中华骨髓库四川分库汉族人群HLA-C等位基因分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     研究四川骨髓库中川籍汉族人群HLA-C等位基因的分布特征。
     方法:
     样本来源于2008.12--2009.3四川骨髓库街头采集的川籍汉族无血缘关系志愿者血样244份,采用PCR-SBT对样本HLA-C位点第2-4外显子进行序列分析。对得到的模棱两可分型结果通过组特异性测序和加测相应外显子来确认。采用直接计数法计算HLA-C等位基因频率,并通过卡方检验比较HLA-C等位基因在不同人群中的分布差异。采用最大似然法计算HLA-A-C、HLA-C-B和HLA-A-C-B-DRB1单体型频率,并对两座位单体型进行了连锁不平衡参数分析。
     结果:
     244份标本中,可直接得到HLA-C位点高分辨分型结果的68份,呈现模棱两可结果的176份,其中通过组特异性测序及加测外显子确认的90份,单通过加测外显子确认的59份,通过组特异性测序确认的27份,这27份中含新等位基因标本1份。本研究共检出HLA-C位点已知等位基因24种及新等位基因1种。HLA-C等位基因频率>10%的3种:C*01:02(21.93%)、C*07:02(18.65%)和C*03:04(13.11%),累积频率53.68%。HLA-C等位基因频率>1%的12种,累积频率95.69%。同其他人群资料相比,四川骨髓库汉族人群HLA-C等位基因的分布与国内南方人群最为接近,而与欧裔美国人和美国黑人差异最大。经最大似然法计算,四川骨髓库汉族人群中HLA-A-C、HLA-C-B和HLA-A-C-B- DRB1单体型分别有100条、96条和302条,且相应的优势单体型为A*02:07-C*01:02(9.7125%)、C*01:02-B*46:01(15.1043%)和A*02:07-C*01:02-B*46:01-DRB1*09:01(5.1708%)。另外,分别有9条HLA-A-C单体型和23条HLA-C-B单体型呈现显著的连锁不平衡。同时,本次研究发现了1例HLA-C新等位基因1C*06:45,其与同源性最高的C*06:02在第187位碱基存在1个点突变:G>T,使密码子39由GAC>TAC,导致编码的氨基酸由天门冬氨酸(Asp)>酪氨酸(Tyr)。在此之前此位点尚未发现过碱基突变。
     结论:
     本研究建立了针对HLA-C等位基因第2-4外显子的直接测序法,并通过组特异性测序和加测外显子解决了模棱两可结果,得到了四川骨髓库汉族人群C等位基因的分布特征,其总体分布符合南方地区人群特征,并有其自身特点。
Objective
     To investigate the allelic distribution of HLA-C locus in Han individuals from Sichuan branch of Chinese Marrow Donor Program (CMDP).
     Methods
     A total of 244 peripheral blood DNA samples, consecutively collected from unrelated donors during Dec.2008 and Mar.2009, were randomly chosen. Exon 2,3 and 4 of each sample were sequenced using PCR-SBT. Additional exon sequencing and group-specific sequencing were performed to resolve the allele ambiguities. Allele frequencies were calculated by direct counting and the chi-square values of allele frequencies from different populations were also analyzed. Haplotype frequencies of HLA-A-C, HLA-C-B and HLA-A-C-B-DRB1 were calculated by expectation-maximization method, and the linkage disequilibrium for two-locus haplotypes was analyzed.
