HLA-A、HLA-B、HLA-DRB1等位基因多态性与中国北方汉族肺癌患者遗传易感相关性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨中国北方汉族人群中HLA-A、HLA-B、HLA-DRB1等位基因多态性与肺癌遗传易感性之间的关系。
     方法:采用盐酸胍法提取DNA,直接测序分型(SBT)结合序列特异性引物聚合酶链反应技术(PCR-SSP)对无血缘关系的籍贯为中国北方民族为汉族的140名肺癌患者及483名健康志愿者的HLA-A、HLA-B、HLA-DRB1等位基因多态性进行检测。应用arlequin软件(ver2.000)进行等位基因频率的计算、连锁不平衡分析,各个等位基因在人群中的差异用SPSS软件(ver13.0)进行卡方检验,对P值<0.05的计算OR值和95%可信区间。
     结果:采用高分技术HLA-A查出等位基因32个,HLA-B查出等位基因66个,HLA-DRB1查出等位基因44个。其中:HLA-A*26:01、HLA-B*15:18、HLA-B*38:02、HLA-DRB1*04:01、HLA-DRB1*04:02、HLA-DRB1*12:01,在肺癌病人中频率高于正常对照,P值分别为:0.021、0.001、0.015、0.021、0.010、0.046,OR值分别为:3.513、3.842、2.715、3.512、13.986、1.828;HLA-DRB1*10:01和HLA-DRB1*13:02在肺癌病人中频率低于正常对照,P值分别为:0.017和0.014,OR值分别为0.135和0.122。单倍型HLA-A*02:07-B*46:01-DRB1*09:01和HLA-A*02:06-B*51:01在肺癌病人中频率高于正常对照,P值分别为0.034和0.006,OR值分别为2.348和3.969;HLA-A*11:01-DRB1*15:01在肺癌病人中频率低于正常对照,P值为0.026,OR=0.146;另外单倍型HLA-A*01:01-B*37:01在正常对照中频率为0.02070但在肺癌病人中未检出。
     结论:在中国北方汉族人群中HLA-A*26:01、HLA-B*15:18、HLA-B*38:02、HLA-DRB1*04:01、HLA-DRB1*04:02、HLA-DRB1*12:01以及单倍型HLA-A*02:07-B*46:01-DRB1*09:01和HLA-A*02:06-B*51:01和肺癌的发病可能存在正相关关系, HLA-DRB1*10:01和HLA-DRB1*13:02以及单倍型HLA-A*11:01-DRB1*15:01和肺癌的发病可能存在负相关关系。
Objective: To investigate differences of HLA-A, B and DRB1 alleles among lung carcinoma patients and healthy controls, in order to determine the correlation between genetic susceptibility to lung carcinoma of Han nationality from North China and the polymorphisms of HLA-A,B and DRB1.
     Methods: The polymorphisms of HLA-A, B and DRB1 alleles in 140 unrelated patients with lung carcinoma and 483 unrelated normal controls of Han nationality from North China were examined using sequence-based typing(SBT)and polymerase chain reaction with sequence-specific primer(PCR-SSP).
     Results: The frequencies of HLA-A*26:01, HLA-B*15:18, HLA-B*38:02, HLA-DRB1*04:01, HLA-DRB1*04:02 and HLA-DRB1*12:01 were higher in the lung carcinoma group than those in the normal control group, with P values were respectively 0.021,0.001,0.015,0.021,0.010 and 0.046, while OR values were respectively 3.513,3.842,2.715,3.512,13.986 and 1.828. The frequencies of HLA-DRB1*10:01 and HLA-DRB1*13:02 were lower in the lung carcinoma group than those in the normal control group, with P values were respectively 0.017 and 0.014, while OR values were respectively 0.135 and 0.122. The frequencies of haplotype HLA-A*02:07-B*46:01-DRB1*09:01 and HLA-A*02:06-B*51:01 were higher in the lung carcinoma group than those in the normal control group, with P values were respectively 0.034 and 0.006, while OR values were respectively 2.348 and 3.969. The frequency of haplotype HLA-A*11:01-DRB1*15:01 was lower in the lung carcinoma group than those in the normal control group, with P value was 0.026 and OR was 0.146. The frequency of haplotype HLA-A*01:01-B*37:01 was 0.02070 but not found in lung carcinoma group.
     Conclusion: The frequencies of some HLA alleles(HLA-A*26:01, HLA-B*15:18, HLA-B*38:02, HLA-DRB1*04:01, HLA-DRB1*04:02, HLA-DRB1*12:01, HLA-DRB1*10:01 and HLA-DRB1*13:02 ) and haplotypes( HLA-A*02:07-B*46:01-DRB1*09:01, HLA-A*02:06-B*51:01 and HLA-A*11:01-DRB1*15:01)maybe related with the susceptibility to lung carcinoma of Han nationality from North China.
