直接甲醇燃料电池阴极Pt/C催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC)甲醇来源丰富、价格便宜、易于贮存和运输,因此在便携式电源中具有广泛应用前景。尽管目前DMFC在技术上已经取得了很大进展,但要实现其真正商业化应用,依然有许多问题需要解决,诸如燃料电池阴极较低的反应性能、电池寿命不高、甲醇通过膜的扩散引起的混合电位等。解决这些问题的途径之一就是开发更有效的阴极催化剂。本文主要在阴极催化剂的活性、电化学稳定性以及耐甲醇等方面展开研究。
     为了提高Pt/C催化剂的活性,分别对浸渍还原法、胶体法和离子交换法几种催化剂制备方法进行研究。在浸渍还原法工艺优化过程中,分别从还原剂、缓冲溶液的加入、常温浸渍时间几个影响铂粒径的主要因素进行研究,结果表明,采用HCHO作为还原剂,用Na_2CO_3/NaHCO_3做为缓冲溶液,通过15 min短时间浸渍可以制备出平均粒径更小,分散性更好的Pt/C催化剂。在改进的胶体法制备研究中,发现采用柠檬酸三钠作为稳定剂,可以获得粒径更小的铂胶粒,其中30 mass%的Pt/C催化剂平均粒径约为2.4 nm,而50 mass%的Pt/C催化剂的平均粒径为3.2 nm,催化剂的粒径明显小于传统方法制备的催化剂。在离子交换法工艺研究中发现,离子交换法可以在碳纳米管(CNT)上实现铂的均匀分散,通过重复离子交换法,可以制备出平均粒径为3.4 nm,15.4 mass%的Pt/MWNT催化剂,也可以制备出平均粒径为2.6 nm,19.2 mass%的Pt/SWNT催化剂,其对氧还原反应的催化活性明显高于传统方法制备的催化剂,而且铂在催化剂中的利用率也有很大提高。
     研究了碳的腐蚀对催化剂稳定性的影响。比较研究了Vulcan XC-72(XC-72)和Black Pearl 2000 (BP-2000)载体在恒电位1.2 V条件下的腐蚀行为,通过循环伏安和X射线光电子能谱(XPS)分析表明,BP-2000具有更高的腐蚀速度,相应的Pt/C催化剂的稳定性也通过加速老化测试进行研究,发现Pt/BP-2000催化剂测试后,其电化学活性面积损失为40.9 % ,而Pt/XC-72仅为20.6 %,因此Pt/XC-72催化剂具有更高的电化学稳定性,这主要是由于其载体XC-72的高稳定性。同时,通过恒电位1.2 V下氧化120 h比较研究了两种常见碳纳米管(Multi-walled carbon nanotubes, MWNT和Single-walled carbon nanotubes, SWNT)的稳定性,发现经过120 h氧化后,SWNT表面含氧量增幅明显高于MWNT,由于SWNT具有更高的有效比表面积以及表面应力,因此稳定性较低,相应的Pt/SWNT催化剂也具有较低的电化学稳定性,经过加速老化测试后,Pt/SWNT催化剂电化学活性面积降低约40%,而Pt/MWNT则为约25%。
     在进一步提高催化剂稳定性的研究中,采用高度石墨化的多壁碳纳米管(HG-MWNT)作为载体,可以提高催化剂的电化学稳定性。通过在2800℃下对化学气相沉积制备的MWNT进行热处理,可以提高MWNT的石墨化程度。通过XRD和Raman分析表明,经过热处理获得的HG-MWNT的石墨化程度达到95.3%,而未处理的MWNT仅为39.5%。在常温下经过加速老化测试后,Pt/MWNT催化剂性能衰减了59.7%,而Pt/HG-MWNT催化剂仅衰减了39%。对功能化后的HG-MWNT进行热处理,可以进一步提高催化剂的稳定性,在60℃加速老化测试后,Pt/Ox-HG-MWNT的电化学活性面积衰减了55%,而Pt/T -Ox-HG-MWNT仅为37%,这主要是由于热处理可以除去碳载体表面不稳定的含氧官能团,从而提高铂颗粒的稳定。另外,研究也发现,通过Pt-Co合金可以提高Pt/C催化剂的稳定性,而且通过温和的热处理,提高PtCo合金化程度,也可以提高催化剂的稳定性。
     在阴极耐甲醇催化剂的研究中,对常见的Pt-Co/C和Pt-Ni/C催化剂进行研究发现,在常温和60℃下,两种合金催化剂均表现出比Pt/C催化剂更高的耐甲醇性能,其中Pt-Ni/C催化剂比Pt-Co/C催化剂具有更高的耐甲醇行为。同时,研究也发现,Au对甲醇氧化反应几乎没有催化活性,而对氧还原反应具有一定的催化反应,通过采用胶体法,制备出粒径约3~5 nm的Au/C,提高催化剂的比表面积,可以提高Au/C催化剂对氧还原反应的催化活性。据此,研究设计了一种新型的Pt/Au/C催化剂,EDX和TEM等分析表明,大部分的Pt颗粒被Au分隔开,电化学测试表明,这种新型的催化剂具有很好的耐甲醇行为,同时对氧还原反应具有更高的催化活性,因此是潜在的DMFC阴极催化剂。
The direct methanol fuel cell (DMFC) is a good candidate as a power source for applications in transportation and in portable electronic devices because methanol is an abundant, inexpensive liquid fuel, and it is easy to store and transport. Although good progress has been made in the development of DMFCs, the commercialization of DMFCs is, however, still hindered by a number of basic problems, including the poor kinetics of both the cathode reaction, the poor durability or short life time, and the cross-over of methanol from the anode to the cathode through the proton exchange membranes. To avoid these problems, one strategy is the development of oxygen reduction catalysts, which have a high catalystic activity for oxygen reduction reaction (ORR), a high methanol tolerance, and a high electrochemical stability. The work in this dissertation is devoted to these issues.
     To improve the performance of Pt/C catalyst, the impregnation method, colloid method, and ion-exchange method were investigated, respecticely. In the study of the impregnation method, the effects of the reducing agents, buffer solution, and impregnation time on performance of Pt/C catalyst for ORR were investigated. It was found that the highly dispersed Pt/C catalyst with smaller particle size could be obtained with the reducing agent of HCHO in the Na_2CO_3/NaHCO_3 buffer solution after the 15 min impregnated time. An improved colloid method was used to prepare the Pt/C catalyst with high Pt loading. The result showed that the Pt nanoparticles were highly dispersed on the carbon support with the novel synthesis method with sodium citrate as the stabilizing agent, and then depositing the Pt nanoparticles on the carbon support. The as-prepared Pt/C catalyst had a narrow particle distribution with smaller particle size (2.4 nm for 30 mass%, 3.2 nm for 50 mass% Pt/C catalyst). Highly dispersed platinum supported on Multi-walled and single-walled carbon nanotubes (MWNTs and SWNTs) as catalysts were prepared by ion-exchange method. The homemade Pt/MWNTs and Pt/SWNTs underwent a repetition of ion exchange and reduction process in order to achieve an increase of the metal loading. The catalysts give a Pt loading of 15.4 mass % for Pt/MWNTs, 19.2 mass% for Pt/SWNTs. The mean particle sizes of Pt/MWNTs and Pt/SWNTs catalysts are 3.4 nm and 2.6 nm. The as-obtained Pt/CNTs catalyst prepared by the ion exchange method gave a higher electrocatalytic activity for oxygen reduction and a higher Pt utilization efficiency in comparison to the one obtained by conventional method.
