高活性纳米LaFe系钙钛矿的控制合成及其催化脱除小分子污染气体的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组成多样的钙钛矿被认为具有催化潜力,特别是在环境多相催化领域。在这些组成中,LaFe基钙钛矿结构吸引了众多注意,因为其用途广、热稳定性和水热稳定性优秀、活性良好以及组成元素廉价,即使Fe的氧化还原能力有限。本文首先利用传统的柠檬酸络合自燃烧法合成了LaFe_(1-x-y)Cu_xPd_yO_3-δ系列钙钛矿,详细表征了其物理化学性质,并利用氧同位素交换技术对样品的氧迁移能力进行了全面评测。发现不同的B位阳离子(Cu~(2+)或Pd~(2+))掺杂对LaFe结构的氧化还原能力以及氧迁移能力影响巨大。含Cu样品在展现出良好氧化还原能力的同时,也获得了极高的氧迁移速率;而Pd掺杂虽然得到了最好的低温氧化还原能力,但其极大限制了钙钛矿结构的氧迁移。研究发现,样品的氧迁移能力对其低温CO催化氧化至关重要:Cu掺杂材料表现出了最高的低温活性;而Pd掺杂对LaFe结构的低温活性没有起到任何作用。在较低温度区间,CO氧化反应通常被看做一种只有气相吸附氧参与的单纯表面反应;但通过本实验对LaFe系列钙钛矿氧迁移能力的测量,发现即使在低温区域,这些样品的表面晶格氧甚至是体相氧(含Cu样品)也会参与反应,证明CO氧化在LaFe系钙钛矿样品上始终遵循表面氧化还原机理。
     这些B位掺杂LaFe系钙钛矿材料被用来进一步研究O_2存在情况下的C_3H_6选择性催化还原(SCR)NO反应。通过NO-TPD和C_3H_6/O_2-TPD实验以及原位红外漫反射光谱手段详细研究了各种反应物在不同样品表面的吸附量及后续反应,发现了Cu或Pd掺杂对LaFe结构上的SCR反应带来的不同效果:对比LaFeO_3,Cu掺杂更易活化及部分氧化C_3H_6进而生成表面活性物种CxHyOz,导致SCR性能的明显提升。在LaFe0.94Pd0.06O3上得到了最好的低温催化活性,源自Pd的存在极大抑制了不活泼离子态硝酸盐的生成,减少了其对活性点位的大量占据;同时有效降低了adNOx和CxHyOz之间的反应活化能,有利于SCR反应的持续进行。根据研究结果提出了相关SCR反应机理:在LaFe系钙钛矿表面,反应物首先吸附生成adNOx(NO_3/NO_2)以及CxHyOz物种,两种活性物种通过进一步相互作用形成系列中间产物(含氮有机物ONCs/CN/NCO),最终生成产物N_2/CO_2/H_2O。另外,在LaFe系列钙钛矿上,过量O_2能导致不活泼离子态硝酸盐的大量增多,同时致使SCR还原剂C_3H_6的大量直接氧化消耗,使SCR活性大幅降低;而Pd的掺杂能明显提升LaFe结构的氧耐受性。
     受新型苯甲醇溶剂热法制备功能性钙钛矿材料(Ba,Sr)TiO3的启发,经过多种尝试,利用这种简单的无水溶剂热法成功制备出纳米尺度多相催化材料LaFeO_3。随后对制备的样品进行了充分表征以及CO/CH_4催化氧化活性评价,全方位对比了苯甲醇法LaFeO_3和柠檬酸法LaFeO_3的物化性能差异,并利用程序升温氧同位素交换技术发现了两种样品迥异的氧迁移能力。对比柠檬酸法LaFeO_3,苯甲醇法样品是由相对独立和类球状的纳米颗粒堆积组成,具有更高的比表面积(43.6m~2g~(-1)vs.23.1m~2g~(-1),都在500℃焙烧6h,下同)以及更小的平均晶粒尺寸(17.6nm vs.21.5nm)。同样,苯甲醇法样品的氧化还原能力及表面/体相氧迁移能力都得到了显著的提升,获得了更加优秀的催化氧化活性(CO氧化的T50%:255℃vs.280℃;CH4氧化的To50%:410C vs.432℃)。因为表面/次表面晶格氧的参与,在LaFeO_3上的CO氧化反应遵循表面氧化还原机理;而更高温度下的CH_4氧化反应则遵循层内反应机制,因为在此温度下催化剂内部氧的贡献显著增大。
Many compositions of perovskite mixed oxides have beendemonstrated as high potential catalysts, especially as environmentalcatalysts. Among these perovskites, LaFe-based perovskite structuresattract much attention due to their great versatility, excellenthigh-temperature thermal and hydrothermal stability as well as interestingactivities, in addition to the low cost of the constituting elements, even ifFe shows very limited redox ability. A series of LaFe-based perovskites(LaFe_(1-x-y)Cu_xPdyO_(3-δ)) were prepared through conventional citric acidroute, and were then fully characterized using traditional techniques aswell as advanced oxygen isotopic exchange and equilibration techniques.It was shown that the reducibility and oxygen desorption were stronglyaltered by the properties of the substituting cation, even if iron remainshardly reducible up to1000℃. In addition, large differences in oxygenmobility were measured by oxygen isotopic exchange: Largely higheroxygen mobility was achieved over the Cu-containing sample, while Pd substitution strongly inhibited the oxygen mobility of LaFe structure.These observations correlated well with the different catalyticperformances in low-temperature CO oxidation over these materials.Indeed, Cu-containing materials presented the highest catalytic activities,while Pd-substituted structure showed a low-temperature activity similaras the LaFe parent material. CO oxidation is usually considered as asuprafacial reaction, where only adsorbed gas-phase species are involved.Nevertheless, the participation of the surface oxygen (in pure ferritestructure) or even the bulk oxygen (in Cu-substituted material) from thesolid to this reaction was strongly confirmed by oxygen mobilitymeasurements, suggesting a redox-type oxidation mechanism overLaFe-based perovskites.
