直接二甲醚燃料电池膜电极与电堆的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接二甲醚燃料电池(Direct dimethyl ether fuel cell, DDFC)是以二甲醚(Dimethyl ether, DME)为燃料的直接型燃料电池,最近几年开始受到关注。目前的研究主要集中在DME电氧化机理上,对DDFC膜电极(Membrane electrode assembly, MEA)的研究甚少。MEA是DDFC的核心部件,是化学能直接转化为电能的场所,其性能很大程度上决定了电池的性能。因此制备高性能的MEA,优化MEA的组成与结构就显得非常重要。本论文主要结合DME燃料的特性,针对DDFC的MEA进行研究,提高了电池性能,并设计研发了一种小型被动式DDFC电堆。
     详细研究了MEA的组成及结构对电极性能的影响。以Pt/C为阳极催化剂的MEA在高电流密度区表现出较好的性能;在低电流密度区,PtRu/C作阳极催化剂的电极性能较优。与Pt/Vulcan XC-72相比,Pt/MWNTs对DME显示出更高的催化活性。MEA阳极催化层中随着催化剂Pt载量的增加,电极性能先增大再有所减小,阳极扩散层中PTFE的最佳含量为20 mass %。MEA阴极催化层中Nafion含量为20 mass %,扩散层中PTFE含量为30 mass %时显示出较好的电极性能。Nafion膜厚度与电池开路电压成正比,采用Nafion112的MEA性能最差,采用Nafion115膜的MEA可以获得最大的电池功率密度(46 mW cm-2)。
     通过对DDFC性能的研究发现,当1.5 mol L-1DME水溶液以5 mL min-1阳极进料时显示出较好的电池性能,而当DME气体饱和加湿,流速为200 mL min-1时电池性能较好。与DME气体相比,以DME溶液为燃料的DDFC可以获得更好的电池性能和长时间放电稳定性。DDFC与DMFC相比较,DME透过Nafion115膜的渗透系数比甲醇低大约一个数量级,DME在Pt/C玻璃碳电极上的初始氧化电位较甲醇负移50 mV左右。在低电流密度区,DDFC的性能要优于DMFC;在高电流密度区,DMFC则表现出较好的性能。电池在80℃工作时,DDFC的最大功率密度为56 mW cm-2,DMFC的最大功率密度为81 mW cm-2,DDFC的最大功率密度约为DMFC的69 %。
     针对DME在水中的溶解度随温度升高而下降的特性,研究了一种用于DDFC的MEA新结构,其阳极扩散层在同一平面上分成了亲水与憎水两个区域。电池在50℃运行时,新型MEA表现出较优的电极性能,与亲水和憎水MEA相比较,新型MEA具有较小的传质阻抗和长时间运行性能衰减率。通过改变新型MEA阳极扩散层中亲、憎水区域的面积比可调节DDFC在不同工作温度下的电极性能。低温时,阳极扩散层中亲水区面积较大的MEA性能较优;而高温时,阳极扩散层中憎水区面积较大的MEA可以获得更好的电极性能。
     设计、研究了一种小型被动式DDFC电堆。各单体电池性能均一性较好,电堆的开路电压在4 V左右,最大功率为300 mW。6单体电池可以按照不同的方式进行电连接,改变的只是电流与电压值,电堆的总输出功率基本不变。电堆在恒、变电流下均可稳定运行。电堆室温21℃启动,在恒电流100 mA运行过程中,温度逐渐上升,大约60 min后温度逐渐稳定在37℃。电堆在恒电流300 mA下运行时,初始电压为1.4 V,经过1100 min放电后电压降为0,电堆的燃料利用率为57 %。
Direct dimethyl ether fuel cell (DDFC) is a direct type fuel cell using dimethyl ether (DME) as fuel. DDFC has been recently studied. Up to now, a lot of work was focused on electro-oxidation of DME. The membrane electrode assembly (MEA) has not been studied in detail. MEA is the key component of the DDFC, and the chemical energy is directly converted into electrical energy on the MEA. The performance of the DDFC is greatly dependent on the performance of MEA. In this paper, the MEA of the DDFC was investigated, and the performance of the MEA was increased. A small passive DDFC stack was fabricated for room temperature applications.