     The effect of carbon black support corrosion on the stability of Pt/C catalyst was investigated. The corrosion behaviour of Vulcan XC-72 (XC-72) and Black Pearl 2000 (BP-2000) was investigated using accelerated degradation test (ADT) by applying a fixed potential of 1.2 V. Cyclic voltammograms (CV) and X-ray photoelectron spectroscopy (XPS) results indicated that a higher oxidation degree appears on the Black Pearl 2000 (BP-2000) support. A potential cycling test from 0.6 to 1.2V was applied to the system to investigate the disabilities of Pt/C catalysts. The electrochemical measurement indicated a higher EAS degradation rate (40.9%) for Pt/BP-2000 after ADT, while it was 20.6% for Pt/XC-72 catalyst. The higher degradation rate of Pt/BP-2000 catalyst mainly resulted from the lower corrosion resistance of BP-2000. The electrochemical corrosion behaviors of single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) were also investigated with potentiostatic oxidation at 1.2 V for 120 h. The results indicated that the increase in oxygen content on the SWNTs surface was higher than that on the MWNTs after 120 h oxidation. SWNTs exhibited higher electrochemical stability than MWNTs, which was due to the higher effective accessible surface area and local strain energy for SWNTs. Thus the degradation rate of the performance for the Pt/SWNTs catalyst (40%) was larger than that of the Pt/MWNTs catalyst (25%).
     Some routes for the improvement of the stability of Pt/C catalyst were investigated. The stability of Pt/CNT could be improved by the further graphitization of CNT. The highly graphitized multiwalled carbon nanotubes (HG-MWNT) were obtained by heat treatment at 2800°C upon the as-obtained chemically vapor deposited multiwalled carbon nanotubes (CVD-MWNT). The graphitization behavior was studied by X-ray diffraction and Raman spectroscopy. The results indicated that the obtained HG-MWNT had a high degree of graphitization (95.3%), while it was only 39.5% for the as-obtained MWNT. Electrochemical investigation suggested that the HG-MWNT had a lower corrosion rate than the original MWCNT, which could be attributed to the less surface defects on the HG-MWNT with the increase of the graphitization degree. The durability of the corresponding Pt/CNT catalyst was discussed. The results revealed that Pt/HG-MWNT using the highly graphitized carbon nanotubes as the supporting material had a higher electrochemical stability, which was due to the lower corrosion rate of HG-MWNT and the stronger interaction between metal and carbon support. The stability of Pt/CNT could also be improved with the support of heat-treated functionalized HG-MWNT. The ADT results at 60°C indicated that the EAS loss for Pt/Ox-HG-MWNT (functionalized HG-MWNT) is 55%, while that is only 37% for Pt/T-Ox-HG-MWNT (heat-treated functionalized HG-MWNT). The unstable carbon oxides (-COOH) could be decomposed by the heat-treatment, and the remained stabler carbon oxides improved the stability of the Pt/CNT catalyst. In addition, the stability of Pt catalyst could also be enchanced by the Pt-Co alloy. Furthermore, the PtCo/C alloy catalyst could be further improved by the increase of the alloy extent with the heat-treatment in moderate temperature.
     The methanol tolerance behavior of the cathode catalyst for DMFC was investigated. The electrocatalysis of the oxygen reduction reaction on carbon supported Pt and Pt–Co (Pt/C and Pt–Co/C) alloy electrocatalysts was investigated in sulphuric acid with the presence of methanol (both at room temperature and 60°C). A higher methanol tolerance of the binary electrocatalysts than Pt/C was observed. Furthermore, as compared to Pt-Co/C catalyst, Pt-Ni/C catalyst exhibited higher methanol tolerance. Au itself was not active to methanol oxidation reaction. Au nanoparticles with small particle size (3~5 nm) obtained by colloid method were found to enhance their catalytic activity for oxygen reduction reaction. A novel Pt/Au/C catalyst was prepared by depositing the Pt and Au nanoparticles on the carbon support. EDX and TEM results revealed that Pt nanoparticles supported on carbon supports were separated by Au nanoparticles. The electrochemical analysis indicated that the novel catalyst showed the enhanced methanol tolerance while maintaining a high catalytic activity for the oxygen reduction reaction. It is well known that Au itself is not active to methanol oxidation reaction and its addition will part block contact between Pt nanoparticles and methanol molecules, which suppresses methanol oxidation on the Pt/Au/C catalyst. Therefore, the high methanol tolerance could be ascribed to the unique surface structure of the Pt/Au/C catalyst.
引文
1刘建国,衣宝廉,魏昭彬.直接甲醇燃料电池的原理、进展和主要技术问题.电源技术. 2001, 25 (5): 363~366.
    2衣宝廉.燃料电池-原理、技术、应用.化学工业出版社, 2003: 1.
    3 K. C. Lauzze, D. J. Chmielewski. Power Control of a Polymer Electrolyte Membrane Fuel Cell, Ind. Eng. Chem. Res. 2006, 45(13): 4661-4670.
    4 L. Carrette, K. A. Friedrich, U. Stimming. Fuel Cells: Principles, Types, Fuels, and Applications. Chem. Phys. Chem. 2000, 1 (4): 162~193.J. Rouxel, M. Danot, M. Bichon. Les Composites Intercalaires NaxTiS2 Etude Gènérale des Phases NaxTiS2 et KxTiS2. Bull. Soc. Chim. 1971, 11: 3930~3936
    5 M. Z. Jacobson, W. G. Colella, D. M. Golden. Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles. Science. 2005, 308 (5730): 1901~1905.
    6 J. Stumper, C. Stone. Recent Advances in Fuel Cell Technology at Ballard,J. Power Sources. 2008, 176(2): 468~476.
    7 R. Dillon, S. Srinivasan, A. S. Aricò, et al. International Activities in DMFC R&D: Status of Technologies and Potential Applications. J. Power Sources. 2004, 127(1-2): 112~126.
    8 D. Kim, E. A. Cho, S. A.Hong, et al. Recent Progress in Passive Direct Methanol Fuel Cells at KIST. J. Power Sources. 2004, 130(1-2): 172~177.
    9 P. Agnolucci. Economics and Market Prospects of Portable Fuel Cell, International Journal of Hydrogen Energy, 2007, 32(17): 4319~4328.
    10 S. Wasmus, A. Küver. Methanol Oxidation and Direct Methanol Fuel Cells: a Selective Review. J. Electroanal. Chem. 1999, 461(1-2): 14~31.
    11 S. K. Kamarudin, W. R. W. Daud, S. L. Ho, et al. Overview on the Challenges and Developments of Micro-Direct Methanol Fuel Cells(DMFC). J. Power Sources. 2007, 163(2): 743~754.
    12 W. H. Lizcano-Valbuena, V. A. Paganin, C. A. P. Leite, et al. Catalysts for DMFC: Relation between Morphology and Electrochemical Performance. Electrochim. Acta. 2003, 48(25-26): 3869~3878.
    13 V. Baglio, A. Stassi, A. Di Blasi, et al. Investigation of Bimetallic Pt–M/C as DMFC Cathode Catalysts. Electrochim. Acta. 2007, 53(3): 1360~1364.
    14 V. Neburchilov, H. J. Wang, J. J. Zhang. Low Pt Content Pt–Ru–Ir–Sn Quaternary Catalysts for Anodic Methanol Oxidation in DMFC. Electrochem. Commun. 2007, 9(7): 1788~1792.
    15 K. Ramya, K. S. Dhathathreyan. Methanol Crossover Studies on Heat-treated Nafion? Membranes. J. Membrane Science. 2008, 311(1-2): 121~127.