     These perovskites were further investigated for the selective catalyticreduction (SCR) of NO by C_3H_6in the presence of O_2. The adsorbedspecies and surface reactions were detected for mechanistic study bymeans of NO-or C_3H_6/O_2-TPD (temperature-programmed desorption) aswell as in-situ DRIFTS (diffuse refectance Fourier transformspectroscopy), in order to discriminate the effects of copper or palladiumpartial substitution. With respect to LaFeO_3, Cu~(2+)incorporation improvedSCR performance, due to its promotion to the generation of active surfacespecies C_xH_yO_z. The excellent low-temperature SCR performance overLaFe0.94Pd0.06O3was mainly attributed to the strongly declined occupation of the active sites by the inactive ionic nitrates, as well as a rapid reactionbetween adNOx(nitrites/nitrates) and C_xH_yO_zspecies. A mechanism washerein proposed with the generation of adNOxand C_xH_yO_zsurfacespecies and then the further formation of some organo nitrogencompounds (ONCs)/CN/NCO as important intermediates. Moreover,the acceleration of two aspects (the formation of inactive ionic nitrate andthe direct oxidation of C_3H_6by O_2) contributed to a negative effect of O_2excess for NO reduction, while Pd substitution signifcantly increased theO_2tolerance ability.
     Being a successful extension of the benzyl alcohol route, a simplenon-aqueous method for the preparation of nanocrystalline LaFeO_3wasdeveloped. The obtained sample was then fully characterized and testedfor CO or CH4oxidation reaction. The morphology was investigated bymeans of TEM and SEM, and temperature programmed oxygen isotopicexchange technique was also used to measure the oxygen mobilitycapacity. With respect to citric-acid-route LaFeO_3, thebenzyl-alcohol-route material (both calcined at500℃for6h) presentedrelatively individual and quasi-spherical nanosized particles, with muchhigher specific surface area (43.6m~2g~(-1)vs.23.1m2g~(-1)) as well as lowercrystal size (17.6nm vs.21.5nm). Much better redox property andstrongly enhanced surface/bulk oxygen mobility were also achieved,resulting in the improved catalytic oxidation performances (255℃vs. 280℃for T50%in CO oxidation,410℃vs.432℃for T50%in CH_4oxidation). Due to the participation of surface/subsurface oxygens fromthe solid, redox surface oxidation mechanism was herein assigned to COoxidation over LaFeO_3, while CH_4oxidation followed an intrafacialmechanism, involving the intense participation of bulk oxygens.
