journal of Electronics.2003,90(1): 27-42.
    [15]郭庆鼎,周悦,郭威.永磁直线同步伺服系统采用神经网络实现的实时IP位置控制器的在线设计.电工技术学报,1999,14(6):1-4.
    [16]F J Lin, C H Lin. On-line gain tuning using RFNN for linear synchronous motor. PESC,2001: 766-771.
    [17]郭庆鼎,唐光谱.基于解耦控制的同步传动技术的应用研究.控制与决策,2001,16(1):72-75.
    [18]范海民,陈宏礼.基于Smith预估计器的直线电机控制系统.应用科技,2002,29(5):27-29.
    [19]Blaschke F. New method for the structure decoupling of AC induction machines. IFAC,1971: 11-15.
    [20]C M Liaw, K H Chao, F J Lin. A discrete adaptive field-oriented induction motor drive. IEEE Trans on Power Electronics,1992,7(2):411-419.
    [21]Pinto J O P, Bose B K, Silva L E B. A stator-flux-oriented vector-controlled induction motor drive with space-vector PWM and flux-vector synthesis by neural networks. IEEE Trans on Industry Applications,2001,37(5):1308-1318.
    [22]郑安平.矢量变换控制永磁同步电动机的全数字系统.微特电机,2006,34(12):31-34.
    [23]徐艳萍,刘永飘.基于DSP的永磁交流伺服控制系统研究.电力电子技术,2007,41(1):42-44.
    [24]张美玉.永磁直线同步电机矢量控制系统研究.浙江工业大学学报,2003,31(4):391-394,409.
    [25]朱晓东.永磁直线同步电机矢量控制模型及仿真研究.矿山机械,2006,27(3):417-419.
    [26]Y S Kung. Design and implementation of a high-performance PMLSM drives using DSP chip. IEEE Trans on Industrial Electronics,2008,55(3):1341-1351.
    [27]F J Lin, P H Shen, R F Fung. RFNN control for PMLSM drive via backstepping technique. IEEE Trans on aerospace and electronic systems,2005,41(2):620-644.
    [28]F J Lin, C H Lin. Recurrent fuzzy neural network controller design using sliding-mode control for linear synchronous motor drive. IEE Proc. Control Theory and Appl,2004,151(4):407-416.
    [29]Depenbrock M. Direkte selbstregelung (DSR) fuhrhochdy-namische Drehfeldantriebe mit Stromrichterspeisung ETZ Archiv,1985, Bd,7(7):211-218.
    [30]K K Shyn, L J Shang, H Z Chen et al. Flux compensated direct torque control of induction motor drives for low speed operation. IEEE Trans on Power Electronics,2004,19(6):1608-1613.
    [31]Zhuang Xu, Rahman M F. A variable structure torque and flux controller for a DTC IPM synchronous motor. IPEC,2004:445-450.
    [32]尹建寨,张昆仑.直线同步电机直接推力控制方法研究.电气传动,2006,36(7):11-15.
    [33]赵丽君,崔杰凡,王成元.永磁直线同步电机直接推力控制系统研究.沈阳工业大学学报,2005,27(3):284-287.
    [34]邹积浩,朱善安.基于电压预测的直线永磁同步电机直接推力控制.仪器仪表学报,2005,26(12):1262-1266.
    [35]林家春.永磁直线同步电动机推力波动抑制策略.控制理论与应用,2007,24(3):449-452.
    [36]梁龑,吕永健.基于DSP的永磁同步直线电机直接推力控制策略研究.中国航空学会控制与应用第十二届学术年会,2006:389-393.
    [37]Cui J F, Wang H M, Wan J Z et al. Thrust control of permanent magnet linear synchronous motor based on sliding mode variable structure. ICCA,2007,1698-1700.
    [38]张宏伟.基于神经网络的永磁直线同步电动机推力波动补偿的仿真研究.电机与控制学报,2004,8(4):299-302.
    [39]韩曾晋.自适应控制.北京:清华大学出版社,1995.