    16 K.Y. Song, H. K. Lee, H. T. Kim. MEA Design for Low Water Crossover in Air-breathing DMFC. Electrochim. Acta. 2007, 53(2): 637~643.
    17 S. K. Kamarudin, W. R. W. Daud, S. L. Ho, et al. Overview on the Challenges and Developments of Micro-Direct Methanol Fuel Cells (DMFC). J. Power Sources. 2007, 163(2): 743~754.
    18 M.Y. Lo, I. H. Liao, C. C. Huang. Key Issues in the Preparation of DMFC Electrocatalysts. International Journal of Hydrogen Energy, 2007, 32(6): 731~735.
    19 H. Yamada, T. Hirai, I. Moriguchi, et al. A Highly Active Pt Catalyst Fabricated on 3D Porous Carbon. J. Power Sources. 2007, 164(2): 538~543.
    20 K. Han, J. Lee, H. Kim. Preparation and Characterization of High Metal Content Pt–Ru Alloy Catalysts on Various Carbon Blacks for DMFCs. Electrochim. Acta. 2006, 52(4): 1697~1702.
    21 Y. Shimazaki, Y. Kobayashi, M. Sugimasa, et al. Preparation and Characterization of Long-lived Anode Catalyst for Direct Methanol Fuel Cells. J. Colloid and Interface Science. 2006, 300(1): 253~258.
    22 S. D. Knights, K. M. Colbow, J. S. Pierre, et al. Aging Mechanisms and Lifetime of PEFC and DMFC. J. Power Sources. 2004, 127(1-2):127~134.
    23 L. Xiong, A. Manthiram. Synthesis and Characterization of Methanol Tolerant Pt/TiOx/C Nanocomposites for Oxygen Reduction in Direct Methanol Fuel Cells. Electrochim. Acta. 2004, 49(24): 4163~4170.
    24 R. W. Reeve, P. A. Christensen, A. J. Dickinson, et al. Methanol-tolerant Oxygen Reduction Catalysts Based on Transition Metal Sulfides and Their Application to the Study of Methanol Permeation. Electrochim. Acta. 2000, 45(25-26): 4237~4250.
    25 M. R. Shivhare, C. L. Jackson, K. Scott, et al. Simplified Model for the Direct Methanol Fuel Cell Anode. J. Power Sources. 2007, 173(1): 240~248.
    26 J. S. Wang, X. Z. Deng, J. Y. Xi, et al. Promoting the Current for Methanol Electro-oxidation by Mixing Pt-based Catalysts with CeO2 Nanoparticles. J. Power Sources. 2007, 170(2): 297~302.
    27 M. R. Shivhare, R. G. Allen, K. Scott, et al. A Kinetic Model for the Direct Methanol Fuel Cell Anode based on Surface Coverage. J. Electroanal. Chem. 2006, 595(2): 145~151.
    28 C. Y. Du, T. S. Zhao, C. Xu. Simultaneous Oxygen-reduction and Methanol-oxidation Reactions at the Cathode of a DMFC: A Model-based Electrochemical Impedance Spectroscopy study. J. Power Sources. 2007, 167(2): 265~271.
    29 US Army lab awards MTI Micro DMFC contract. Fuel Cells Bulletin. 2004, 2004(6): 9~10.
    30 X. M. Ren, P. Zelenay, S. Thomas, et al. Recent Advances in Direct Methanol Fuel Cells at Los Alamos National Laboratory. 2000, 86(1-2):111~116.
    31张健,尹鸽平,赖勤志.直接甲醇燃料电池在笔记本电脑中的应用.电池工业. 2007, 11(3): 189~192.
    32 J. H. Wee. A Feasibility Study on Direct Methanol Fuel Cells for Laptop Computers based on a Cost Comparison with Lithium-ion Batteries. J. Power Sources. 2007, 173(1): 424~436.
    33 P. Agnolucci. Economics and Market Prospects of Portable Fuel Cells. International Journal of Hydrogen Energy, 2007, 32(17): 4319~4328.
    34 M. A. Abdelkareem, N. Morohashi, N.Nakagawa. Factors Affecting Methanol Transport in a Passive DMFC Employing a Porous Carbon Plate. J. Power Sources. 2007, 172(2): 659~665.
    35 The Smart Way to Get DMFC Products into the Market. Fuel Cells Bulletin. 2003, 2003(9): 10~12.
    36 Samsung, CMR to Collaborate on DMFC Demonstrator. Fuel Cells Bulletin, 2007, 2007(9): 5~6.
    37 V. S. Silva, A. Mendes, L. M. Madeira, et al. Proton Exchange Membranes for Direct Methanol Fuel Cells: Properties Critical Study Concerning Methanol Crossover and Proton Conductivity. J. Membrane Science. 2006, 276(1-2): 126~134.
    38 V. Neburchilov, J. Martin, H. J. Wang, J. J. Zhang. A Review of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells. J. Power Sources. 2007, 169(2): 221~238.
    39 Y. F. Lin, C.Y. Yen, C.H. Hung, et al. A Novel Composite Membranes based on Sulfonated Montmorillonite Modified Nafion? for DMFCs. J. Power Sources. 2007, 168(1): 162~166.
    40 Z. M. Wu, G. Q. Sun, W. Jin, et al. Use of in situ Polymerized phenol-formaldehyde Resin to Modify a Nafion? Membrane for the Direct Methanol Fuel Cell. J. Power Sources. 2007, 167(2): 309~314.
    41 S. Eccarius, B. L. Garcia, C. Hebling, et al. Experimental Validation of a Methanol Crossover Model in DMFC Applications. J. Power Sources. 2008, 179(2): 723~733.
    42 S. Gu, G. H. He, X. M. Wu, et al. Synthesis and Characteristics of Sulfonated Poly(phthalazinone ether sulfone ketone) (SPPESK) for Direct Methanol Fuel Cell (DMFC). J. Membrane Science. 2006, 281(1-2): 121~129.
    43 A. S. Aricò, P. L. Antonucci, E. Modica, et al. Effect of Pt-Ru Alloy Composition on High-temperature Methanol Electro-oxidation. Electrochim. Acta. 2002, 47(22-23): 3723~3732.
    44 T. Vidakovi?, M. Christov, K. Sundmacher. Rate Expression for Electrochemical Oxidation of Methanol on a Direct Methanol Fuel Cell Anode. J. Electroanal. Chem. 2005, 580(1): 105~121.
    45 Z. B. Wang, G. P. Yin, Y.Y. Shao, et al. Electrochemical Impedance Studies on Carbon Supported PtRuNi and PtRu Anode Catalysts in Acid Medium for Direct Methanol Fuel Cell. J. Power Sources. 2007, 165(1): 9~15.
    46 Y. H. Chu, S. W. Ahn, D. Y. Kim, et al. Combinatorial Investigation of Pt–Ru–M as Anode Electrocatalyst for Direct Methanol Fuel Cell. Catalysis Today. 2006, 111(3-4): 176~181.
    47 N. Travitsky, T. Ripenbein, D. Golodnitsky, et al. Pt-, PtNi- and PtCo-supported Catalysts for Oxygen Reduction in PEM Fuel Cells. J. Power Sources. 2006, 161(2): 782~789.
    48 V. Baglio, A. Stassi, A. D. Blasi, et al. Investigation of Bimetallic Pt–M/C as DMFC Cathode Catalysts. Electrochim. Acta. 2007, 53(3): 1360~1364.
    49 A. Seo, J. Lee, K. Han, et al. Performance and Stability of Pt-based Ternary Alloy Catalysts for PEMFC. Electrochim. Acta. 2006, 52(4): 1603~1611.