引文
[1]童志权.工业废气净化与利用[M].化学工业出版社,2001
    [2] Burch R, Millington P J. Selective Reduction of Nitrogen Oxides by Hydrocarbons underLean-Burn Conditions Using Supported Platinum Group Metal Catalysts[J]. Catal. Today,1995,26(2):185-206
    [3] Hamada H. Selective Reduction of NO by Hydrocarbons and Oxygenated Hydrocarbonsover Metal Oxide Catalysts[J]. Catal. Today,1994,22(1):21-40
    [4] Satsuma A, Shimizu K I. In Situ FT/IR Study of Selective Catalytic Reduction of NOover Alumina-Based Catalysts[J]. Prog. Energy Combust. Sci.,2003,29(1):71-84
    [5] Shelef M. Selective Catalytic Reduction of NOxwith N-Free Reductants[J]. Chem. Rev.,1995,95(1):209-225
    [6] Burch R, Millington P J, Walker A P. Mechanism of the Selective Reduction of NitrogenMonoxide on Platinum-Based Catalysts in the Presence of Excess Oxygen.[J]. Appl. Catal.B,1994,39:65-94
    [7] Rottl nder C, Andorf R, Plog C, Krutzsch B, Baerns M. Selective NO Reduction byPropane and Propene over a Pt/ZSM-5Catalyst: A Transient Study of the ReactionMechanism.[J]. Appl. Catal., B,1996,11:49-63
    [8] Cant N W, Liu I O Y. The Mechanism of the Selective Reduction of Nitrogen Oxides byHydrocarbons on Zeolite Catalysts[J]. Catal. Today,2000,63(2-4):133-146
    [9] Haneda M, Kintaichi Y, Inaba M, Hamada H. Infrared Study of Catalytic Reduction ofNitrogen Monoxide by Propene over Ag/TiO2-ZrO2[J]. Catal. Today,1998,42(1-2):127-135
    [10] Chi Y, Chuang S S C. Infrared Study of NO Adsorption and Reduction with C3H6in thePresence of O2over CuO/Al2O3[J]. J. Catal.,2000,190(1):75-91
    [11] Bion N, Saussey J, Haneda M, Daturi M. Study by in situ FTIR Spectroscopy of the Scrof NOxby Ethanol on Ag/Al2O3-Evidence of the Role of Isocyanate Species[J]. J. Catal.,2003,217(1):47-58
    [12] Jeon J Y, Kim H Y, Woo S I. Mechanistic Study on the Scr of NO by C3H6overPt/V/MCM-41[J].Appl. Catal. B,2003,44(4):301-310
    [13] Yu Y, He H, Feng Q. Novel Enolic Surface Species Formed During Partial Oxidation ofCH3CHO, C2H5OH, and C3H6on Ag/Al2O3: An in Situ Drifts Study[J]. J. Phys. Chem. B,2003,107(47):13090-13092
    [14] Gorce O, Baudin F, Thomas C, Costa P D, Djéga-Mariadassou G. On the Role of OrganicNitrogen-Containing Species as Intermediates in the Hydrocarbon-Assisted Scr of NOx[J].Appl. Catal. B,2004,54(2):69-84
    [15] He H, Zhang C, Yu Y. A Comparative Study of Ag/Al2O3and Cu/Al2O3Catalysts for theSelective Catalytic Reduction of NO by C3H6[J]. Catal. Today,2004,90(3-4):191-197
    [16] Yu Y, He H, Feng Q, Gao H, Yang X. Mechanism of the Selective Catalytic Reduction ofNOxby C2H5OH over Ag/Al2O3[J].Appl. Catal., B,2004,49(3):159-171
    [17] Wan Y, Ma J, Wang Z, Zhou W, Kaliaguine S. On the Mechanism of Selective CatalyticReduction of NO by Propylene over Cu-Al-MCM-41[J]. Appl. Catal., B,2005,59(3-4):235-242
    [18] Joubert E, Courtois X, Marecot P, Canaff C, Duprez D. The Chemistry of deNOxReactions over Pt/Al2O3: The Oxime Route to N2or N2O[J]. J. Catal.,2006,243(2):252-262
    [19] Zhang R, Villanueva A, Alamdari H, Kaliaguine S. Cu-and Pd-substituted NanoscaleFe-Based Perovskites for Selective Catalytic Reduction of NO by Propene[J]. J. Catal.,2006,237(2):368-380
    [20]李言荣,恽正中.材料物理学概论[M].北京:清华大学出版社,2001:
    [21] Pena M A, Fierro J L G. Chemical Structures and Performance of Perovskite Oxides[J].Chem. Rev.,2001,101:1981-2017
    [22] Nishihata Y, Mizuki J, Akao T, Tanaka H, Uenishi M, Kimura M, Okamoto T, Hamada N.Self-Regeneration of a Pd-Perovskite Catalyst for Automotive Emissions Control[J].Nature,2002,418(6894):164-167
    [23] Libby W F. Promising Catalyst for Auto Exhaust[J]. Science,1971,171(3907):499-500