     We investigated the effects of compositions and structure of MEA on the cell performance. The MEA with Pt/C as the anode catalyst showed higher performance than that with PtRu/C at the low cell voltage regions, but at the high cell voltage regions, the PtRu/C yielded better performance than Pt/C. The Pt/MWNTs showed a higher catalytic activity for dimethyl ether electro-oxidation, compared with the Pt/Vulcan XC-72 catalyst. The performances of the MEAs was improved with the increase of Pt loading up to 3.6 mg cm-2, and then decreased with further increase of Pt loading. And 20 mass % PTFE content and 1 mg cm-2 carbon black loading were optimal compositions in the anode diffusion layer. In the cathode, MEA with 20 mass % Nafion content in the catalyst layer and 30 mass % PTFE content in the diffusion layer presented the better performance. The (Open circuit voltage, OCV) of the cell reduced with the decrease of the thickness of the membrane. The performance of the MEA with Nafion 112 membrane is the worst. The MEA with Nafion 115 membrane displayed the highest maximum power density of 46 mW cm-2 among the three MEAs with different thickness of Nafion membranes.
     The DDFC with 1.5 mol L-1 and 5 mL min-1 DME solution showed the best performance. The DDFC with full humidification and 5 mL min-1 DME gas presented higher performance. Compared with DME gas, the DDFC with DME solution showed higher power density and better long-term operation performance. The fuel crossover of DME in the Nafion 115 membrane was expected to be smaller than that of methanol. The DDFC showed higher performance than DMFC at the low current density regions, but at the high current density regions, the DMFC exhibited better results than DDFC. The maximum power density of the DDFC was 69 % of the DMFC.
     The solubility of DME in water decrease with the increase of the temperature. We presented the novel MEA for DDFC. The anode diffusion layer of the MEA consisted of hydrophilic region and hydrophobic region. The performance of novel MEA for DDFC was enhanced due to the promotion the mass transport of DME fuel at 50℃. The electrochemical impedance spectra analyses revealed that the mass transfer resistance of novel MEA was lower than that of completed hydrophilic or hydrophobic MEA. The constant current operation curves showed that the degradation rate of the novel MEA was lower than that of conventional MEAs. It indicated that the novel MEA benefited the long-term operation of DDFC. At low temperature, the novel MEA with larger hydrophilic region showed excellent performance. The performance of novel MEA with larger hydrophobic region was better at high temperature.
     A small passive DDFC stack consisting of 6 single cells was fabricated for room temperature applications. The performance of each single cell is uniform. The OCV of the stack is around 4 V, with a maximum power of 300 mW. The serial connection was benificial to the OCV of the stack, and the parallel connection was in favor of the discharge current. The total power density was independent to the connection pattern. The stack operated stably at either constant or varied currents. When the stack operated at a constant current of 100 mA at 21℃, the temperature gradually rose to 37℃after 60 min and remained at this temperature. The initial voltage was 1.4 V at a constant current of 300 mA. After 1100 min operation, the voltage dropped to 0 V and the fuel utilization was 57 %.