    50 Y. Gochi-Ponce, G. Alonso-Nu?ez, N. Alonso-Vante. Synthesis and Electrochemical Characterization of a Novel Platinum Chalcogenide Electrocatalyst with an Enhanced Tolerance to Methanol in the Oxygen Reduction Reaction. Electrochem. Commun. 2006, 8(9): 1487~1491.
    51 Y. Y.Shao, G. P. Yin, Y. Z. Gao. Understanding and Approaches for the Durability Issues of Pt-based Catalysts for PEM Fuel Cell. J. Power Sources. 2007, 171(2): 558~566.
    52 X. W. Yu, S. Y. Ye. Recent Advances in Activity and Durability Enhancement of Pt/C Catalytic Cathode in PEMFC: Part II: Degradation Mechanism and Durability Enhancement of Carbon Supported Platinum Catalyst. J. Power Sources. 2007, 172(1): 145~154.
    53 C. P. Liu, X. Z. Xue, T. H. Lu, et al. The Preparation of High Activity DMFC Pt/C Electrocatalysts Using a Pre-precipitation Method. J. Power Sources. 2006, 161: 68~73.
    54 C. L. Hui, X. G. Li, I. M. Hsing. Well-dispersed Surfactant-stabilized Pt/C Nanocatalysts for Fuel Cell Application: Dispersion Control andSurfactant Removal. Electrochim. Acta. 2005, 51:711~719.
    55 J. Zhao, W. X. Chen, Y. F. Zheng, et al. Microwave Polyol Synthesis of Pt/C Catalysts with Size-controlled Pt Particles for Methanol Electrocatalytic Oxidation. J. Mater. Sci. 2006, 41:5514~5518.
    56 Z. H. Zhou, S. L. Wang, W. J. Zhou, et al. Novel Synthesis of Highly Active Pt/C Cathode Electrocatalyst for Direct Methanol Fuel Cell. Chem. Commun. 2003, 3(3): 394~395.
    57 N. Giordano, E. Passalacqua, L. Pino, et al. Analysis of Platinum Particle Size and Oxygen Reduction in Phosphoric Acid. Electrochim. Acta. 1991, 36(13): 1979~1984.
    58 N. M. Markovi, P. N. R. Jr. Surface Science Studies of Model Fuel Cell Electrocatalysts. Surface Science Reports. 2002, 45(4-6): 117~229.
    59 H. Shioyama, Y. Yamada, A. Ueda, et al. Screening of Carbon Supports for DMFC Electrode Catalysts by Infrared Thermography. Carbon, 2003, 41(3): 607~609.
    60 M. Kim, J. N. Park, H. Kim, et al. The Preparation of Pt/C Catalysts Using Various Carbon Materials for the Cathode of PEMFC. J. Power Sources. 2006, 163(1):93~97.
    61 K. I. Han, J. S. Lee, S. O. Park, et al. Studies on the Anode Catalysts of Carbon Nanotube for DMFC. Electrochim. Acta. 2004, 50(2-3): 791~794.
    62 S. K. Wang, F. G. Tseng, T. K. Yeh, et al. Electrocatalytic Properties Improvement on Carbon-nanotubes Coated Reaction Surface for Micro-DMFC. J. Power Sources. 2007, 167(2): 413~419.
    63 W. Z. Li, C. H. Liang, W. J. Zhou, et al. Preparation and Characterization of Multiwalled Carbon Nanotube-Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells. J. Phys. Chem. B. 2003, 107:6292~6299.
    64 R. V. Hull, L. Li, Y. C. Xing, et al. Pt Nanoparticle Binding on Functionalized Multiwalled Carbon Nanotubes. Chem. Mater. 2006, 18: 1780~1788.
    65 G. Girishkumar, T. D. Hall, K. Vinodgopal, et al. Single Wall Carbon Nanotube Supports for Portable Direct Methanol Fuel Cells. J. Phys.Chem. B. 2006, 110: 107~114.
    66 A. Kongkanand, K. Vinodgopal, S. Kuwabata, et al. Highly Dispersed Pt Catalysts on Single-Walled Carbon Nanotubes and Their Role in Methanol Oxidation. J. Phys. Chem. B. 2006, 110:16185~16188.
    67 A. Kongkanand, S. Kuwabata, G. Girishkumar, et al. Single-Wall Carbon Nanotubes Supported Platinum Nanoparticles with Improved Electrocatalytic Activity for Oxygen Reduction Reaction. Langmuir. 2006, 22:2392~2396.
    68 A. Bayrak?eken, A. Smirnova, U. Kitkamthorn, et al. Pt-based Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells Prepared by Supercritical Deposition Technique. J. Power Sources. 2008, 179(2): 532~540.
    69 T. Lopes, E. Antolini, F. Colmati, et al. Carbon Supported Pt–Co (3:1) Alloy as Improved Cathode Electrocatalyst for Direct Ethanol Fuel Cells. J. Power Sources. 2007, 164(1): 111~114.
    70 N. Travitsky, T. Ripenbein, D. Golodnitsky, et al. Pt-, PtNi- and PtCo-supported Catalysts for Oxygen Reduction in PEM Fuel Cells. J. Power Sources. 2006, 161(2): 782~789.
    71 P. Hernández-Fernández, S. Rojas, P. Ocón, et al. An Opening Route to the Design of Cathode Materials for Fuel Cells based on PtCo Nanoparticles. Applied Catalysis B: Environmental. 2007, 77(1-2): 19~28.
    72 U. A. Paulus, A. Wokaun, G. G. Scherer, et al. Oxygen Reduction on Carbon-Supported Pt-Ni and Pt-Co Alloy Catalysts. J. Phys. Chem. B. 2002, 106:4181~4191.
    73 U. A. Paulus, A. Wokaun, G. G. Scherer, et al. Oxygen Reduction on High Surface Area Pt-based Alloy Catalysts in Comparison to Well Defined Smooth Bulk Alloy Electrodes. Electrochim. Acta 2002, 47: 3787~3789.
    74 V. Stamenkovic, T. J. Schmidt, P. N. Ross, et al. Surface Composition Effects in Electrocatalysis: Kinetics of Oxygen Reduction on Well-Defined Pt3Ni and Pt3Co Alloy Surfaces. J. Phys. Chem. B. 2002, 106:11970~11979.
    75 W. Z. Li, W. J. Zhou, H. Q. Li, et al. Nano-stuctured Pt–Fe/C as Cathode Catalyst in Direct Methanol Fuel Cell. Electrochim. Acta 2004, 49: 1045~1055.
    76 H. Yang, N. A. Vante, J. M. Leger, et al. Tailoring, Structure, and Activity of Carbon-Supported Nanosized Pt-Cr Alloy Electrocatalysts for Oxygen Reduction in Pure and Methanol-Containing Electrolytes. J. Phys. Chem. B. 2004, 108:1938~1947.
    77 K. H. Kangasniemi, D. A. Condit, T. D. Jarvi. Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions. J. Electrochem. Soc. 2004, 151 (4): E125~E132.
    78 B. J. Eastwood, P. A. Christensen, R. D. Armstrong, et al. Electrochemical Oxidation of a Carbon Black Loaded Polymer Electrode in Aqueous Electrolytes. J. Solid State Electrochem. 1999, 3 (4): 179~186.
    79 D. A. Stevens, M. T. Hicks, G. M. Haugen, et al. Ex situ and In situ Stability Studies of PEMFC Catalysts. J. Electrochem. Soc. 2005, 152 (12): A2309~A2315.