引文
[1] Parkin D M, Bray F B, Pisani P. Global cancer statistics. CA Cancer J Clin,2005,55(2):74-108.
    [2] Ferlay J, Autier P, Boniol M, et al. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol. 2007 Mar;18(3):581-592.
    [3] Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009. CA Cancer J Clin. 2009 Jul-Aug;59(4):225-249.
    [4]张思维,陈万青,雷正龙,等.中国肿瘤登记处2004年恶性肿瘤发病资料分析.中国肿瘤. 2008, 17(11):909-913.
    [5]陈万青,张思维,孔灵芝,等.中国肿瘤登记处2004年恶性肿瘤死亡资料分析.中国肿瘤. 2008, 17(11):913-917.
    [6] Gresner P, Gromadzinska J, Wasowicz W. Polymorphism of selected enzymes involved in detoxification and biotransformation in relation to lung cancer. Lung Cancer. 2007 Jul;57(1):1-25.
    [7] Kiyohara C, Takayama K, Nakanishi Y. Association of genetic polymorphisms in the base excision repair pathway with lung cancer risk: a meta-analysis. Lung Cancer. 2006 Dec;54(3):267-83.
    [8] Terasaki PI, ED. History of HLA: Ten recollections. Los Angeles: Tissue Typing Laboratory PRESS;1990.
    [9] Bjokman PJ, Saper MA, Samraoui B, etal. The foreign antigen binding site and T cell recognition region of class I histocompatibility antigens. Nature 1987;329:512-518.
    [10] Schiff MA, Apple RJ, Lin P, et al. HLA alleles and risk of cervical intraepithelial neoplasia among southwestern American Indian women. Hum Immunol. 2005 Oct;66(10):1050-1056.
    [11] Madeleine MM, Johnson LG, Smith AG, et al. Comprehensive analysis of HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 loci and squamous cell cervical cancer risk. Cancer Res. 2008 May 1;68(9):3532-3539.
    [12] Wu Y, Liu B, Lin W, Xu Y, et al. Human leukocyte antigen class II alleles and risk of cervical cancer in China. Hum Immunol. 2007 Mar;68(3):192-200.
    [13] Mundhada S, Luthra R, Cano P. Association of HLA Class I and Class II genes with bcr-abl transcripts in leukemia patients with t(9;22) (q34;q11). BMC Cancer. 2004 Jun 17;4:25.
    [14] Dorak MT, Oguz FS, Yalman N, et al. A male-specific increase in the HLA-DRB4 (DR53) frequency in high-risk and relapsed childhood ALL. Leuk Res. 2002 Jul;26(7):651-656.
    [15] Yari F, Sobhani M, Sabaghi F, et al. Frequencies of HLA-DRB1 in Iranian normal population and in patients with acute lymphoblastic leukemia. Arch Med Res. 2008 Feb;39(2):205-208.
    [16] Quintero E, Pizarro MA, Rodrigo L, et al. Association of Helicobacter pylori-related distal gastric cancer with the HLA class II gene DQB10602 and cagA strains in a southern European population. Helicobacter. 2005 Feb;10(1):12-21.
    [17] Wu MS, Hsieh RP, Huang SP, et al. Association of HLA-DQB1*0301 and HLA-DQB1*0602 with different subtypes of gastric cancer in Taiwan. Jpn J Cancer Res. 2002 Apr;93(4):404-410.
    [18] Kübler K, Arndt PF, Wardelmann E, et al. HLA-class II haplotype associations with ovarian cancer. Int J Cancer. 2006 Dec 15;119(12):2980-2985.
    [19] Haghpanah V, Khalooghi K, Adabi K, et al. Associations between HLA-C alleles and papillary thyroid carcinoma. Cancer Biomark. 2009;5(1):19-22.
    [20] Cantúde León D, Pérez-Montiel D, Villavicencio V, et al. High resolution human leukocyte antigen (HLA) class I and class II allele typing in Mexican mestizo women with sporadic breast cancer: case-control study. BMC Cancer. 2009 Feb 5;9:48.
    [21] Tokumoto H. Analysis of HLA-DRB1-related alleles in Japanese patients with lung cancer--relationship to genetic susceptibility and resistance to lung cancer. J Cancer Res Clin Oncol. 1998;124(9):511-516.
    [22] Yoshimura C, Nomura S, Yamaoka M, et al. Analysis of serum ErbB-2 protein and HLA-DRB1 in Japanese patients with lung cancer. Cancer Lett. 2000 Apr 28;152(1):87-95.
    [23]谭建明,周永昌,唐孝达.组织配型技术与临床应用.北京:人民卫生出版社,2002 :363 - 366.
    [24] Petersdorf EW. HLA matching in allogeneic stem cell transplantation. Curr Opin Hematol 2004;11(6):386-391.