引文
1唐庆杰,刘海平,袁光耀等.二甲醚的研发现状和应用前景.加工转化. 2006, 32(7): 49~51
    2衣宝廉.质子交换膜燃料电池关键材料的现状与展望.电源技术. 2003, 5(27): 175~182
    3 A. Verma, S. Basu. Experimental Evaluation and Mathematical Modeling of a Direct Alkaline Fuel Cell. J. Power Sources. 2007, 168(1): 200~210
    4 S. J. Seo, H. I. Joh, H. T. Kim, et al. Properties of Pt/C Catalyst Modified by Chemical Vapor Deposition of Cr as a Cathode of Phosphoric Acid Fuel Cell. Electrochim. Acta. 2006, 52(4): 1676~1682
    5 H. Yasue, H. Kato, K. Takasu. Development of a 1000 kW-Class MCFC Pilot Plant in Japan. J. Power Sources. 1998, 71(1-2): 89~94
    6 Z. Q. Yu, S. C. Chuang. Pulse CH4/D2O Reaction on a Ni/YSZ Anode in SOFC. Appl. Catal. A. 2007, 327(2): 147~156
    7 H. L. Tang, P. K. Shen, S. P. Jiang, et al. A Degradation Study of Nafion Proton Exchange Membrane of PEM Fuel Cells. J. Power Sources. 2007, 170(1): 85~92
    8 Y.C. Kim, J.Y. Jeong, J.Y. Hwang, et al. Incorporation of Heteropoly Acid, Tungstophosphoric Acid within MCM-41 via Impregnation and Direct Synthesis Methods for the Fabrication of Composite Membrane of DMFC. J. Membr. Sci. 2008, 325(1): 252~261
    9 E. Ribadeneira, B. A. Hoyos. Evaluation of Pt–Ru–Ni and Pt–Sn–Ni Catalysts as Anodes in Direct Ethanol Fuel Cells. J. Power Sources. 2008, 180(1): 238~242
    10 H. Q. Song, X. P. Qiu, D. J. Guo, et al. Role of Structural H2O in TiO2 Nanotubes in Enhancing Pt/C Direct Ethanol Fuel Cell Anode Electro-catalysts. J. Power Sources. 2008, 178(1): 97~102
    11 X. W. Yu, P. G. Pickup. Recent Advances in Direct Formic Acid Fuel Cells (DFAFC). J. Power Sources. 2008, 182(1): 124~132
    12 W. Sun, G. Q. Sun, B. Qin, et al. A Fuel-Cell-Type Sensor for Detection of Formaldehyde in Aqueous Solution. Sensors and Actuators B. 2007, 128(1): 193~198
    13 Y. Chen, C. A. C Sequeira, C. P. Chen, et al. Metal Hydride Beds and Hydrogen Supply Tanks as Minitype PEMFC Hydrogen Sources. Int. J. Hydrogen Energy. 2003, 28(3): 329~333
    14 X. G. Zhang, D. Zheng, T. Wang, et al. A preliminary Study of a Miniature Planar 6-Cell PEMFC Stack Combined with a Small Hydrogen Storage Canister. J. Power Sources. 2007, 166(2): 441~444
    15 C. M. Lai, J. C. Lin, F. P. Ting, et al. Contribution of Nafion Loading to the Activity of Catalysts and the Performance of PEMFC. Int. J. Hydrogen Energy. 2008, 33(15): 4132~4137
    16 J. J. Li, F. Ye, L. Chen, et al. A study on Novel Pulse Preparation and Electrocatalytic Activities of Pt/C-Nafion Electrodes for PEMFC. J. Power Sources. In Press
    17 S. Lee, H. Jeong, B. Ahn, et al. Parametric Study of the Channel Design at the Bipolar Plate in PEMFC Performances. Int. J. Hydrogen Energy. 2008, 33(20): 5691~5696
    18 X. Cheng, C. Peng, M. D. You, et al. Characterization of Catalysts and Membrane in DMFC Lifetime Testing. Electrochim. Acta. 2006, 51(22): 4620~4625
    19 H. B. Zhao, L. Li, J. Yang, et al. Synthesis and Characterization of Bimetallic Pt–Fe/Polypyrrole–Carbon Catalyst as DMFC Anode Catalyst. Electrochem. Commun. 2008, 10(6): 876~879