     Results
     Of the 244 samples,68 showed conclusive typing results, and the remaining 176 samples showed ambiguity results. As to the 176 inconclusive samples,90 samples were resolved by group-specific sequencing and additional exon sequencing both, and 59 were resolved just by additional exon sequencing, and 27 were resolved by group-specific sequencing, including one sample with a novel HLA-C allele. In our study, a total of 24 different HLA-C alleles and a novel allele were identified. The most common alleles, with the allele frequency of more than 10%, were C*01:02 (21.93%), C*07:02 (18.65%) and C*03:04 (13.11%), which comprised 53.68% of the total alleles identified in our study. And 12 kinds of allele were detected with the allele frequency of more than 1%, which comprised 95.69% of the total alleles identified in our study. Comparison of the HLA-C allelic distribution with different populations showed that little difference was observed between Sichuan Han and southern Chinese population, whereas there were many significant differences between Sichuan Han and Eastern European American /African American populations. Expectation-maximization revealed 100 kinds of HLA-A-C,96 of HLA-C-B and 302 of HLA-A-C-B-DRB1 haplotypes, and the most frequent haplotype for A-C, C-B and A-C-B-DRB1 haplotype was A*02:07-C*01:02 (9.7125%), C*01:02-B*46:01 (15.1043%) and A*02:07-C*01:02-B*46:01-DRB1*09:01 (5.1708%), respectively. Linkage disequilibrium estimation of the association of two alleles from different two loci showed that 9 of HLA-A-C, and 23 of HLA-C-B had significant LD. In additional, a novel HLA-C allele C*06:45 was found in our study. This novel allele differed from the closet matching allele C*06:02 by a missense nucleotide substitution at the first position of codon 39(GAC>TAC), resulting in an amino acid changed from Asp to Tyr. Interestingly, no substitution at this conserved codon had ever been found before.
     Conclusion
     A reliable HLA-C SBT technique, from exon 2 through exon 4, has been established in our study. In additional, all the allele ambiguities are resolved by group-specific sequencing and additional exon sequencing. The HLA-C allelic distribution and haplotype analysis demonstrate that the Sichuan Han population share HLA patterns with southern Chinese, while it also retains unique characteristics.
引文
1. Bunce M, Barnardo M. Procter J. et al. High resolution HLA-C typing by PCR-SSP:identification of allelic frequencies and linkage disequilibria in 604 unrelated random UK Caucasoids and a comparison with serology. Tissue Antigens,1997,50(1):100-111.
    2. HLA database:statistics. http://www.ebi.ac.uk/imgt/hla/ambig.html http://www.ebi.ac.uk/imgt/hla.html
    3. Petersdorf EW, Longton GM, Anasetti C, et al. Association of HLA-C disparity with graft failure after marrow transplantation from unrelated donors. Blood,1997,89(5):1818-1823.
    4. Sasazuki T. Juji T, Morishima Y, et al. Effect of matching of Class I HLA alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor. N Engl J Med,1998,339(17):1177-1185.
    5. Morishima Y Sasazuki T, Inoko H, et al. The clinical significant of human leukocyte antigen (HLA) allele compatibility in patients receiving a marrow transplant from serologically HLA-A, HLA-B, and HLA-DR matched unrelated donors. Blood,2002,99(11):4200-4206.
    6. Bray AR, Hurley KC, Kamani RN, et al. National marrow donor program HLA matching guidelines for unrelated adult donor hematopoietic cell transplantation. Biol of Blood and Marrow Transpl,2008,14(1):45-53.
    7. Flomenberg N, Baxter-Lowe LA, Confer D, et al. Impact of HLA class Ⅰ and Ⅱ high resolution matching on outcomes of unrelated donor bone marrow transplantation:HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood,2004,104(7):1923-1930.
    8. Petersdorf EW, Anasetti C. Martin PJ, et al. Limits of HLA mismatching in unrelated hematopoietic cell transplantation. Blood,2004, 104(9):2976-2980.
    9. Ho VT, Kim HT,Liney D, et al. Post-Transplant Events HLA-C mismatch is associated with inferior survival after unrelated donor non-myeloablative hematopoietic stem cell transplantation. Bone Marrow Transplant,2006,37(9):845-850.
    10. Ruggeri L. Capanni M, Urbani E. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science,2002. 295(5562):2097-2100.