    [25] Cukrova V, Loudova M, Sramkova I, et al. Predictive value of HLA class II PCR typing for the outcome of mixed lymphocyte reaction Folia Biol Praha , 1998 ,44 (4) :137-141.
    [26] Ainsworth PJ, Surh LC,Coulter-Mackie MB ,et al . Diagnostic single strand conformational polymorphism, (SSCP): a simplified non-radioisotopic method as applied to a Tay-Sachs B1variant. Nucleic Acid Research, 1991, 19 (2) :405-406.
    [27] Young NT, Darke C. Allelic typing of the HLA2DR4 group by polymerase chain reaction single strand conformation polymorphism analysis. Hum Immunol, 1993, 37(2):69-74.
    [28] Bidwell JL, Bidwell EA, Savage DA, et al. A DNA-RFLP typing system that positively identifies serologically well-defined and ill-defined HLA2DR and DQ alleles, including DRw10. Transplantation , 1988 , 45 (3) :640-646.
    [29] Hoppe B, Salama A. Sequencing-based typing of HLA. Methods Mol Med 2007;134:71-80.
    [30] Middleton D, Hawkins BR,Williams F, et al. HLA clas s I alleledis tribution of a Hong Kong Chinese population based on high-resolution PCR-SSOP typing. Tissue Antigens 2004;63(6):555-561.
    [31] Dalva K, Beksac M. HLA typing with sequence-specific oligonucleotide primed PCR (PCR-SSO) and use of the Luminex technology. MethodsMol Med 2007;134:61-69.
    [32] Olerup O, Zetterquist H. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens, 1992, 39(5):225 - 235.
    [33] Lillo R, Balas A, Vicario JL, et al. Two new HLA classⅠalleles recognized by PCR sequence-specific primer and sequencing based typing : B*3805 and Cw*0408. Tissue Antigens, 2002, 59 (1): 47-48.
    [34] Curcio M, Lapi S, Italia S, et al. Identification of a novel HLA-DPB1 allele , DPB1*02014 , by sequence-based typing. Tissue Antigens, 2002, 59 (1):58–59
    [35] Perz JB, Szydlo R, Sergeant R,et al. Impact of HLA class I and class II DNA high-resolution HLA typing on clinical outcome in adult unrelated stem cell transplantation after in vivo T-cell depletion with alemtuzumab. Transplant Immunology 2007;5:1-7.
    [36]李成涛,李瑶,康敏华.HLA-Ⅰ类抗原的基因芯片分型技术研究.中华微生物学和免疫学杂志,2003,23(12):985-988.
    [37] Guo Z, Hood L, Petersdorf EW. Oligonucleotide arrays for high resolution HLA typing. Rev Immunogene 1999;1(2):220-230.
    [38] Sieper J, Rudwaleit M, Khan MA et al (2006) Concepts and epidemiology of spondyloarthritis. Best Pract Res Clin Rheumatol 2006;20(3):401–417.
    [39] IMGT database. http://www.ebi.ac.uk/imgt/hla/
    [40] Marcilla M, López de Castro JA.Peptides: the cornerstone of HLA-B27 biology and pathogenetic role in spondyloarthritis. Tissue Antigens. 2008 Jun;71(6):495-506.
    [41] Ramos M, López de Castro JA. HLA-B27 and the pathogenesis of spondyloarthritis. Tissue Antigens. 2002 Sep;60(3):191-205.
    [42] Wu Z, Lin Z, Wei Q, et al. Clinical features of ankylosing spondylitis may correlate with HLA-B27 polymorphism. Rheumatol Int. 2009 Feb;29(4):389-392.
    [43] Hülsmeyer M, Fiorillo MT, Bettosini F, et al. Dual, HLA-B27 Subtype-dependent Conformation of a Self-peptide. J Exp Med. 2004 Jan 19;199(2):271-281.
    [44] Bjokman PJ, Saper MA, Samraoui B, etal. The foreign antigen binding site and T cell recognition region of class I histocompatibility antigens. Nature 1987;329:512-518.
    [45] Klein J, Sato A. The HLA system. First of two parts. N Engl J Med 2000;343:702-709.
    [46]黄兰青,张友会.MHCⅠ类分子及其与之结合的抗原肽.国外医学免疫学分册,1995,16(6):285-291.
    [47] Siebold C, Hansen BE, Wyer JR, et al. Crystal structure of HLA-DQ0602 that protects against Type 1 diabetes and confers strong susceptibility to narcolepsy. ProcNatl Acad Sci USA 2004,101:1999–2004.
    [48] Brown JH, Jardetzky TS, Gorga JC, et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DRI. Nature 1993,364:33-39.
    [49] Engelhard VH. Structure of peptides associated with class and class MHC molecules. Annu Rev Immunol 1994,12:181-207.