    [40]郭庆鼎,王成元.直线交流伺服系统的精密控制技术.北京:机械工业出版社,2000.
    [41]左建民,潘超,沈才俊等.基于二次型性能指标的PMLSM单神经元自适应PID控制.中国制造业信息化,2007,36(19):20-22,25.
    [42]郭庆鼎,孙艳娜.直线永磁同步伺服电动机的H∞鲁棒自适应控制.电工技术学报,2000,15(4):1-4.
    [43]赵虎,李睿.精密永磁直线电机的自适应滑模控制.吉林大学学报(信息科学版),2004,22(4):318-322.
    [44]吕刚,焦留成.多模自适应模糊控制器及其在精密伺服系统中的应用.控制理论与应用,2005,22(1):47-51.
    [45]F J Lin, P H Shen, Y S Kung. Adaptive wavelet neural network control for linear synchronous motor servo drive. IEEE Trans on Magnetics,2005,41(12):4401-4412.
    [46]孙宜标,郭庆鼎.基于滑模观测器的直线伺服系统反馈线性化速度跟踪控制.控制理论与应用,2004,21(3):391-397.
    [47]H J Lin, C H Lin, P K Huang. Recurrent fuzzy neural network controller design using sliding-mode control for linear synchronous motor drive. IEE Proc. Control Theory Appl,2004,151(4): 407-416.
    [48]刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社,2005.
    [49]Qing Hu, Hongxia Li, Hiayan Yu et al. Adaptive fuzzy sliding-mode controller for linear elevator using permanent magnet linear synchronous motor. FSKD,2009,4:47-51.
    [50]杨伟民,潘丽娇,陆华才.基于神经网络的永磁直线同步电机自适应滑模控制.电气自动化,2009,31(3):9-11.
    [51]孙宜标.基于滑动模态的永磁直线同步电动机鲁棒速度控制.(博士学位论文),沈阳:沈阳工业大学,2007.
    [52]曹荣敏,侯忠生.直线电机的非参数模型直接自适应预测控制.控制理论与应用,2008,25(3):587-590.
    [53]郭庆鼎,周悦,郭威.交流永磁直线同步电机伺服系统的预见前馈补偿.电机与控制学报,1993,15(3):1-8.
    [54]贾英民.鲁棒Hoo控制.北京:科学出版社,2007.
    [55]F J Lin, T S Lee, C H Lin. Robust H∞, controller design with recurrent neural network for linear synchronous motor drive. IEEE Trans on Industrial Electronics,2003,50(3):456-470.
    [56]郭庆鼎,蓝益鹏.永磁直线伺服电机L2鲁棒控制的研究.中国电机工程学报,1993,25(18):146-150.
    [57]李士勇.模糊控制-神经控制和智能控制论.哈尔滨:哈尔滨工业大学出版社,1998.
    [58]张代林,陈幼平,艾武等.永磁直线电机保证稳态精度的模糊控制.电工技术学报,2007,22(4):64-68.
    [59]吴雪芬.基于自适应神经网络的PMLSM速度控制研究.电气传动,2008,38(6):37-39.
    [60]Lan Yipeng, Guo Qingding. Neural network and observer compensation control for virtual-axis machine tool. ICEMS,2005,2:1591-1594.
    [61]董文瀚,孙秀霞,林岩.反推自适应控制的发展及应用.控制与决策,2006,21(10):1081-1086,1102.
    [62]Kanellakopoulos 1, Kokotovic P V, Morse A S. Systematic design of adaptive controllers for feedback linearizable systems. IEEE Trans on Automatic Control,1991,36(11):1241-1253.
    [63]胡跃明.非线性控制系统理论与应用.北京:国防工业出版社,2002.
    [64]Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear design of adaptive controllers for linear systems. IEEE Trans on Automatic Control,1994,39(4):738-752.
    [65]Y P Zhang. Backstepping control of linear time-varying systems with known and unknown parameters. IEEE Trans on Automatic Control,2003,48(11):1908-1925.