    11. Giebei S. Locatelli F, Lamparelli T, et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood.2003,102(3):814-819.
    12. Hsu KC. Pinto-Agnello C, Gooley T, et al. Hematopoietic stem cell transplantation:killer immunoglobulin-like receptor component. Tissue Antigens,2007,69 (4):42-45.
    13. Cook MA, Milligan DW, Fegan CD, et al. The impact of donor KIR and patient HLA-C genotype on outcome following HLA identical sibling hematopoietic stem cell transplantation for myeloid leukemia. Blood,2004, 103(4):1521-1526.
    14. Deng ZH, Wang DM, Xu YP, et al. Novel HLA-C polymorphisms and PCR dropout in exon 2 and 3 of the Cw*0706 allele in sequence-based typing for unrelated Chinese marrow donors. Hum Immunol,2010,71(6):577-581.
    15. Itoh Y, Mizuki N, Shimada T, et al. High-throughput DNA typing of HLA-A,-B,-C and -DRB1 loci by a PCR-SSOP-Luminex method in the Japanese population. Immunogenet,2005,57(10):717-729.
    16. Mack SJ, Tu B, Lazaro A, et al. HLA-A,-B,-C. and -DRB1 allele and haplotype frequencies distinguish Eastern European American from the general European American population. Tissue Antigens,2009,73(1):17-32.
    17. Tu B, Mack SJ, Lazaro A. et al. HLA-A,-B,-C,-DRB1 allele and haplotype frequencies in an African American population. Tissue Antigens, 2007,69(1):73-85.
    18. Delfino L, Morabito A, Ferrara GB. HLA-C sequence based typing: nucleotide analysis from exon 1 through exon 8. Identification of a new allele: Cw*0718. Tissue Antigens,2003,62(5):418-425.
    19. Dormoy A, Froelich N, Leisenbach R, et al. Mono-allelic amplification of exons 2-4 using allele group-specific primers for sequence-based typing (SBT) of the HLA-A, -B and -C genes:preparation and validation of ready-to-use pre-SBT mini-kits. Tissue Antigens,2003,62(3):201-216.
    20. Voorter CEM, Mulkers E, Liebelt P. et al. Reanalysis of sequence-based HLA-A,-B and -Cw typings:how ambiguous is today's SBT typing tomorrow. Tissue Antigens,2007,70(5):383-389.
    21.Nijenhuis LE. D'amaro J. Three-locus haplotype interactions in the analysis of linkage disequilibrium. Tissue Antigens,1985.26(4):215-226.
    22. Biannual Rare Allele Lists (Vision2.28.0) [2010-03]. http://bioinformatics.nmdp.org
    23. http://www.ebi.ac.uk/imgt/hla/ambig.html.
    24.孙继丽,杜可明,傅敏,等.HLA-A,B,DRB1单体型频率及其在骨髓库中的应用.中国输血杂志,2005,18(4):280-285.
    25. NMDP.NMDP policy for confirmatory typing requirements effective2009-05-01 [OL]. [2010-11-12].http://bioinformatics.nmdp.org/policies/ docs/confirm_typing_req.pdf.
    26. http://www.allelefrequencies.net/default.asp
    27. http://bioinformatics.nmdp.org/HLA/hla res idx.html
    28.黑爱莲,李伟,刘娜,等.中华骨髓库造血干细胞捐献志愿者HLA-A,-B、-C、-DRB1、-DQB1高分辨单体型频率初步分析.中国输血杂志,2009,22(5):363-367.
    29. Shi L, Yao YF, Shi L, et al. HLA allele and haplotypes distribution in Dai population in Yunnan province, Southwest China. Tissue Antigens, 2009,75(2):159-165.
    30. Hoa BK, Hang NTL, Kashiwase K, et al. HLA-A,-B,-C,-DRB1 and-DQB1 allele and haplotypes in the Kinh polulation in Vietnam. Tissue Antigens, 2007,71(2):127-134.