    [50] Rammensee H-G, Friede T, Stevanovi? S. MHC ligands and peptide motifs: first listing. Immunogenetics,1995,41:178–228.
    [51] Jardetzky TS, Brown JH, Gorga JC, et al. Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Proc Natl Acad Sci USA 1996,93:734-738.
    [52] Yoon SH, Yun SO, Park JY, et al. Selective addition of CXCR3+CCR4-CD4+ Th1 cells enhances generation of cytotoxic T cells by dendritic cells in vitro. Exp Mol Med. 2009 Mar 31;41(3):161-170.
    [53] Allam M, Julien N, Zacharie B, et al. Enhancement of Th1 type cytokine production and primary T cell activation by PBI-1393. Clin Immunol. 2007 Dec;125(3):318-327.
    [54] Hui Huang, Siguo Hao, Fang Li, et al. CD4+ Th1 cells promote CD8+ Tc1 cell survival, memory response, tumor localization and therapy by targeted delivery of interleukin 2 via acquired pMHC I complexes. Immunology. 2007; 120(2): 148–159.
    [55] Yu J, Ren X, Cao S, et al. Th1 polarization and apoptosis-inducing activity of CD4+ T -cells in cytokine-induced killers might favor the antitumor cytotoxicity of cytokine-induced killers in vivo. Cancer Biother Radiopharm. 2006 Jun;21(3):276-284.
    [56] Knutson KL and Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 2005 Aug;54(8):721-728.
    [57]刘志强,邬丽莎.新视角-HLA及其与人类疾病的相关性研究进展.中国全科医学2004,9,(7):1268-1271.
    [58]苏枭. HLA-II类基因与人类疾病相关性研究进展.国外医学免疫学分册2000,4,(24):233-238.
    [59] Hildesheim A, Apple RJ, Chen CJ et al. Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst. 2002 Dec 4;94(23):1780-1789.
    [60] Lin P, Koutsky LA, Critchlow CW, et al. HLA class II DR-DQ and increased risk of cervical cancer among Senegalese women. Cancer Epidemiol Biomarkers Prev. 2001 Oct;10(10):1037-1045.
    [61] Just JJ. Genetic predisposition to HIV-1 infection and acquired immune deficiency virus syndrome. Hum Immunol 1995; 44: 156–169.
    [62] Kaslow RA, Carrington M, Apple R, Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med 1996; 2: 405–411.
    1. Terasaki PI, ED. History of HLA: Ten recollections. Los Angeles: Tissue Typing Laboratory PRESS;1990.
    2. Bjokman PJ, Saper MA, Samraoui B, etal. The foreign antigen binding site and T cell recognition region of class I histocompatibility antigens. Nature 1987;329:512-8.
    3. Beck S, Trowsdale J. The human major histocompatibility complex: lessons from the DNA sequence. Annu Rev Genomics Hum Genet 2000;1:117-137
    4. Shiina T, Inoko H, Kulski JK. An update of the HLA genomic region, locus information and disease association: 2004. Tissue Antigen 2004;64:631-649
    5. Kulski JK,Dawkins RL. The P5 multicopy gene family in the MHC is related in sequence to human endogeneous retroviruses HERV-L and HERV-16. Immunofenetics 1999;49:404-412
    6. The MHC sequencing consortium. Complete structure and gene map of a human major histocompatibility complex(MHC).Nature 1999;401:921-923
    7. Safran M, Solomon I, Shmueli O, et al. GeneCard 2002: toward a complete, object-oriented, human gene compendium. Bioinformations 2002;18:1542-1543
    8. Campbell RD, Trowsdale J. Map of the human MHC. Immunol Today 1993;14:349-352
    9. http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
    10. Texier, C, et al. Complementarity and redundancy of the binding specificity of HLA-DRB1, -DRB3, -DRB4, and -DRB5 molecules. Eur J Immunol. 2001;31:1837–1846.
    11. Lu, L, et al. Components of the ligand for a Ni++ reactive human T cell clone. J Exp Med. 2003;197:567–574.
    12. Dai S, Crawford F, Marrack P, et al. The structure of HLA-DR52c: comparison to other HLA-DRB3 alleles. Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11893-7.
    13. Mungall AJ, Palmer SA, Sims SK, et al. The DNA sequence and analysis of human chromosome 6. Nature, 2003, 425(6960): 805?811.
    14. Bjorkman PJ, Parham P. Structure, function and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 1990;59:253-258
    15. Klein J, Sato A. The HLA system. First of two parts. N Engl J Med 2000;343:702-709
    16. http://www.ebi.ac.uk/imgt/hla/stats.html
    17.刘强,徐军,陈润生.人类基因组突变热点区的简并度特异基因.生物化学与生物物理进展, 2004, 31(12): 1091 ?1 0 98.