    [66]Zhang Y, Wen C, Soh Y C. Adaptive backstepping control design for systems with unknown high-frequency gain. IEEE Trans on Automatic Control,2000,45(12):2250-2254.
    [67]A J Koshkouei, A S 1 Zinober. Adaptive backstepping control of nonlinear systems with unmatched uncertainty. IEEE Proc. Decision and Control,2000,5:4765-4770.
    [68]J Zhou, C Y Wen, Y Zhang. Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans on Automatic Control,2004,49(10): 1751-1759.
    [69]张友安,梁国强,关新平.非线性系统递推设计.燕山大学学报,2002,26(2):110-113.
    [70]李亚辉,庄显义,王述一等.非线性系统模糊间接自适应控制的后推设计.电机与控制学报,2003,7(2):147-160.
    [7l]刘栋良,赵光宙.风机类负载下的永磁同步电动机速度反推控制.电力系统及其自动化学报,2005,17(2):54-57.
    [72]王家军,赵光宙,齐冬莲.反推式控制在永磁同步电动机速度跟踪控制中的应用.中国电机工程学报,2004,24(8):95-98.
    [73]彭继慎,王强,刘栋良等.永磁同步电动机的速度自适应反推控制.煤炭学报,2006,31(4):540-544.
    [74]Jianguo Zhou, Youyi Wang. Real-time nonlinear adaptive backstepping speed control for a PM synchronous motor. Control Engineering Practice,2005,13(10):1259-1269.
    [75]J Zhou, Y Wang. Adaptive backstepping speed controller design for a permanent magnet synchronous motor. IEE Proc. Electr Power Appl,2002,149(2):165-172.
    [76]Hu Jianhui, Xu Yongxiang, Zou Jibin. Design and implementation of adaptive backstepping speed control for permanent magnet synchronous motor. IEEE Proc. WCICA,2006,1:2011-2015.
    [77]M Ouassaid, M Cherkaoui, Y Zidani. A nonlinear speed control for a PM synchronous motor using an adaptive backstepping control approach. IEEE Conference on Industrial Technology,2004: 1287-1292.
    [78]刘国海,戴先中.具有不确定负载的交流电机自适应后推控制方法.控制与决策,2001,16(6):947-949.
    [79]王家军,赵光宙,齐冬莲.基于反推的永磁同步电动机伺服系统的位置跟踪控制.电路与系统学报,2004,9(6):19-21.
    [80]Yaolong Tan, Jie Chang, Hualin Tan. Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties. IEEE Trans on Industrial Electronics,2003,50(5): 944-952.
    [81]Jen-te Yu, Jie Chang. A new adaptive backstepping control algorithm for motion control systems. PCC,2002:206-210.
    [82]C M Kwan, F L Lewis. Robust backstepping control of induction motors using neural networks. IEEE Trans on Neural Networks,2000,11 (5):1178-1187.
    [83]S J Chiang, Chih Hong Lin. Adaptive backstepping RFNN control for synchronous reluctance motor drive. PESC,2006:1-6.
    [84]C M Lin, C F Hsu. Recurrent neural network based adaptive backstepping control for induction servomotors. IEEE Trans on Industrial Electronics,52(6):1677-1684.
    [85]H J Shieh, K K Shyu. Nonlinear sliding-mode torque control with adaptive backstepping approach for induction motor drive. IEEE Trans on Industrial Electronics,1999,46(2):380-389.
    [86]Yahui Li, Sheng Qiang, Xianyi Zhuang et al. Robust and adaptive backstepping control for nonlinear systems using RBF neural networks. IEEE Trans on Neural Networks,2004,15(3): 693-701.
    [87]C F Hsu, C M Lin, T T Lee. Wavelet adaptive backstepping control for a class of nonlinear systems. IEEE Trans on Neural Networks,2006,17(5):1175-1183.
    [88]Markus Hirvonen, Olli Pyrhonen. Adaptive nonlinear velocity controller for a flexible mechanism of a linear motors. Mechatronics,2006,16(2):279-290.