    [24] Voorhoeve R J, Remeika J P, Freeland P E, Mathias B T. Rare-Earth Oxides ofManganese and Cobalt Rival Platinum for the Treatment of Carbon Monoxide in AutoExhaust[J]. Science,1972,177(4046):353-354
    [25] Voorhoeve R J, Johnson D W, Remeika J P, Gallagher P K. Perovskite Oxides: MaterialsScience in Catalysis[J]. Science,1977,195(4281):827-833
    [26] Kremenic G, Nieto J M L, Tascon J M D, Tejuca L G. Chemisorption and Catalysis onLaMO3Oxides[J]. J. Chem. Soc. Faraday Trans.,1985,81:939-949
    [27] Nitadori T, Misono M. Catalytic Properties of La1-xAxFeO3(A=Sr,Ce) andLa1-xCexCoO3[J]. J. Catal.,1985,93(2):459-466
    [28] Fino D, Russo N, Saracco G, Specchia V. The Role of Suprafacial Oxygen in SomePerovskites for the Catalytic Combustion of Soot[J]. J. Catal.,2003,217(2):367-375
    [29] Zhang R, Alamdari H, Kallaguine S. Fe-Based Perovskites Substituted by Copper andPalladium for NO+CO Reaction[J]. J. Catal.,2006,242(2):241-253
    [30] Zhang R, Alamdari H, Kaliaguine S. Water Vapor Sensitivity of Nanosized La(Co, Mn,Fe)1-x(Cu, Pd)xO3Perovskites During No Reduction by C3H6in the Presence ofOxygen[J]. Appl. Catal. B,2007,72(3-4):331-341
    [31] Ciambelli P, Cimino S, De Rossi S, Lisi L, Minelli G, Porta P, Russo G. AFeO3(A=La,Nd, Sm) and LaFe1-xMgxO3Perovskites as Methane Combustion and CO OxidationCatalysts: Structural, Redox and Catalytic Properties[J]. Appl. Catal. B,2001,29239-250
    [32] Ciambelli P, Cimino S, Lasorella G, Lisi L, De Rossi S, Faticanti M, Minelli G, Porta P.Co Oxidation and Methane Combustion on LaAl1-xFexO3Perovskite Solid Solutions[J].Appl. Catal. B,2002,37(3):231-241
    [33] Royer S, Duprez D. Catalytic Oxidation of Carbon Monoxide over Transition MetalOxides[J]. Chemcatchem,2011,3(1):24-65
    [34] Royer S, Alamdari H, Duprez D, Kaliaguine S. Oxygen Storage Capacity of La1-xAxBO3Perovskites (with A=Sr, Ce; B=Co, Mn)-Relation with Catalytic Activity in the CH4Oxidation Reaction[J]. Appl. Catal. B,2005,58(3):273-288
    [35] Royer S, Levasseur B, Alamdari H, Barbier-Jr J, Duprez D, Kaliaguine S. Mechanism ofStearic Acid Oxidation over Nanocrystalline La1-xAxBO3(A=Sr, Ce; B=Co, Mn): TheRole of Oxygen Mobility[J]. Appl. Catal. B,2008,80(1-2):51-61
    [36] Crespin M, Hall W K. The Surface Chemistry of Some Perovskite Oxides[J]. J. Catal.,1981,69:359-370
    [37] Teraoka Y, Nakano K, Kagawa S, Shangguan W F. Simultaneous Removal of NitrogenOxides and Diesel Soot Particulates Catalyzed by Perovskite-Type Oxides[J]. Appl. Catal.B,1995,5(3):181-185
    [38] Niederberger M, Garnweitner G, Pinna N, Antonietti M. Nonaqueous and Halide-FreeRoute to Crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3Nanoparticles Via a MechanismInvolving C-C Bond Formation[J]. J.Am. Chem. Soc.,2004,126:9120-9126
    [39] Giacomuzzi R A M, Portinari M, Rossetti I, Forni L. A New Method for PreparingNanometer-Size Perovskitic Catalysts for CH4Flameless Combustion[J]. Stud. Surf. Sci.Catal. A,2000,130:197-202
    [40] Chiarello G L, Rossetti I, Forni L. Flame-Spray Pyrolysis Preparation of Perovskites forMethane Catalytic Combustion[J]. J. Catal.,2005,236(2):251-261
    [41] Bonne M, Sellam D, Dacquin J-P, Lee A F, Wilson K, Olivi L, Cognigni A, Marécot P,Royer S, Duprez D. A General Route to Synthesize Supported Isolated Oxide andMixed-Oxide Nanoclusters at Sizes Below5nm[J]. Chem. Commun.,2011,47(5):1509-1511
    [42] Keulks G W. The Mechanism of Oxygen Atom Incorporation into the Products ofPropylene Oxidation over Bismuth Molybdate[J]. J. Catal.,1970,19(2):232-235
    [43] Novakova J. Isotopic Exchange of Oxygen O18between Gaseous Phase and OxideCatalysts[J]. Catal. Rev.,1970,4(1):77-113