    18.骆媛,袁方,孙玉英,等.中国汉族人群人类白细胞抗原HLA不同基因座位间的基因重组.中国科学(C辑), 2007, 37(4): 452 ?4 59.
    19. Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet, 2001, 29(2):217-222
    20.郝向稳,邓立彬,曾长青.同一染色体上基因转换在HLA多态性形成中的作用.遗传,2008,30(11):1411-1416
    21.谭建明,周永昌,唐孝达.组织配型技术与临床应用.北京:人民卫生出版社,2002 :363 - 366.
    22. Brown M, Wittwer C. Flow cytometry: principles and clinical applications in hematology. Clin chem, 2000, 46 (8) :1 221 - 1 229.
    23. Judith Reinders, Erik H, Rozemuller, et al. Identification of HLA-A*0111N: A Synonymous Substitution, Introducing an Alternative Splice Site in Exon 3, Silenced the Expression of an HLA-A Allele. Human Immunology 2005,(66): 912–920
    24. Jenn C,Bruce H, Nancy C, et al. Flow cytometric HLA-B27 typing using CD3 gating and molecules of equivalent soluble fluorochrome(MESF) quantitation. Cytometry 1996,(26):286-292
    25. Opelz G, Mytilineos J, Scherer S, et al . Survival of DNA HLA-DR typed and matched cadaver kidney transplants. The Collaborative Transplant Study. Lancet, 1991,338 (8765): 461-463.
    26. Petersdorf EW. HLA matching in allogeneic stem cell transplantation. Curr Opin Hematol 2004;11(6):386-391
    27. Cukrova V, Loudova M, Sramkova I, et al. Predictive value of HLA class II PCR typing for the outcome of mixed lymphocyte reaction Folia Biol Praha , 1998 ,44 (4) :137-141.
    28. Ainsworth PJ, Surh LC,Coulter-Mackie MB ,et al . Diagnostic single strand conformational polymorphism, (SSCP): a simplified non-radioisotopic method as applied to a Tay-Sachs B1variant. Nucleic Acid Research, 1991, 19 (2) :405-406.
    29. Young NT, Darke C. Allelic typing of the HLA2DR4 group by polymerase chain reaction-single-strand conformation polymer-phism analysis. Hum Immunol, 1993, 37(2):69-74.
    30. Bidwell JL, Bidwell EA, Savage DA, et al. A DNA-RFLP typing system that positively identifies serologically well-defined and ill-defined HLA2DR and DQ alleles, including DRw10. Transplantation , 1988 , 45 (3) :640 - 646.
    31. Park MH, Whang DH, Kang SJ, et al. High resolution HLA-DQB1 typing by combination of PCR-RFLP and PCR- SSCP. Hum Immunol , 1999 , 60 (9) : 901 - 907.
    32. Date Y, Kimura A, Kato H,et al . DNA typing of the HLA-A population study and identification of four new alleles in Japanese. Tissue Antigens, 1995, 45 (3):153 - 168.
    33. Hoppe B, Salama A. Sequencing-based typing of HLA. Methods Mol Med 2007;134:71-80
    34. Cox ST, Marsh SG, Scott I, et al. HLA-A, -B, -C polymorphism in a UK Ashkenazi Jewish potential bone marrow donor population. Tis sue Antigens 1999;53(1):41-50
    35. Middleton D, Hawkins BR,Williams F, et al. HLA clas s I alleledis tribution of a Hong Kong Chinese population based on high-resolution PCR-SSOP typing. Tissue Antigens 2004;63(6):555-561
    36. Dalva K, Beksac M. HLA typing with s equence-specific oligonucleotideprimed PCR (PCR-SSO) and use of the Luminex technology. MethodsMol Med 2007;134:61-69
    37. Olerup O, Zetterquist H. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens, 1992, 39(5):225 - 235.
    38. Bunce M, O'Neill CM, Barnardo MC, et al. Comprehensive DNA typing for HLA-A,BCDRB1,DRB3,DRB4,DRB5&DQB1 by PCR with 144 primer mixes utilizing PCR-SSP. Tissue Antigens 1995;46(5):355-361
    39. Curcio M, Lapi S, Italia S, et al. Identification of a novel HLA-DPB1 allele , DPB1*02014 , by sequence-based typing. Tissue Antigens, 2002, 59 (1):58 - 59.
    40. Lillo R, Balas A, Vicario JL, et al. Two new HLA classⅠalleles recognised by PCR sequence-specific primer and sequencing based typing : B*3805 and Cw*0408. Tissue Antigens, 2002, 59 (1): 47 - 48.
    41. Santamaria P, Boyce JM, Lindstron AJ, et al. HLA class II“typing”: direct sequencing of DRB, DQB, and DQA genes. Hum Immunol, 1992 ,33 (2) :69-81.