    [89]F J Lin, C C Lee. Adaptive backstepping control for linear induction motor drive to track periodic references. IEEE Proc. Electr Power Appl,2000,147(6):449-458.
    [90]金文光,程国卿.直线电机位置轨迹自适应渐进跟踪.计算机测量与控制,2006,(9):1250-1253.
    [91]Shen P H, Lin F J. Intelligent backstepping sliding-mode control using RBFN for two-axis motion control system. IEE Proc. Electr Power Appl,2005,152(5):1321-1342..
    [92]Lin F J, Chou W D, Hsu S P. Adaptive backstepping control using recurrent neural network for linear induction motor drive. IEEE Trans on Industrial Electronics,2002,48 (1):134-146.
    [93]C I Huang, L C Fu. Adaptive backstepping speed/position control with friction compensation for linear induction motor. IEEE Conference on Decision and Control,2002,1:474-479.
    [94]F J Lin, L T Teng, C Y Chen. FPGA-based adaptive backstepping control system using RBFN for linear induction motor drive. IEE Proc. Electr Power Appl,2008,2 (6):325-340.
    [95]Yao Bin, Li Xu. Adaptive robust motion control of linear motors for manufacturing. Mechatronics, 2002,12(4):595-616.
    [96]夏加宽,王成元,李皞东.高精度数控机床用直线电机端部效应分析及神经网络补偿技术研究.中国电机工程学报,2003,23(8):100-104.
    [97]张代林,陈幼平,艾武等.基于观测器模型的直线电机干扰抑制技术的研究.中国电机工程学报,2007,27(12):14-18.
    [98]王成元,夏加宽,杨俊友等.电机现代控制技术.北京:机械工业出版社,2006.
    [99]Jean-Jacques E. Slotine, Weiping Li.程代展等译.应用非线性控制.北京:机械工业出版社,2006.
    [100]魏乐.基于非线性反推理论的锅炉-汽轮机单元协调控制.(博士学位论文).北京:华北电力大学,2009.
    [101]F J Lin, L T Teng, C K Chang. Adaptive backstepping control for linear-induction-motor drive using FPGA. IEE Proc. Electr Power Appl,2006,153(4):483-153.
    [102]Kokotovic P V. The joy of feedback:Nonlinear and Adaptive. IEEE Control Systems Magazine, 1992,12(3):7-17.
    [103]Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptive controllers for feedback linearizable systems. IEEE Trans on Automatica Control,1991,36(11):1241-1248.
    [104]杨俊华,吴捷,胡跃明.反步方法原理及在非线性鲁棒控制中的应用.控制与决策,2002,17:641-653.
    [105]朱义胜,董辉,李作洲等译.非线性系统.北京:电子工业出版社,2005.
    [106]H J Shieh, K K Shyu. Nonlinear sliding-mode torque control with adaptive backstepping approach for induction motor drive. IEEE Trans on industrial Electronics,1999,46(2):380-389.
    [107]A S I Zinober, P Liu. Robust control of nonlinear uncertain system via sliding-mode with backstepping design. UKACC,1996,1:281-286.
    [108]李国勇.智能控制及其MATLAB实现.北京:电子工业出版社,2005.
    [109]F J Lin. Fuzzy adaptive model-following position control for ultrasonic motor. IEEE Trans on Power Eletronics,1997.12(2):261-268.
    [110]C T Chao, Y J Chen, C C Teng. Simplification of fuzzy-neural systems using similarity analysis. IEEE Trans on System, Man, and Cybernetics.1996,26(2):344-354.
    [111]R J Wai. Total sliding-mode controller for PM synchronous servo motor drive using recurrent fuzzy neural network. IEEE Trans on Industrial Electronics,2001,48(5):926-944.
    [112]王耀南.机器人智能控制工程.北京:科学出版社,2004.
    [113]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计.北京:清华大学出版社,2005.
    [114]戴谊,丛爽.递归神经网络学习速率研究.系统工程与电子技术,2005,27(5):942-947.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700