    [44] Novakova J, Jiru P. A Comment on Oxygen Mobility During Catalytic Oxidation[J]. J.Catal.,1972,27(1):155-156
    [45] Winter E R S. The Reactivity of Oxide Surfaces[J]. Adv. Catal. Relat. Subject,1958,10:196-241
    [46] Boreskov G K. The Catalysis of Isotopic Exchange in Molecular Oxygen[J]. Adv. Catal.Relat. Subject,1964,15:285-339
    [47] Winter E R S. Exchange Reactions of Oxides.9.[J]. J. Chem. Soc. A,1968,(12):2889
    [48] Martin D, Duprez D. Mobility of Surface Species on Oxides.1. Isotopic Exchange O18with O16of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by Noble Metals.Correlation with Oxide Basicity[J]. J. Phys. Chem.,1996,100(22):9429-9438
    [49] Descorme C, Duprez D. Oxygen Surface Mobility and Isotopic Exchange on Oxides:Role of the Nature and the Structure of Metal Particles[J]. Appl. Catal. A,2000,202(2):231-241
    [50] Descorme C, Madier Y, Duprez D. Infrared Study of Oxygen Adsorption and Activationon Cerium-Zirconium Mixed Oxides[J]. J. Catal.,2000,196(1):167-173
    [51] Galdikas A, Duprez D, Descorme C. ANovel Dynamic Kinetic Model of Oxygen IsotopicExchange on a Supported Metal Catalyst[J].Appl. Surf. Sci.,2004,236(1-4):342-355
    [52] Royer S, Duprez D, Kaliaguine S. Role of Bulk and Grain Boundary Oxygen Mobility inthe Catalytic OxidationActivity of LaCo1-xFexO3[J]. J. Catal.,2005,234(2):364-375
    [53] Royer S, Duprez D, Kaliaguine S. Oxygen Mobility in LaCoO3Perovskites[J]. Catal.Today,2006,112(1):99-102
    [54] Ojala S, Bion N, Baylet A, Tarighi M, Keiski R L, Duprez D. Correlations betweenOxygen Activation and Methane Oxidation over Pd/γ-Al2O3Catalysts Prepared by NitriteMethod[J]. Appl. Catal. B,2011,108(1-2):22-31
    [55] Yang W, Zhang R, Chen B, Bion N, Duprez D, Royer S. Activity of Perovskite-TypeMixed Oxides for the Low-Temperature CO Oxidation: Evidence of Oxygen SpeciesParticipation from the Solid[J]. J. Catal.,2012,295:45-58
    [56] Stathopoulos V N, Belessi V C, Bakas T V, Neophytides S G, Costa C N, Pomonis P J,Efstathiou A M. Comparative Study of La–Sr–Fe–O Perovskite-Type Oxides Prepared byCeramic and Surfactant Methods over the CH4and H2Lean-deNOx[J]. Appl. Catal. B,2009,93(1):1-11
    [57] Royer S, Berube F, Kaliaguine S. Effect of the Synthesis Conditions on the Redox andCatalytic Properties in Oxidation Reactions of LaCo1-xFexO3[J]. Appl. Catal. A,2005,282(1-2):273-284
    [58] Courty P, Marcilly C. Preparation of Catalysts[M]. Elsevier:Amsterdam,1976:
    [59] Kaliaguine S, Van Neste A, Szabo V, Gallot J E, Bassir M, Muzychuk R. Perovskite-TypeOxides Synthesized by Reactive Grinding Part I. Preparation and Characterization[J].Appl. Catal. A,2001,209(1-2):345-358
    [60]付强,楚玉彪,常海波.水热方法合成钙钛矿型LaCrO3复合氧化物及光催化性质[J].吉林师范大学学报:自然科学版,2007,28(3):21-23
    [61] Goel S C, Chiang M Y, Gibbons P C, Buhro W E. New Chemistry for the Sol-Gel Process:Acetone as a New Condensation Reagent[A]. MRS Proceedings[C]. Cambridge UnivPress,1992
    [62] Trentler T J, Denler T E, Bertone J F, Agrawal A, Colvin V L. Synthesis of TiO2Nanocrystals by Nonhydrolytic Solution-Based Reactions[J]. J. Am. Chem. Soc.,1999,121(7):1613-1614
    [63] Hyeon T. Chemical Synthesis of Magnetic Nanoparticles[J]. Chem. Commun.,2003,(8):927-934
    [64] Park J, An K J, Hwang Y S, Park J G, Noh H J, Kim J Y, Park J H, Hwang N M, Hyeon T.Ultra-Large-Scale Syntheses of Monodisperse Nanocrystals[J]. Nat. Mater.,2004,3(12):891-895
    [65] Vázquez-Vázquez C, Arturo López-Quintela M. Solvothermal Synthesis andCharacterisation of La1-xAxMnO3Nanoparticles[J]. J. Solid State Chem.,2006,179(10):3229-3237