    80 L. M. Roen, C. H. Paik, T. D. Jarvic. Electrocatalytic Corrosion of Carbon Support in PEMFC Cathodes. Electrochem. Solid-State Lett. 2004, 7 (1): A19~A22.
    81 L. Li, Y. C. Xing. Electrochemical Durability of Carbon Nanotubes at
    80°C. J. Power Sources. 178(1):75~79.
    82 Y. Y. Shao, G. P. Yin, J. Zhang, et al. Comparative Investigation of the Resistance to Electrochemical Oxidation of Carbon Black and Carbon Nanotubes in Aqueous Sulfuric Acid Solution. Electrochim. Acta. 2006, 51(26): 5853~5857.
    83 G. García, J. A. Silva-Chong, O. Guillén-Villafuerte, et al. CO Tolerant Catalysts for PEM Fuel Cells: Spectroelectrochemical Studies. Catalysis Today. 2006, 116(3): 415-421.
    84 G. Avgouropoulos, T. Ioannides. CO Tolerance of Pt and Rh Catalysts: Effect of CO in the Gas-phase Oxidation of H2 over Pt and Rh Supported Catalysts. Applied Catalysis B: Environmental. 2005, 56(1-2): 77~86.
    85 F. Coloma, A. Sepulvedaescribano, J. L. G. Fierro, et al. Preparation of Platinum Supported on Pregraphitized Carbon-Blacks. Langmuir. 1994, 10 (3): 750~755.
    86 V. Alderucci, L. Pino, P. L. Antonucci, et al. XPS Study of Surface Oxidation of Carbon-Supported Pt Catalysts. Mater. Chem. Phys. 1995, 41 (1): 9~14.
    87 R. Borup, J. Meyers, B. Pivovar, et al. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation. Chem. Rev. 2007,
    107: 3094~3951. 88 R. M. Darling, J. P. Meyers. Kinetic Model of Platinum Dissolution in PEMFCs. J. Electrochem. Soc. 2003, 150: A1523~A1527.
    89 A. Teliska, W. E. Ogrady, D. E. Ramaker. Determination of O and OH Adsorption Sites and Coverage In situ on Pt Electrodes from PtL-23 X-ray Absorption Apectroscopy. J. Phys. Chem. B. 2005, 109: 8076~8084.
    90 Z. Nagy, H. You. Applications of Surface X-ray Scattering to Electrochemistry Problems. Electrochim. Acta. 2002, 47: 3037~3055.
    91 A. Sun, J. Franc, D. D. Macdonald. Growth and Properties of Oxide Films on Platinum. J. Electrochem. Soc. 2006, 153: B260~B277.
    92 P. J. Ferreira, J. L. O, Y. Shao-Horn, et al. Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 2005, 152: A2256~A2271.
    93 E. Guilminot, A. Corcella, F. Charlot, et al. Detection of Ptz+ Ions and Pt Nanoparticles Inside the Membrane of a Used PEMFC. J. Electrochem. Soc. 2007, 154: B96~B105.
    94 K. Yasuda, A. Taniguchi, T. Akita, et al. Characteristics of a Platinum Black Catalyst Layer with Regard to Platinum Dissolution Phenomena in a Membrane Electrode Assembly. J. Electrochem. Soc. 2006, 153: A1599~A1603.
    95 K. Yasuda, A. Taniguchi, T. Akita, et al. Platinum Dissolution and Deposition in the Polymer Electrolyte Membrane of a PEM Fuel Cell as Studied by Potential Cycling. Phys. Chem. Chem. Phys. 2006, 8: 746~752.
    96 X. H. Wang, H. Huang, T. Holme, et al. Thermal Stabilities of Nanoporous Metallic Electrodes at Elevated Temperatures. J. Power Sources. 2008, 175(1): 75~81.
    97 V. P. Zhdanov. Simulations of Processes Related to H2–O2 PEM Fuel Cells. J. Electroanal. Chem. 2007, 607(1-2): 17~24.
    98 J. F. Drillet, A. Ee, J. Friedemann, et al. Oxygen Reduction at Pt and Pt70Ni30 in H2SO4/CH3OH Solution. Electrochim. Acta. 2002, 47:1983~1988.
    99 H. Yang, C. Coutanceau, J. M. Léger, et al. Methanol Tolerant Oxygen Reduction on Carbon-supported Pt–Ni Alloy Nanoparticles. J. Electroanal. Chem. 2005, 576(2): 305~313.
    100 E. Antolini, J. R.C. Salgado, E. R. Gonzalez. Oxygen Reduction on a Pt70Ni30/C Electrocatalyst Prepared by the Borohydride Method in H2SO4/CH3OH Solutions. J. Power Sources. 2006, 155(2): 161~166.
    101 J. R. C. Salgado, E. Antolini, E. R. Gonzalez. Carbon Supported Pt–Co Alloys as Methanol-resistant Oxygen-reduction Electrocatalysts for Direct Methanol Fuel Cells. Applied Catalysis B: Environmental. 2005, 57(4): 283~290.
    102 R. F. Wang, S. J. Liao, H.Y. Liu, et al. Synthesis and Characterization of Pt–Se/C Electrocatalyst for Oxygen Reduction and Its Tolerance to Methanol. J. Power Sources. 2007, 171(2): 471~476.
    103 W. Yuan, K. Scott, H. Cheng. Fabrication and Evaluation of Pt–Fe Alloys as Methanol Tolerant Cathode Materials for Direct Methanol Fuel Cells. J. Power Sources. 2006, 163(1): 323~329.
    104 L. Xiong, A. Manthiram. Synthesis and Characterization of Methanol Tolerant Pt/TiOx/C Nanocomposites for Oxygen Reduction in Direct Methanol Fuel Cells. Electrochim. Acta. 2004, 49(24): 4163~4170.
    105 J. G. Oh, C. H. Lee, H. Kim. Surface Modified Pt/C as a Methanol Tolerant Oxygen Reduction Catalyst for Direct Methanol Fuel Cells. Electrochem. Commun. 2007, 9(10): 2629~2632.
    106 R. W. Reeve, P. A. Christensen, A. J. Dickinson, et al. Methanol-tolerant Oxygen Reduction Catalysts based on Transition Metal Sulfides and Their Application to the Study of MethanolPermeation. Electrochim. Acta. 2000, 45(25-26): 4237~4250.
    107 D. C. Papageorgopoulos, F. Liu, O. Conrad. A Study of RhxSy/C and RuSex/C as Methanol-tolerant Oxygen Reduction Catalysts for Mixed-reactant Fuel Cell Applications. Electrochim. Acta. 2007, 52(15): 4982~4986.
    108 H. Cheng, W. Yuan, K. Scott, et al. The Catalytic Activity and Methanol Tolerance of Transition Metal Modified-ruthenium–selenium Catalysts. Applied Catalysis B: Environmental. 2007, 75(3-4): 221~228.
    109 H. Cheng, W. Yuan, K. Scott, et al. Evaluation of Carbon-supported Ruthenium-selenium-tungsten Catalysts for Direct Methanol Fuel Cells. J. Power Sources. 2007, 172(2): 597~603.
    110 S. S. Ozenler, F. Kad?rgan. The Effect of the Matrix on the Electro-catalytic Properties of Methanol Tolerant Oxygen Reduction Catalysts based on Ruthenium-chalcogenides. J. Power Sources. 2006, 154(2): 364~369.
    111 M. Manzoli, F. Boccuzzi. Characterisation of Co-based Electrocatalytic Materials for O2 Reduction in Fuel Cells. J. Power Sources. 2005, 145(2): 161~168.