    31. Cao K, Hollenbach J, Shi X, et al. Analysis of the frequencies of HLA-A, B and C alleles and haplotypes in the five major ethnic groups of the United States reveals high levels of diversity in these loci and contrasting distribution patterns in these population. Hum Immunol,62(9):1009-1030.
    32.高素青,邹红岩,程良红,等.应用SBT直接测序分型法研究中国南方汉族人群HLA五个基因座单倍型.中华医学遗传学杂志,2009,26(2):228-232.
    33.郑纯兴,罗玫,王珏,等.四川骨髓库汉族人群HLA-A*02等位基因分布.中国输血杂志,2010,23(4):285-288.
    34. Kawase T, Morishima Y, Matsuo K, et al. High-risk HLA allele mismatch combinations responsible for severe acute graft-versus-host disease and implication for its molecular mechanism. Blood,2007,110(19):2235-2241.
    35. Kawase T, Matsuo K, Kashiwase K, et al. HLA mismatch combination associated with decreased risk of relapse:implication for the molecular mechanism. Blood,2009,113(6):2851-2858.
    1. Bunce M, Welsh KI. Rapid DNA typing for HLA-C using sequence-specific primers (PCR-SSP):identification of serological and non-serologically defined HLA-C alleles including several new alleles. Tissue Antigens,1994,43(1):7-17.
    2. Bunce M, Barnardo M, Procter J, et al. High resolution HLA-C typing by PCR-SSP:identification of allelic frequencies and linkage disequilibria in 604 unrelated random UK Caucasoids and a comparison with serology. Tissue Antigens,1997,50(1):100-111.
    3. Turner S, Ellexson EM, Hickman DH, et al. Sequence-based typing provides a new look at HLA-C diversity. J Immunol,1998,161(3):1406-1413.
    4. Lebedeva TV, Ohashi M, Huang A, et al. Emerging new alleles suggests high diversity of HLA-C locus. Tissue Antigens,2005,'65(1):101-106.
    5. HLA database:statistic, http://www.ebi.ac.uk/imgt/hla/
    6. http://www.allelefrequencies.net/default.asp
    7. Deng ZH, Wang DM, Xu YP, et al. Novel HLA-C polymorphisms and PCR dropout in exon 2 and 3 of the Cw*0706 allele in sequence-based typing for unrelated Chinese marrow donors. Human Immunol,2010,71(6):577-581.
    8. Itoh Y, Mizuki N, Shimada T, et al. High-throughput DNA typing of HLA-A,-B,-C and -DRB1 loci by a PCR-SSOP-Luminex method in the Japanese population. Immunogenet,2005,57(10):717-729.
    9. Mack SJ, Tu B, Lazaro A, et al. HLA-A,-B,-C. and -DRB1 allele and haplotype frequencies distinguish Eastern European American from the general European American population. Tissue Antigens,2009,73(1):17-32.
    10. Tu B, Mack SJ, Lazaro A, et al. HLA-A,-B,-C,-DRB1 allele and haplotype frequencies in an African American population. Tissue Antigens,2007, 69(1):73-85.
    11. Andersen MH, Sondergaard I, Zeuthen J. et al. An assay for peptide binding to HLA-Cw 0102. Tissue Antigens,1999,54(2):185-190.
    12. Kulkarni S, Martin PM. Carrington M. et al. The Yin and Yang of HLA and KIR in human disease. Semin Immunol,2008.20(6):343-352.
    13.蔡金洪,田伟,李立新,等.中国人群HLA-Cw、KIR2D受体基因多态性分析.中华医学遗传学杂志,2008.25(3):343-347.
    14.张洪波,赖江华,赵钧海,等.西安汉族HLA-Cw基因座遗传多态性研究.2004,20(4):197-199.
    15.肖露露,马红京,尹晓林,等HLA-Cw在广东汉族人群中的分布频率及其意义的初步分析.中国免疫学杂志,2004,20(4):256-258.