    [66] Yang W, Zhang R, Chen B, Duprez D, Royer S. New Aspects on the Mechanism of C3H6Selective Catalytic Reduction of No in the Presence of O2over LaFe1–x(Cu, Pd)xO3δPerovskites[J]. Environ. Sci. Tech.,2012,46(20):11280-11288
    [67] Tanaka H, Tan I, Uenishi M, Kimura M, Dohmae K. Regeneration of PalladiumSubsequent to Solid Solution and Segregation in a Perovskite Catalyst: An IntelligentCatalyst[J]. Top. Catal.,2001,16(1-4):63-70
    [68] Tanaka H, Tan I, Uenishi M, Kajita N, Taniguchi M. Catalyst for Exhaust GasPurification[P]. WO/2004/004896,2004
    [69] Uenishi M, Tanaka H, Taniguchi M, Tan I, Sakamoto Y, Matsunaga S, Yokota K,Kobayashi T. The Reducing Capability of Palladium Segregated from Perovskite-TypeLafepdox Automotive Catalysts[J]. Appl. Catal. A,2005,296(1):114-119
    [70] Uenishi M, Taniguchi M, Tanaka H, Kimura M, Nishihata Y, Mizuki J, Kobayashi T.Redox Behavior of Palladium at Start-up in the Perovskite-Type Lafepdox AutomotiveCatalysts Showing a Self-Regenerative Function[J]. Appl. Catal. B,2005,57(4):267-273
    [71] Uenishi M, Tanaka H, Taniguchi M, Tan I, Nishihata Y, Mizuki J i, Kobayashi T. TimeEvolution of Palladium Structure Change with Redox Fluctuations in a LaFePdO3Perovskite Automotive Catalyst by High-Speed Analysis with in Situ Dxafs[J]. Catal.Commun.,2008,9(2):311-314
    [72] Klier K, Novakova J, Jiru P. Exchange Reactions of Oxygen between Oxygen Moleculesand Solid Oxides[J]. J. Catal.,1963,2(6):479-484
    [73] Eyssler A, Mandaliev P, Winkler A, Hug P, Safonova O, Figi R, Weidenkaff A, Ferri D.The Effect of the State of Pd on Methane Combustion in Pd-Doped LaFeO3[J]. J. Phys.Chem. C,2010,114(10):4584-4594
    [74] Eyssler A, Winkler A, Mandaliev P, Hug P, Weidenkaff A, Ferri D. Influence of ThermallyInduced Structural Changes of2wt%Pd/LaFeO3on Methane Combustion Activity[J].Appl. Catal. B,2011,106(3-4):494-502
    [75] Wang C, Chen C, Weng H. Surface Properties and Catalytic Performance of La1-xSrxFeO3Perovskite-Type Oxides for Methane Combustion[J]. Chemosphere,2004,57(9):1131-1138
    [76] Furfori S, Bensaid S, Russo N, Fino D. Towards Practical Application of LanthanumFerrite Catalysts for NO Reduction with H2[J]. Chem. Eng. J.,2009,154(1-3):348-354
    [77] Tien-Thao N, Zahedi-Niaki M H, Alamdari H, Kaliaguine S. Effect of Alkali Additivesover Nanocrystalline Co-Cu-Based Perovskites as Catalysts for Higher-AlcoholSynthesis[J]. J. Catal.,2007,245(2):348-357
    [78] Zhou R, Yu T, Jiang X, Chen F, Zheng X. Temperature-Programmed Reduction andTemperature-Programmed Desorption Studies of CuO/ZrO2Catalysts[J]. Appl. Surf. Sci.,1999,148(3-4):263-270
    [79] Faye J, Baylet A, Trentesaux M, Royer S, Dumeignil F, Duprez D, Valange S, Tatibou tJ-M. Influence of Lanthanum Stoichiometry in La1-xFeO3-δPerovskites on Their Structureand Catalytic Performance in CH4Total Oxidation[J]. Appl. Catal. B,2012,126:134-143
    [80] Batista J, Pintar A, Mandrino D, Jenko M, Martin V. Xps and Tpr Examinations ofγ-Alumina-Supported Pd-Cu Catalysts[J]. Appl. Catal. A,2001,206(1):113-124
    [81] Zhou K, Chen H, Tian Q, Hao Z, Shen D, Xu X. Pd-Containing Perovskite-Type OxidesUsed for Three-Way Catalysts[J]. J. Mol. Catal.A,2002,189(2):225-232
    [82] Ziaei-Azad H, Khodadadi A, Esmaeilnejad-Ahranjani P, Mortazavi Y. Effects of Pd onEnhancement of Oxidation Activity of LaBO3(B=Mn, Fe, Co and Ni) PervoskiteCatalysts for Pollution Abatement from Natural Gas Fueled Vehicles[J]. Appl. Catal. B,2011,102(1-2):62-70
    [83] Shen W J, Okumura M, Matsumura Y, Haruta M. The Influence of the Support on theActivity and Selectivity of Pd in CO Hydrogenation[J]. Appl. Catal. A,2001,213(2):225-232