    112黄庆红,唐亚文,马振旄.直接甲醇燃料电池阴极催化剂的研究进展,应用化学, 2005, 22(12): 1277-1281.
    113 J. H. Zagal. Metallophalocyanines as Catalysts in Electrochemical Reactions. Coordination Chem. Rev. 1992, 119(1): 89~136.
    114 S. Baranton, C. Coutanceau, C. Roux, et al. Oxygen Reduction Reaction in Acid Medium at Iron Phthalocyanine Dispersed on High Surface Area Carbon Substrate: Tolerance to Methanol, Stability and Kinetics. J. Electroanal. Chem. 2005, 577(2): 223~234.
    115 C. W. B. Bezerra, L. Zhang, K. Lee, et al. A Review of Fe–N/C and Co–N/C Catalysts for the Oxygen Reduction Reaction. Electrochim. Acta. 2008, 53(15): 4937~4951.
    116 K. Lee, L.Zhang, J. J. Zhang. IrxCo1-X (x=0.3–1.0) Alloy Electrocatalysts, Catalytic Activities, and Methanol Tolerance in Oxygen Reduction Reaction. J. Power Sources. 2007, 170(2): 291~296.
    117 A. M. Juarez, L Sánchez, E. Chinarro, et al. Electrical characterisation of ceramic conductors for fuel cell applications. Solid State Ionics, 2000, 135(1-4):525~5281.
    118 C. Fischer, V. N. Alonso, S Fiechter, et al. Electrocatalytic Properties of Mixed Transition Metal Tellurides (chevel-phases) for Oxygen Reduction. J. Appl. Electrochem. 1995, 24 (2): 1004~1008.
    119 F. Maillard, M. Martin, F. Gloaguen, J.M. Leger, et al. Oxygen Electroreduction on Carbon-supported Platinum Catalysts. Particle-size Effect on the Tolerance to Methanol Competition. Electrochim. Acta. 2002, 47: 3431~3440.
    120王振波,尹鸽平,史鹏飞.制备过程中缓冲溶液对Pt-Ru/C电催化剂性能的影响.催化学报, 2005, 26(10): 923~928.
    121 Z. H. Zhou, W. J. Zhou, S. L. Wang, et al. Preparation of Highly Active 40wt% Pt/C Cathode Electrocatalysts for DMFC via Different Routes. Catalysis Today. 2004, 93-95: 523~528.
    122 Z. H. Zhou, S. L. Wang, W. J. Zhou, et al. Preparation of Highly Active Pt/C Cathode Electrocatalysts for DMFCs by an Improved Aqueous Impregnation Method. Phys. Chem. Chem. Phys. 2003, 5: 5485~5488.
    123 S. O. zkar, R. G. Finke. Nanocluster Formation and Stabilization Fundamental Studies: Ranking Commonly Employed Anionic Stabilizers via the Development, Then Application, of Five Comparative Criteria. J. Am. Chem. Soc. 2002, 124: 5796~5810.
    124 T. Kim , M. Takahashi , M. Nagai , et al. Preparation and Characterization of Carbon Supported Pt and PtRu Alloy Catalysts Reduced by Alcohol for Polymer Electrolyte Fuel Cell. Electrochim. Acta. 2004, 50 (2-3): 817~821S.
    125 X. Wang, I. M. Hsing. Surfactant Stabilized Pt and Pt Alloy Electrocatalyst for Polymer Electrolyte Fuel Cells. Electrochim. Acta.2002, 47 (18):2981~2987.
    126 H. Bênnemann, R. Brinkmann, P. Britz, et al. Nanoscopic Pt bimetal Colloids as Precursors for PEM Fuel Cell Catalysts. J. New Materials for Electrochemical Systems. 2000, 3 (3):199~206.
    127 J. H. Zeng, J. Y. Lee, W. J. Zhou. Activities of Pt/C catalysts Preparedby Low Temperature Chemical Reduction Methods. Applied Catalysis A: General. 2006, 308: 99~104.
    128 T. C. Deivaraj, W. X. Chen, J. Y. Lee. Preparation of PtNi Nanoparticles for the Electrocatalytic Oxidation of Methanol. J. Mater. Chem. 2003, 13:2555~2560.
    129 Y. T. Kim, T. Mitani. Surface Thiolation of Carbon Nanotubes as Supports: A Promising Route for the High Dispersion of Pt Nanoparticles for Electrocatalysts. J. Catal. 2006, 238: 394~401.
    130 R. S. Nicholson, I. Shain. Theory of Stationary Electrode Polarography. Single Scan and Cyclic Methods Applied to Reversible, Irreversible, and Kinetic Systems. Anal. Chem.; 1964; 36(4); 706-723.
    131 P. Gallezot, N.Laurain, P. Isnard. Catalytic Wet-air Oxidation of Carbonoxylic Acids on Carbon-supported Platinum Catalysts. Applied Catalysis B: Environmental (1996) L11~L17
    132 K. Amine, K. Yasuda, H. Tkenaka. New Process for Loading Highly Active Platinum on Carbon Black Surface for Application in Polymer Electrolyte Fuel Cell. Ann.Chim.Sci.Mat. 1998, 23: 331~335
    133 K. Yasuda, Y. Nishimura. The Desposition of Ultratine Platinum Particles on Carbon Black by Surface Ion Exchange-Increase in Loading Amount. Materials Chemistry and Physics. 2003, 82: 921~928
    134 G.Wu, B. Q. Xu. Carbon Nanotube Supported Pt Electrodes for Methanol Oxidation: A Comparison between Multi- and Single-walled Carbon Nanotubes. J. Power Sources. 2007, 174: 148~158.
    135 J. Kong, M. G. Chapline, H. Dai. Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors. Adv. Mater. 2001, 13: 1384~1386.
    136 Z. Wang, Z.Z.Zhu, J. Shi, et al. Electrocatalytic Oxidation of Formaldehyde on Platinum Well-dispersed into Single-wall Carbon Nanotube/polyaniline Composite Film. Applied Surface Science. 2007, 253(22): 8811~8817.
    137 J. Solla-Gullón, E. Lafuente, A. Aldaz, et al. Electrochemical Characterization and Reactivity of Pt Nanoparticles Supported on Single-walled Carbon Nanotubes. Electrochimica Acta. 2007, 52(18): 5582~5590.
    138 D.J.Guo, H.L. Li. Electrocatalytic Oxidation of Methanol on Pt Modified Single-walled Carbon Nanotubes. J. Power Sources. 2006, 160(1): 44~49.
    139 G. Wu, B.Q. Xu. Carbon Nanotube Supported Pt Electrodes for Methanol Oxidation: A comparison between multi- and single-walled carbon nanotubes. J. Power Sources. 2007, 174(1): 148~158.
    140 R. Yuge, T. Ichihashi, Y. Shimakawa, et al. Preferential Deposition of Pt Nanoparticles inside Single-Walled Carbon Nanohorns. Adv. Mater. 2004, 16: 1420~1423.
    141 J. E. Huang, D. J. Guo, Y. G. Yao, et al. High Dispersion and Electrocatalytic Properties of Platinum Nanoparticles on Surface-oxidized Single-walled Carbon Nanotubes. J. Electroanal. Chem. 2005, 577: 93~97.
    142 K. H. Kangasniemi, D. A. Condit, T. D. Jarvi. Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions. J. Electrochem. Soc. 2004, 151 (4): E125~E132.
    143 F. Coloma, A. Sepulvedaescribano, J. L. G. Fierro, et al. Preparation of Platinum Supported on Pregraphitized Carbon-Blacks. Langmuir. 1994, 10 (3): 750~755.