    20 T. T. Wang, C. S. Lin, F. Ye, et al. MEA with Double-layered Catalyst Cathode to Mitigate Methanol Crossover in DMFC. Electrochem. Commun. 2008, 10(9): 1261~1263
    21 S. Eccarius, B. L. Garcia, C. Hebling, et al. Experimental Validation of a Methanol Crossover Model in DMFC Applications. J. Power Sources. 2008, 179(2): 723~733
    22 L. Cao, G. Q. Sun, H. Q. Li, et al. Carbon-Supported IrSn Catalysts for a Direct Ethanol Fuel Cell. Electrochem. Commun. 2007, 9(10): 2541~2546
    23 N. Fujiwara, Z. Siroma, S. I. Yamazaki, et al. Direct Ethanol Fuel Cells Using an Anion Exchange Membrane. J. Power Sources. In Press
    24 R. Chetty, K. Scott. Dimethoxymethane and Trimethoxymethane as Alternative Fuels for Fuel Cells. J. Power Sources. 2007, 173(1): 166~171
    25 G. K. S. Prakash, M. C. Smart, G. A. Olah, et al. Performance of Dimethoxymethane and Trimethoxymethane in Liquid-Feed Direct Oxidation Fuel Cells. J. Power Sources. 2007, 173(1): 102~109
    26 J. K. Lee, J. Lee, J. Han, et al. Influence of Au Contents of AuPt Anode Catalyst on the Performance of Direct Formic Acid Fuel Cell. Electrochim. Acta. 2008, 53(9): 3474~3478
    27 H. Qiao, H. Shiroishi, T. Okada. Passive Micro Tubular Direct Formic Acid Fuel Cells with Chemically Assembled Pd Anode Nano-Catalysts on Polymer Electrolytes. Electrochim. Acta. 2008, 53(1): 59~65
    28 V. Selvaraj, M. Alagar, K. S. Kumar. Synthesis and Characterization of Metal Nanoparticles-Decorated PPY–CNT Composite and Their Electrocatalytic Oxidation of Formic Acid and Formaldehyde for Fuel Cell Applications. Appl. Catal. B. 2007, 75(1-2): 129~138
    29 Y. Tsutsumi, T. Satou, A. Yasizawa. XII International Symposium on Alcohol Fuels. Beijing, Tsinghua University Press, 1998: 403~408
    30 S. E. Nam, S. O. Kim, Y. Kang, et al. Preparation of Nafion/Sulfonated Poly (Phenylsilsesquioxane) Nanocomposite as High Temperature Proton Exchange Membranes. J. Membr. Sci. 2008, 322(2): 466~474
    31童景山,梁燕波.新液体燃料-二甲醚的热力学性质与传递性质研究.化工数据. 2003, 28 (4): 59~62
    32 T. A. Semelsberger, R. L. Borup, H. L. Greene. Dimethyl Ether (DME) as an Alternative Fuel. J. Power Sources. 2006, 156(2): 497~511
    33 K. Faungnawakij, R. Kikuchi, K. Eguchi. Thermodynamic Evaluation of Methanol Steam Reforming for Hydrogen Production. J. Power Sources. 2006, 161(1): 87~94
    34 T. A. Semelsberger, R. L. Borup. Thermodynamic Equilibrium Calculations of Dimethyl Ether Steam Reforming and Dimethyl Ether Hydrolysis. J. Power Sources. 2005, 152(1): 87~96
    35 T. A. Semelsberger, R. L. Borup. Thermodynamic Equilibrium Calculations of Hydrogen Production from the Combined Processes of Dimethyl Ether Steam Reforming and Partial Oxidation. J. Power Sources. 2006, 155(2): 340~352
    36 T. A. Semelsberger, K. C. Ott, R. L. Borup, et al. Generating Hydrogen-Rich Fuel-Cell Feeds from Dimethyl Ether (DME) using Physical Mixtures of a Commercial Cu/Zn/Al2O3 Catalyst and Several Solid–Acid Catalysts. Appl. Catal. B. 2006, 65(3-4): 291~300