    42. Rozemuller EH,Bouwens AG, Bast BE, et al.Assignment of HLA-DPB1 alleles by computerized matching based upon sequence data. Hum Immunol, 1993, 37(4):207-212.
    43. Santamaria P, Lindstrom AL, Boyce-Jacino MT, et al. HLA class I sequence-based typing. Hum Immunol, 1993, 37 (1):39-50.
    44. Dunn PP, Carter V, Dunn A, et al. Identification of an HLA-B7 serological variant and its characterization by sequencing based typing. Tissue Antigens 2000; 55(1):71-73
    45. Rozemuller EH, van der Zwan AW, Voorter CE, et al. DPB1*8501, a novel DPB1 variant in the US Black population. Tissue Antigens 2000; 56(3):282-284
    46. Perz JB, Szydlo R, Sergeant R,et al. Impact of HLA class I and class II DNA high-resolution HLA typing on clinical outcome in adult unrelated stem cell transplantation after in vivo T-cell depletion with alemtuzumab. Transplant Immunology 2007;5:1-7
    47. Balas A, Santos S, Aviles MJ , et al. Identification by sequencing based typing and complete coding region analysis of three new HLA classⅡalleles : DRB3*0210, DRB3*0211, DQB1*0310. Tissue Antigens 2000; 56(4):380-384
    48. Cox S T, McWhinnie A J ,Robinson J ,et al .Cloning and sequencing full-length HLA-B and-C genes .Tissue Antigens 2003;61(1):20-48
    49. Sayer DC, Goodridge DM, Christiansen FT. Assign 2.0: software for the analysis of Phred quality values for quality control of HLA sequencing-based typing .Tissue Antigens 2004;64(5):556-565
    50. Van Dijk A, Melchers R, Hilkes Y,et al .HLA-DRB sequencing-based typing: an improved protocol which shows complete DRB exon 2 sequences and includes exon 3 of HLA-DRB4/5. Tissue Antigens 2007; 69 Suppl 1:61-63
    51.李成涛,李瑶,康敏华.HLA-Ⅰ类抗原的基因芯片分型技术研究.中华微生物学和免疫学杂志,2003,23(12):985-988
    52. Guo Z, Hood L, Petersdorf EW. Oligonucleotide arrays for high resolution HLA typing. Rev Immunogene 1999;1(2):220-230
    53.张明新,郭刚,张瑞,等.人白细胞抗原B位点基因芯片分型技术研究.中华检验医学杂志,2006,29(5):417-419
    54. Ringquis t S, Styche A, Rudert WA,et al. Pyrosequencing-based strategies for improved allele typing of human leukocyte antigen loci. Methods Mol Biol 2007;373:115-134
    55. Marsh SG. HLA nomenclature and the IMGT/HLA sequence database. Novartis Found Symp. 2003;254:165-73.
    56. Robinson J, Waller MJ, Fail SC, et al. The IMGT/HLA sequence database. Nucleic Acids Res. 2009 Jan;37(Database issue):D1013-1017.
    57. Robinson J, Waller MJ, Fail SC, et al. The IMGT/HLA database. Hum Mutat. 2006 Dec;27(12):1192-1199.
    58. Madden DR, Gorga JC, Strominger JL, et al. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature 1991,353:702-709.
    59.黄兰青,张友会.MHCⅠ类分子及其与之结合的抗原肽.国外医学免疫学分册,1995,16(6):285-291
    60. Siebold C, Hansen BE, Wyer JR, et al. Crystal structure of HLA-DQ0602 that protects against Type 1 diabetes and confers strong susceptibility to narcolepsy. Proc Natl Acad Sci USA 2004,101:1999–2004
    61. Brown JH, Jardetzky TS, Gorga JC, et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DRI. Nature 1993,364:33-39
    62. Engelhard VH. Structure of peptides associated with class and class MHC molecules. Annu Rev Immunol 1994,12:181-207.
    63. Rammensee H-G, Friede T, Stevanovi? S. MHC ligands and peptide motifs: first listing. Immunogenetics,1995,41:178–228
    64. Jardetzky TS, Brown JH, Gorga JC, et al. Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Proc Natl Acad Sci USA 1996,93:734-738
    65. Rock KL, Gramm C, Rothstein L, et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 1994, 78:761–771.
    66. Coux, O, Tanaka, K, Goldberg AL. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 1996,65:801–847.
    67. Dick TP, Ruppert T, Groettrup M, et al. Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 1996, 86:253–262.
    68. Androlewicz MJ, Ortmann B, van Endert P M, et al. Characteristics of peptide and major histocompatibility complex class I/beta 2-microglobulin binding to the transporters associated with antigen processing(TAP1 and TAP2). Proc. Natl. Acad. Sci. U.S.A.1994, 91:12716–12720.
    69. Stoltze L, Schirle M, Schwarz G, et al. Two new proteases in the MHC class I processing pathway. Nat Immunol 2000,1:413–418.