    144 V. Alderucci, L. Pino, P. L. Antonucci, et al. XPS Study of Surface Oxidation ofCarbon-Supported Pt Catalysts. Mater. Chem. Phys. 1995, 41 (1): 9~14.
    145 G. X.Wang, Q. Sun, Z. H. Zhou, et al. Performance Improvement in Direct Methanol Fuel Cell Cathode Using High Mesoporous Area Catalyst Support. Electrochem. Solid-State Lett. 2005, 8(1): A12~A16.
    146 S. L. Gojkovic, T. R. Vidakovic. MethanolOxidation on an Ink Type Electrode Using Pt Supported on High Area Carbons. Electrochim.Acta. 2001, 47:633~642.
    147 R. M. Darling, J. P. Meyers. Kinetic Model of Platinum Dissolution in PEMFCs. J. Electrochem. Soc. 2003, 150: A1523~A1527.
    148 E. Antolini, J. Salgado, E. Gonzalez. The Stability of Pt–M (M = first row transition metal) Alloy Catalysts and Its Effect on the Activity in Low Temperature Fuel Cells: A Literature Review and Tests on aPt–Co Catalyst. J. Power Sources. 2006, 160: 957~968.
    149 Y. Y. Shao, G. P. Yin, Y. Z. Gao. Understanding and Approaches for the Durability Issues of Pt-based Catalysts for PEM Fuel Cell. J. Power Sources. 2007, 171: 558~566.
    150 [9] S. Iijima. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354 (6348):56~58.
    151 Y. Y. Shao, G. P. Yin, Y. Z. Gao, et al. Durability Study of Pt/C and Pt/CNTs Catalysts under Simulated PEM Fuel Cell Conditions. J. Electrochem. Soc. 2006, 153: A1093~A1097.
    152 Y. Y. Shao, G. P. Yin, J. Zhang, et al. Comparative Investigation of the Resistance to Electrochemical Oxidation of Carbon Black and Carbon Nanotubes in Aqueous Sulfuric Acid Solution. Electrochim. Acta. 2006, 51: 5853~5857.
    153 X. Wang, W. Z. Li, Z. W. Chen, et al. Durability Investigation of Carbon Nanotube as Catalyst Support for Proton Exchange Membrane Fuel Cell. J. Power Sources. 2006, 158: 154~159.
    154 L. Li, Y. C. Xing. Electrochemical Durability of Carbon Nanotubes in Noncatalyzed and Catalyzed Oxidations. J. Electrochem. Soc. 2006, 153: A1823~A1828.
    155 L. Li, Y. C. Xing, Electrochemical Durability of Carbon Nanotubes at 80 C J. Power Sources. 2008, 178: 75~79.
    156 G. Wu, Y. S. Chen, B. Q. Xu. Carbon Nanotube Supported Pt Electrodes for Methanol Oxidation: A Comparison between Multi- and Single-walled Carbon Nanotubes. J. Power Sources. 2007, 174: 148~158
    157 G. Wu, Y. S. Chen, B. Q. Xu. Remarkable Support Effect of SWNTs in Pt Catalyst for Methanol Electrooxidation. Electrochem. Commun. 2005, 7: 1237~1243.
    158 X. K. Lu, K. D. Ausman, R. D. Piner, et al. Scanning Electron Microscopy Study of Carbon Nanotubes Heated at High Temperature in Air. J. Appl. Phys. 1999, 86:186~189.
    159 Y. M. Liang, H. M. Zhang, B. L.Yi, et al. Preparation and Characterization of Multi-walled Carbon Nanotubes Supported PtRuCatalysts for Proton Exchange Membrane Fuel Cells. Carbon. 2005, 43(15): 3144~3152.
    160 A. Guha, W. J. Lu, T. A. Z. Jr, et al. Surface-modified Carbons as Platinum Catalyst Support for PEM Fuel Cells. Carbon, 2007, 45:1506~1517.
    161 D. A. Stevens, J. R. Dahn. Thermal Degradation of the Support in Carbon-supported Platinum Electrocatalysts for PEM Fuel Cells. Carbon. 2005, 43:179~188.
    162 C. C. Han, J. T. Lee, H. Chang. Thermal Annealing Effects on Structure and Morphology of Micrometer-sized Carbontubes. Chem. Mater. 2001, 13:4180~4186.
    163 R. Andrews, D. Jacques, D. Qian, et al. Purification and Structural Annealing of Multiwalled Carbon Nanotubes at Graphitization Temperatures. Carbon. 2001, 39(11):1681~1687.
    164 Y. Zhang, G. Hu, D. O. Hare, et al. Partially Graphitized Carbon Filaments from As-synthesized Silica/Surfactant Composite. 2006, 44(10): 1969~1973.
    165 G. A. Zickler, B. Smarsly, N. Gierlinger, et al. A Reconsideration of the Relationship between the Crystallite Size La of Carbons Determined by X-ray Diffraction and Raman Spectroscopy. Carbon. 2006, 44(15):3239~3246.
    166 M. Endo, Y. A. Kim, T. Hayashi, et al. Microstructural Changes Induced in "Stacked cup" Carbon Nanofibers by Heat Treatment. Carbon. 2003, 41(10):1941~1947.
    167 A. Oya, S. Otani. Influences of Particle Size of Metal on Catalytic Graphitization of Non-graphitizing Carbons. Carbon. 1981, (19):391~402.
    168 A. Oya, S. Otani. Catalytic Graphitization of Carbons by Various Metals. Carbon. 1979, (17):131~137.
    169 T. C. Kuo, R. L. McCreery. Surface Chemistry and Electron-transfer Kinetics of Hydrogen-modified Glassy Carbon Electrodes. Anal. Chem. 1999, 71:1553~1560.
    170 P. L. J. Walker. Carbon: an Old but New Material Revisited. Carbon.1990, 28(2-3):261~279.
    171 M. Kosaka, T. W. Ebbesen, H. Hiura, et al. Annealing Effect on Carbon Nanotubes-an ESR Study. Chem. Phys. Lett. 1995, 233(1-2):47~51.
    172 W. Huang, Y. Wang, G. H. Luo, et al. 99.9% Purity Multi-walled Carbon Nanotubes by Vacuum High-temperature Annealing. Carbon. 2003, 41(13):2585~2590.
    173 D. A. Stevens, M. T. Hicks, G. M. Haugen, et al. Ex situ and In situ Stability Studies of PEMFC Catalysts. J. Electrochem. Soc. 2005, 152(12):A2309~A2315.
    174 F. Coloma, A. Sepulvedaescribano, J. L. G. Fierro, et al. Preparation of Platinum Supported on Pregraphitized Carbon-blacks. Langmuir. 1994, 10(3):750~755.
    175 F. Coloma, A. Sepulvedaescribano, F. Rodriguezreinoso. Heat-treated Carbon-blacks as Supports for Platinum Catalysts. J. Catal. 1995, 154(2):299~305.
    176 C. C. Chen, C. F. Chen, C. M. Chen, et al. Modification of Multi-walled Carbon Nanotubes by Microwave Digestion Method as Electrocatalyst Supports for Direct Methanol Fuel Cell Applications. Electrochem.Commun. 2007, 9(1):159~163.
    177 A. Guha, W. J. Lu, T. A. Zawodzinski Jr, et al. Surface-modified Carbons as Platinum Catalyst Support for PEM Fuel Cells. Carbon. 2007, 45(7):1506~1517.
    178 F. Coloma, A. Sepulveda-Escribano, J. L. G. Fierro, et al. Preparation of Platinum Supported on Pregraphitized Carbon Blacks. Langmuir.1994, 10:750~755.