    [84] Levasseur B, Kaliaguine S. Methanol Oxidation on LaBO3(B=Co, Mn, Fe)Perovskite-Type Catalysts Prepared by Reactive Grinding[J]. Appl. Catal. A,2008,343(1-2):29-38
    [85] Lee C Y, Han K H, Ha B H. Characteristics and Combustion/Decomposition Activities ofCuO/Mordenite[J]. Micro. Mater.,1997,11(3-4):227-235
    [86] Royer S, Van Neste A, Davidson R, McIntyre S, Kaliaguine S. Methane Oxidation overNanocrystalline LaCo1-xFexO3: Resistance to SO2Poisoning[J]. Ind. Eng. Chem. Res.,2004,43(18):5670-5680
    [87] Simplicio L M T, Brandao S T, Sales E A, Lietti L, Bozon-Verduraz F. MethaneCombustion over PdO-Alumina Catalysts: The Effect of Palladium Precursors[J]. Appl.Catal. B,2006,63(1-2):9-14
    [88] Kan H H, Shumbera R B, Weaver J F. Adsorption and Abstraction of Oxygen Atoms onPd(111): Characterization of the Precursor to PdO Formation[J]. Surf. Sci.,2008,602(7):1337-1346
    [89] Yang L, Shi C, He X, Cai J. Catalytic Combustion of Methane over PdO Supported onMg-ModifiedAlumina[J].Appl. Catal. B,2002,38(2):117-125
    [90] Sartipi S, Khodadadi A A, Mortazavi Y. Pd-Doped LaCoO3Regenerative Catalyst forAutomotive Emissions Control[J]. Appl. Catal. B,2008,83(3-4):214-220
    [91] Tascon J M D, Fierro, J L G; Tejuca, L G. Kinetics and Mechanism of CO Oxidation onLaCoO3[J]. Z. Phys. Chem.,1981,124(2):249-257
    [92] Zhang R, Luo N, Chen B, Kaliaguine S. Soot Combustion over Lanthanum Cobaltites andRelated Oxides for Diesel Exhaust Treatment[J]. Energy Fuels,2010,24:3719-3726
    [93] Petrolekas P D, Metcalfe I S. Solid-Electrolyte Potentiometric Study of La(Sr)MnO3Catalyst During Carbon-Monoxide Oxidation[J]. J. Catal.,1995,152(1):147-163
    [94] Petrolekas P D, Metcalfe I S. Ionic Redox Behaviour of La(Sr)MnO3Catalyst DuringTransient CO Oxidation[J]. J. Catal.,1995,157(2):545-549
    [95] Heynderickx PM, Thybaut J W, Poelman H, Poelman D, Marin G B. The Total Oxidationof Propane over Supported Cu and Ce Oxides: A Comparison of Single and Binary MetalOxides[J]. J. Catal.,2010,272(1):109-120
    [96] Coq B, Tachon D, Figuéras F, Mabilon G, Prigent M. Selective Catalytic Reduction ofNitrogen Monoxide by Decane on Copper-Exchanged Mordenites.[J]. Appl. Catal. B,1995,6:271-289
    [97] Valyon J, Hall W K. Studies of the Surface Species Formed from Nitric Oxide on CopperZeolites[J]. J. Phys. Chem.,1993,97:1204-1212
    [98] Zhang F, Zhang S, Guan N, Schreier E, Richter M, Eckelt R, Fricke R. NO SCR withPropane and Propene on Co-Based Alumina Catalysts Prepared by Co-Precipitation[J].Appl. Catal., B,2007,73(3-4):209-219
    [99] Qi G, Yang R T, Chang R. MnOx-CeO2Mixed Oxides Prepared by Co-Precipitation forSelective Catalytic Reduction of NO with NH3at Low Temperatures[J]. Appl. Catal. B,2004,51(2):93-106
    [100] Stasio S D, Santo V D. Drifts Study of Surface Reactivity to NO2by Zinc NanoparticleAggregates and Zinc Hollow Nanofibers.[J].Appl. Surf. Sci.,2006,253:2899-2910
    [101] Zhang R, Teoh W Y, Amal R, Chen B, Kaliaguine S. Catalytic Reduction of No by Coover Cu/CexZr1-xO2Prepared by Flame Synthesis[J]. J. Catal.,2010,272(2):210-219
    [102] Liu L, Chen Y, Dong L, Zhu J, Wan H, Liu B, Zhao B, Zhu H, Sun K, Dong L, Chen Y.Investigation of the NO Removal by CO on CuO-CoOxBinary Metal Oxides Supportedon Ce0.67Zr0.33O2[J].Appl. Catal., B,2009,90(1-2):105-114
    [103] Shimizu K, Kawabata H, Satsuma A, Hattori T. Role of Acetate and Nitrates in theSelective Catalytic Reduction of No by Propene over Alumina Catalyst as Investigated byFTIR[J]. J. Phys. Chem. B,1999,103(25):5240-5245