    70. Koch J, Tampe′R. The macromolecular peptide-loading complex in MHC class I-dependent antigen presentation. Cell Mol Life Sci2006;63:653–62.
    71. Nossner E, Parham P. Species-specific differences in chaperone interaction of human and mouse major histocompatibility complex classI molecules. J Exp Med 1995;181:327–337.
    72. Harris MR, Yu YY, Kindle CS, Calreticulin and calnexin interact with different proteins and glycan determinant during the assembly of MHC class I. J Immunol1998;160:5404–5409.
    73. Harris MR, Lybarger L, Yu YY, et al. Association of ERp57 with mouse MHC class I molecules is tapasin dependent and mimics that of calreticulin and not calnexin. J Immu 2001;166:6686–6692.
    74. Farmery MR, Allen S, Allen AJ, et al. The role of ERp57 in disulphide bond formation during the assembly of major histocompatibility complex class I in a synchronized semipermeabilized cell translation system. J Biol Chem 2000;275:14933–14938.
    75. Gao B, Adhikari R, Howarth M, et al. Assembly and antigen-presenting function of MHC class I molecules in cells lacking the ER chaperone calreticulin. Immunity 2002;16:99–109.
    76. Oliver JD, Roderick HL, Llewellyn DH,et al. ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol Biol Cell 1999;10:2573–2582.
    77. Elliott JG, Oliver JD, High S. The thiol-dependent reductase ERp57 interactions specifically with N-glycosylated integral membrane proteins. J Biol Chem 1997;272:13849–13855.
    78. Marguet D, Spiliotis ET, Pentcheva T, et al. Lateral diffusion of GFP-tagged H2Ld molecules and of GFP-TAP1 reports on the assembly and retention of thesemolecules in the endoplasmic reticulum. Immunity 1999;11:231–240
    79. Peaper DR, Wearsch PA, Creswell P. Tapasin form a stable disulfide linked dimer within the MHC class I peptide-loading complex. EMBO J 2005;24:3613–23.
    80. Dick TP, Bangia N, Peaper DR, Cresswell P. Disulfide bond isomerization and the assembly of MHC class I-peptide complexes. Immunity 2002;16:87–98.
    81. Park B, Lee S, Kim E et al. Redox regulation facilitates optimalpeptide selection by MHC class I during antigen processing. Cell 2006;127:369–82.
    82. Grandea III AG, Lehner PJ, Cresswell P, Spies T. Regulation of MHC class I heterodimer stability and interaction with TAP by tapasin. Immunogenetics 1997;46:477–483.
    83. Rigney E, Kojima M, Glithero A, Elliott T. A soluble major histocompatibility complex class I peptide-binding platform undergoes aconformational change in response to peptide epitopes. J Biol Chem1998;273:142–144.
    84. Spiliotis ET, Manley H, Osorio M,et al. Selectiveexport of MHC class I molecules from the ER after their dissociation from TAP. Immunity 2000,13:841–851.
    85. Lawrence J Stern, Ilaria Potolicchio, Laura Santambrogio. MHC class II compartment subtypes: structure and function. Current Opinion in Immunology 2006, 18:64–69
    86. Robert B, Cornela H, Rinderknecht SR, et al. Achieving stability through editing and chaperoning: regulation of MHC class II peptide binding and expression. Immunological Reviews 2005,207:242-260
    87. Matthew N, Abigail L, Clare E, et al. Identification of the HLA-DM/HLA-DR interface. Molecular Immunology 2008,45: 1063–1070
    88. Xinjian Chen, Peter E. MHC class II antigen presentation and immunological abnormalities due to deficiency of MHC class II and its associated genes。Experimental and Molecular Pathology 2008,85:40–44
    89. Willam E Braun. HLA and diseases: A comprehensive review [M].New York: CRC ress, 1979:1- 27.
    90.刘志强,邬丽莎.新视角-HLA及其与人类疾病的相关性研究进展.中国全科医学2004,9,(7):1268-1271
    91.苏枭. HLA-II类基因与人类疾病相关性研究进展.国外医学免疫学分册2000,4,(24):233-238
    92. Yvonne J, Lars F, Jack LS, et al. MHC class II proteins and disease: a structural perspective. Nature 2006,4,(6):271-282
    93. Balducci-Silano PL, Layrisse Z, Dominguez E, et al. HLA-DQA1 and DQB1 allele and genotype contribution to IDDM susceptibility in an ethnically mixed population. Eur J Immunogene 1994; 21(6): 405–414.
    94. Sang Y, Yan C, Zhu C, Ni G. Relationship between HLA-DRB1 and DQ alleles and the genetic susceptibility to type 1 diabetes. Chin Med J (Engl) 2001; 114(4): 407–409.