    179 U. A. Paulus, A. Wokaun, G. G. Scherer, et al. Oxygen Reduction on Carbon-Supported Pt-Ni and Pt-Co Alloy Catalysts. J. Phys. Chem. B 2002, 106, 4181~4191.
    180 E. Antolini, J. R.C. Salgado, E. R. Gonzalez, et al. The Stability of Pt–M (M = first row transition metal) Alloy Catalysts and Its Effect on the Activity in Low Temperature Fuel Cells: A Literature Review and Tests on a Pt–Co Catalyst. J. Power Sources. 2006, 160: 957~968.
    181 P. Yu, M.Pemberton, P. Plasse. PtCo/C Cathode Catalyst for Improved Durability in PEMFCs. J. Power Sources.2005. 144(1):11~20.
    182 H. A. Gasteiger, S. S. Kocha, B. Sompalli, et al. Activity Benchmarks and Requirements for Pt, Pt-alloy, and non-Pt Oxygen Reduction Catalysts for PEMFCs. Appl. Catal. B 2005, 56, 9~35.
    183 R. F. Wang, S. J. Liao, H. Y. Liu, et al. Synthesis and Characterization of Pt–Se/C Electrocatalyst for Oxygen Reduction and Its Tolerance to Methanol. J. Power Sources. 2007, 171(2):471~476.
    184 W. Yuan, K. Scott, H. Cheng. Fabrication and Evaluation of Pt–Fe Alloys as Methanol Tolerant Cathode Materials for Direct Methanol Fuel Cells. J. Power Sources. 2006, 163(1):323~329.
    185 J. R. C. Salgado, E. Antolini, E. R.Gonzalez. Carbon Supported Pt–Co Alloys as Methanol-resistant Oxygen-reduction Electrocatalysts for Direct Methanol Fuel Cells. Applied Catalysis B: Environmental. 2005, 57(4):283~290.
    186 C. W. B. Bezerra, L. Zhang, H. Liu, et al. A Review of Heat-treatment Effects on Activity and Stability of PEM Fuel Cell Catalysts for Oxygen Reduction Reaction. J. Power Sources. 2007, 173(2): 891~908.
    187 L. Zhang, J. J. Zhang, D. P. Wilkinson, et al. Progress in Preparation of Non-noble Electrocatalysts for PEM Fuel Cell Reactions. J. Power Sources. 2006, 156(2): 171~182.
    188 H.Yang, C. Coutanceau, J. M. Léger, et al. Methanol Tolerant Oxygen Reduction on Carbon-supported Pt–Ni Alloy Nanoparticles. J. Electroanal. Chem. 2005, 576(2): 305~313.
    189 J. F. Drillet, A. Ee, J. Friedemann, et al. Oxygen Reduction at Pt and Pt70Ni30 in H2SO4/CH3OH solution. Electrochim. Acta. 2002, 47(12):1983~1988.
    190 R. W. Reeve, P. A. Christensen, A. J. Dickinson, et al. Methanol-tolerant Oxygen Reduction Catalysts based on Transition Metal Sulfides and Their Application to the Study of Methanol Permeation. Electrochim. Acta. 2000, 45(25-26):4237~4250.
    191 F. Maillard, M. Martin, F. Gloaguen, et al. Oxygen Electroreduction onCarbon-supported Platinum Catalysts. Particle-size Effect on the Tolerance to Methanol Competition. Electrochim. Acta. 2002, 47:3431~3440.
    192 J. Maruyama, I. Abe. Carbonized Hemoglobin Functioning as a Cathode Catalyst for Polymer Electrolyte Fuel Cells, Chem. Mater. 2006, 18, 1303~1311.
    193 H. A. Gasteiger, N. Markovic, P. N. Ross, et al. Temperature-dependent Methanol Electrooxdation on Well-characterized Pt-Ru Alloys. J. Electrochem. Soc. 1994, 141:1795.
    194 C. Lamy, A. Lima, V. Le Rhun, et al. Recent Advances in the Development of Direct Alcohol Fuel Cells (DAFC). J. Power Sources 2002, 105:283~296.
    195 H. A. Gasteiger, N. M. Markovic, P. N. Ross, et al. Electro-oxidation of Small Organic Molecules on Well-characterized Pt-Ru Alloys. Electrochim. Acta 1994, 39: 1825~1832.
    196 N. M. Markovic, P. N. Ross. Surface Science Studies of Model Fuel Cell Electrocatalysts. Surf. Sci. Rep. 2002, 45: 117~229.
    197 D. Zhao, B. Q. Xu. Enhancement of Pt Utilization in Electrocatalysts by Using Gold Nanoparticles. Angew. Chem. Int. Ed. 2006, 45: 4955~4959.
    198 L.Yang, J. H. Chen, X. X. Zhong, et al. Au@Pt nanoparticles Prepared by One-phase Protocol and Their Electrocatalytic Properties for Methanol Oxidation. Colloids and Surfaces A: Physicochem. Eng. Aspects2007, 295: 21~26.
    199 H. Tang, J. H. Chen, M. Y. Wang, et al. Controlled Synthesis of Platinum Catalysts on Au Nanoparticles and Their Electrocatalytic Property for Methanol Oxidatio. Applied Catalysis A: General 2004, 275: 43~48.
    200 W. Chen, Y. W. Tang, J. C. Bao, et al. Study of Carbon-Supported Au Catalyst as the Cathodic Catalyst in a Direct Formic Acid Fuel Cell Prepared Using a Polyvinyl Alcohol Protection Method. J. Power Sources. 2007, 167: 315~318.
    201 C. R. Raj, A. I. Abdelrahman, T. Ohsaka. Gold Nanoparticle-assisted Electroreduction of Oxygen. Electrochem. Commun. 2005, 7:888~893.
    202黄建书,张校刚,多壁碳纳米管负载Pt-Au电催化剂的微波合成及其催化氧还原性质.物理化学学报. 2006, 22 (12):1551~1554
    203 J. Luo, P. N. Njoki, Y. Lin, et al. Characterization of Carbon-Supported AuPt Nanoparticles for Electrocatalytic Methanol Oxidation Reaction. Langmuir, 2006, 22: 2892
    204 L. Yang, J. H. Chen, X. X. Zhong, et al. Au@Pt Nanoparticles Prepared by One-phase Protocol and Their Electrocatalytic Properties for Methanol Oxidation. Colloids and Surfaces A: Physicochem. Eng. Aspects 2007, 295:21~26.
    205 I. S. Park, K. S. Lee, D. S. Jung, et al. Electrocatalytic Activity of Carbon-Supported Pt–Au Nanoparticles for Methanol Electro-oxidation. Electrochim. Acta. 2007, 52:5599~5605.
    206 J. Luo, P. N. Njoki, Y. Lin, et al. Activity-composition Correlation of AuPt Alloy Nanoparticle Catalysts in Electrocatalytic Reduction of Oxygen. Electrochem.Commun. 2006, 8, 581~587.
    207 P. Hernandez-Fernandez, S. Rojas, P. Ocon, et al. Relevance of the Nature of Bimetallic PtAu Nanoparticles as Electrocatalysts for the Oxygen Reduction Reaction in the Presence of Methanol. J. Power Sources. 2008, 177: 9~16.
    208 Y. Liu, M. Muraoka, S. Mitsushima, et al. Electrochemical and ATR-FTIR Study of Dimethyl Ether and Methanol Electro-oxidation on Sputtered Pt Electrode. Electrochimica Acta 2007, 52: 5781~5788.
    209 J. Zhang, K. Sasaki, E. Sutter, et al. Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters. Science 2007, 315:220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700