    [104] Zuzaniuk V, Meunier F C, Ross J R H. Differences in the Reactivity of Organo-Nitro andNitrito Compounds over Al2O3-Based Catalysts Active for the Selective Reduction ofNOx[J]. J. Catal.,2001,202(2):340-353
    [105] Yu Y, Zhang X, He H. Evidence for the Formation, Isomerization and Decomposition ofOrgano-Nitrite and-Nitro Species During the Nox Reduction by C3H6on Ag/Al2O3[J].Appl. Catal., B,2007,75(3-4):298-302
    [106] Hornés A, Bera P, Cámara A L, Gamarra D, Munuera G, Martínez-Arias A.CO-TPR-DRIFTS-MS in-Situ Study of CuO/Ce1-xTbxO2-y(x=0,0.2and0.5) Catalysts:Support Effects on Redox Properties and CO Oxidation Catalysis[J]. J. Catal.,2009,268(2):367-375
    [107] Venkov T, Hadjiivanov K, Milushev A, Klissurski D. Fourier Transform InfraredSpectroscopy Study of the Nature and Reactivity of NOxCompounds Formed afterCoadsorption of NO and O2on Cu/ZrO2[J]. Langmuir,2003,19(8):3323-3332
    [108] Nakamotom K. Infrared and Raman Spectra of Inorganic and CoordinationCompounds[M]. Wiley-Interscience, NewYork,1986
    [109] Meunier F C, Breen J P, Zuzaniuk V, Olsson M, Ross J R H. Mechanistic Aspects of theSelective Reduction of No by Propene over Alumina and Silver-Alumina Catalysts[J]. J.Catal.,1999,187(2):493-505
    [110] Cowan A D, Cant N W, Haynes B S, Nelson P F. The Catalytic Chemistry ofNitromethane over Co-ZSM5and Other Catalysts in Connection with the Methane-NOxSCR Reaction[J]. J. Catal.,1998,176(2):329-343
    [111] Obuchi A, Wogerbauer C, K ppel R, Baiker A. Reactivity of Nitrogen ContainingOrganic Intermediates in the Selective Catalytic Reduction of NOxwith OrganicCompounds. A Model Study with Tert-Butyl Substituted Nitrogen Compounds[J]. Appl.Catal., B,1998,19(1):9-22
    [112] Janz G J, Woodburn H M, Pecka J T, Dolce T J. Inorganic Syntheses[M]. John Wiley&Sons, Inc.: Hoboken, NJ,2007:43
    [113] Kr cher O, Elsener M. Hydrolysis and Oxidation of Gaseous HCN over HeterogeneousCatalysts.[J]. Appl. Catal., B,2009,92:75-89
    [114] Yokoyama C, Misono M. Catalytic Reduction of Nitrogen Oxides by Propene in thePresence of Oxygen over Cerium Ion-Exchanged Zeolites. II. Mechanistic Study of Rolesof Oxygen and Doped Metals[J]. J. Catal.,1994,150(1):9-17
    [115] Smits R H H, Iwasawa Y. Reaction Mechanisms for the Reduction of Nitric Oxide byHydrocarbons on Cu-ZSM-5and Related Catalysts[J]. Appl. Catal., B,1995,6(3):201-207
    [116] Cant N W, Chambers D C, Liu I O Y. The Formation of Isocyanic Acid and AmmoniaDuring the Reduction of NO over Supported Platinum Group Metals[J]. Catal. Today,2004,93–95:761-768
    [117] Ladavos AK, Pomonis P J. Mechanistic Aspects of NO+CO Reaction on La2-xSrxNiO4(X=0.00–1.50) Perovskite-Type Oxides[J]. Appl. Catal. A,1997,165:73-85
    [118] Giannakas A E, Ladavos A K, Pomonis P J. Preparation, Characterization andInvestigation of Catalytic Activity for NO+CO Reaction of LaMnO3and LaFeO3Perovskites Prepared Via Microemulsion Method.[J]. Appl. Catal. B,2004,49:147-158
    [119] London J W, Bell A T. A Simultaneous Infrared and Kinetic Study of the Reduction ofNitric Oxide by Carbon Monoxide over Copper Oxide[J]. J. Catal.,1973,31:96-109
    [120] Witzel F, Sill G A, Hall W K. The Selective Reduction of NO and Combustion ofParaffins over MFI Zeolites.[J]. Stud. Surf. Sci. Catal.,1994,84:1531-1536
    [121] Ueda A, Haruta M. Reduction of Nitrogen Monoxide with Propene over Au/Al2O3MixedMechanically with Mn2O3[J]. Appl. Catal. B,1998,18:115-121
    [122] Shabbir G, Qureshi A H, Saeed K. Nano-Crystalline LaFeO3Powders Synthesized by theCitrate-Gel Method[J]. Mater. Lett.,2006,60:3706-3709

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700