    95. Huang HS, Peng JT, She JY, et al. HLA encoded susceptibility to insulin dependent diabetes mellitus is determined by DR and DQ genes as well as their linkage disequilibrium in a Chinese population. Hum Immunol 1995; 44: 210.
    96. Bugawan TL, Klitz W, Alejandrino M, et al. The association of specific HLA class I and II alleles with type 1 diabetes among Filipinos. Tissue Antigens 2002; 59(6): 452–469.
    97. Petrone A, Bugawan TL, Mesturino CA, et al. The distribution of HLA class II susceptible, protective haplotypes could partially explain the low incidence of type 1 diabetes in continental Italy (Lazioregion). Tissue Antigens 2001; 58(6): 385–394.
    98. del Rincon I, Escalante A. HLA-DRB1 alleles associated with susceptibility or resistance to rheumatoid arthritis, articular deformities, and disability in Mexican Americans. Arthritis Rheum. 1999.
    99. Milicic A, Lee D, Brown MA, etal. HLA-DR/DQ haplotype in rheumatoid arthritis Novel allelic associations in UK Caucasians. J Rheumatol 2002; 29(9): 1821–1826.
    100. Kong KF, Yeap SS, Chow SK, Phipps ME. HLA-DRB1 genes andsusceptibility to rheumatoid arthritis in three ethnic groups from Malaysia. Autoimmunity 2002; 35(4): 235–239.
    101. Jaini R, Kaur G, Mehra N. Heterogeneity of HLA-DRB1*04 and its associated haplotypes in the North Indian population. Human Immunol 2002; 63: 24–29.
    102. Gonzalez-Gay MA, Garcia-Porrua C, Hajeer AH. Influence of human leukocyte antigen-DRB1 on the susceptibility and severity of rheumatoid arthritis. Semin Arthritis Rheum 2002; 31(6): 355–360.
    103. Khan MA. Update: The twenty subtypes of HLAB27. Curr Opin Rheumatol 2000; l;12(4): 235–238.
    104. Sampaio-Barros PD, Bertolo MB, Kraemer MHS, et al. Primary ankylosing spondylitis: Patterns of disease in a Brazilian population of 147 patients. J Rheumatol 2001; 28: 560–565.
    105. Lin J, Lu H, Feng C. Ankylosing spondylitis and heterogeneity of HLA-B27 in Chinese. Chin Med J (Engl) 1996; 109(4): 313–316.
    106. Madhavan R, Parthiban M, Rajendran CP, et al. HLA class I and class II association with ankylosing spondylitis in a southern Indian population. Ann N Y Acad Sci 2002; 958: 403–437.
    107. Shankarkumar U, Ghosh K, Mohanty D. HLA B27 polymorphism in Western India. Tissue Antigens 2002; 60: 98.
    108. Shanmugalakshmi S, Pitchappan RM. Genetic basis of tuberculosis susceptibility in India. Indian J Pediatr2002; 69(Suppl1): S25–S28.
    109. Dubaniewicz A, Moszkowska G, Szczerkowska Z, et al. Analysis of DQB1 allele frequencies in pulmonary tuberculosis: Preliminary report. Thorax 2003; 58(10): 890–891.
    110.王敬慧,宋长兴,王苏民,等.人类白细胞抗原DRB1基因与肺结核的相关性研究.中华结核和呼吸杂志,2001 ,24(5) : 302-305.
    111.刘志辉,罗一鲁,周琳,等. HLA-DR基因与中国南方汉族部分人群肺结核易感基因的研究.中华结核和呼吸杂志,2004 ,27 (6) : 390-393.
    112. Lin M, Tseng HK, Trejaut JA ,et al. Association of HLA classⅠwith severe acute respiratory syndrome coronavirus infection. BMC Med Genet, 2003,4 (1): 9-15.
    113. Ng MH, Lau KM, Li L , et al. Association of human leukocyte antigenclassⅠ(B*0703) and classⅡ(DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome. J Infect Dis, 2004,190 (3): 515-518.
    114. Hohler T, Gerken G, Notghi A , et al . HLA-DRB1*1301 and * 1302 protect against chronic hepatitis B. J Hepatol, 1997 , 26 (3) : 503-507.
    115. Diepolder HM, Jung MC, Keller E, et al. A vigorous virus-specific CD4 + T cell response may contribute to the association of HLA-DR13 with viral clearance in hepatitis B. Clin Exp Immunol, 1998 , 113(2): 244-251.
    116. Thio CL, Thomas DL, Goedert JJ. Racial differernces in HLA class II associations with hepatitis C virus outcomes. J Infect Dis 2001; 184: 16–21.
    117. Just JJ. Genetic predisposition to HIV-1 infection and acquired immune deficiency virus syndrome. Hum Immunol 1995; 44: 156–169.
    118. Kaslow RA, Carrington M, Apple R, Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat Med 1996; 2: 405–411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700