    16.王大明,高素青,戎红辉,等.中国壮族群体人类白细胞抗原HLA-Cw基因遗传多态性的测序分型研究.中国实验血液学杂志,2010,18(3):771-775.
    17. Petersdorf EW, Longton GM, Anasetti C, et al. Association of HLA-C disparity with graft failure after marrow transplantation from unrelated donors. Blood,1997,89(5):1818-1823.
    18. Sasazuki T, Juji T, Morishima Y, et al.Effect of Matching of Class I HLA Alleles on Clinical Outcome after Transplantation of Hematopoietic Stem Cells from an Unrelated Donor. N Engl J Med,1998,339(17):1177-1185.
    19. Morishima Y, Sasazuki T, Inoko H, et al. The clinical significant of human leukocyte antigen(HLA) allele compatibility in patients receiving a marrow transplant from serologically HLA-A, HLA-B, and HLA-DR matched unrelated donors. Blood,2002,99(11):4200-4206.
    20. Lee CR, Klein J, Haagenson M, et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplation. Blood,2007,110(13):4576-4583.
    21. Bray AR, Hurley KC, Kamani RN, et al. National marrow donor program HLA matching guidelines for unrelated adult donor hematopoietic cell transplantation. Biol of Blood and Marrow Transplant,2008,14(1):45-53.
    22. Flomenberg N. Baxter-Lowe LA, Confer D, et al. Impact of HLA class Ⅰ and Ⅱ high resolution matching on outcomes of unrelated donor bone marrow transplantation:HLA-C mismatching is associated with a strong adverse effect on transplantation outcome. Blood,2004,104(7):1923-1930.
    23. Petersdorf EW, Anasetti C, Martin PJ, et al. Limits of HLA mismatching in unrelated hematopoietic cell transplantation. Blood,2004, 104(9):2976-2980.
    24. Ho VT, Kim HT, Liney D, et al. Post-Transplant Events HLA-C mismatch is associated with inferior survival after unrelated donor non-myeloablative hematopoietic stem cell transplantation. Bone Marrow Transplant,2006,37(9):845-850.
    25. Bishara A, Amar A, Brautbar C. et al. The putative role of HLA-C recognition in graft versus host disease (GVHD) and graft rejection after unrelated bone marrow transplantation (BMY). Exp Hematol,1995, 23(14):1667-1675.
    26. Nagler A, Brautbar C, Slavin S, et al. Bone marrow transplantation using unrelated and family related donors:the impact of HLA-C disparity. Bone Marrow Transplant,1996,18(5):891-897.
    27. Kawase T, Morishima Y, Matsuo K, et al. High-risk HLA allele mismatch combinations responsible for severe acute graft-versus-host disease and implication for its molecular mechanism. Blood,2007,110(19):2235-2241.
    28. Kawase T, Matsuo K, Kashiwase K, et al. HLA mismatch combination associated with decreased risk of relapse:implication for the molecular mechanism. Blood,2009,113(6):2851-2858.
    29. Shilling HG, Young N, Guethlein LA, et al. Genetic control of human NK cell repertoire. J Immunol,2002,169(1):239-247.
    30. Parham P. Immunogenetics of killer cell immunoglobulin-like receptors. Mol Immunol,2005,42(4):459-462.
    31. Velardi A.Role of KIRs and KIR ligands in hematopoietic transplantation. Current Opinion in Immunol,2008.20(5):581-587.
    32. Sobecks RM, Ball EJ, Maciejewski JP, et al. Survival of AML patients receiving HLA-matched sibling donor allogeneic bone marrow transplantation correlates with HLA-Cw ligand groups for killer immunoglobulin-like receptors. Bone Marrow Transplant,2007,39(7):419-424.
    33. Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science,2002, 295(5562):2097-2100.
    34. Hsu KC, Pinto-Agnello C, Gooley T, et al.Hematopoietic stem cell transplantation:killer immunoglobulin-like receptor component. Tissue Antigens, 2007,69 (Suppl S1):42-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700