    37 N. Laosiripojana, S. Assabumrungrat. Catalytic Steam Reforming of Dimethyl Ether (DME) Over High Surface Area Ce-ZrO2 at SOFC Temperature: The Possible Use of DME in Indirect Internal Reforming Operation (IIR-SOFC). Appl. Catal. A. 2007, 320: 105~113
    38 T. A. Semelsberger, K. C. Ott, R. L. Borup, et al. Generating Hydrogen-Rich Fuel-Cell Feeds from Dimethyl Ether (DME) using Cu/Zn Supported on Various Solid-Acid Substrates. Appl. Catal. A. 2006, 309(2): 210~223
    39 Q. Zhang, Z. F. Li, S. W. Wang. The Electro-Oxidation of Dimethyl Ether on Platinum-Based Catalyst. Electrochim. Acta. 2008, 53(28): 8298~8304
    40张骞,李忠芳,王素文等.直接二甲醚燃料电池的研究进展.电源技术. 2007, 31(10): 837~840
    41 K. Kang, Y. S. Meng, J. Bréger et al. Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries. Science. 2006, 311(17): 977~980
    42 V. G. Kumar, J. S. Gnanaraj, S. Ben-David et al. An Aqueous Reduction Method to Synthesize Spinel-LiMn2O4 Nanoparticles as a Cathode Material for Rechargeable Lithium-Ion Batteries. Chem. Mater. 2003, 15: 4211~4216
    43 Z.R. Zhang, Z.L. Gong, Y. Yang. Electrochemical Performance and Surface Properties of Bare and TiO2-Coated Cathode Materials in Lithium-ion batteries. J. Phys. Chem. B. 2004, 108: 17546~17552
    44 B. F. Wang, Y. L. Qiu, L. Yang. Structural and Electrochemical Characterization of LiFePO4 Synthesized by an HEDP-BasedSoft-Chemistry Route. Electrochem. Commun. 2006, 8: 1801~1805
    45 M. D. Farrington. Safety of Lithium Batteries in Transportation. J. Power Sources. 20001, 96(1): 260~265
    46 J. T. Müller, P. M. Urban, W. F. H?lderich, et al. Electro-Oxidation of Dimethyl Ether in a Polymer-Electrolyte-Membrane Fuel Cell. J. Electrochem. Soc. 2000, 147(11): 4058~4060
    47中野康宏,橫崛一男,堤泰行等.ジメチルエーテル燃料電池の燃料クロスリーク特性.第43回日本電池討論会講演要旨集.日本福岡, 2002, 10: 530~531
    48 G. Kerangueven, C. Coutanceau, E. Sibert, et al. Mechanism of Di(methyl)ether (DME) Electrooxidation at Platinum Electrodes in Acid Medium. J. Appl. Electrochem. 2006, 36: 441~448
    49邵玉艳,尹鸽平,高云智.二甲醚在铂电极上的电氧化和吸附行为.武汉大学学报(理学版). 2004, 50(4): 436~440
    50邵玉艳,尹鸽平,高云智.二甲醚电氧化增强电化学表面积的研究.无机化学学报. 2005, 21(7): 1060~1064
    51 L. L. Lu, G. P. Yin, Y. J. Tong, et al. Electrochemical Behaviors of Dimethyl Ether on Platinum Single Crystal Electrodes. Part I: Pt(1 1 1). J. Electroanal. Chem. 2008, 619-620: 143~151
    52 Y. Zhang, L. L. Lu, Y. Y. Tong, et al. Electrochemical and Infrared Study of Electro-Oxidation of Dimethyl Ether (DME) on Platinum Polycrystalline Electrode in Acid Solutions. Electrochim. Acta. 2008, 53(21): 6093~6103
    53 Y. Y. Tong, L. L. Lu, Y. Zhang, et al. Surface Structure Dependent Electro-Oxidation of Dimethyl Ether on Platinum Single-Crystal Electrodes. J. Phys. Chem. C. 2007, 111(51): 18836~18838
    54 S. Ueda, M. Eguchi, K. Uno, et al. Electrochemical Characteristics of Direct Dimethyl Ether Fuel Cells. Solid State Ionics. 2006, 177 (19-25): 2175~2178
    55 T. Haraguchi, Y. Y. Tsutsumi, H. Takagi, et al. Performance of Dimethyl Ether Fuel Cells Using a Pt-Ru Catalyst. Electr. Eng. Jpn. 2005, 150 (3): 19~25
    56 Y. Liu, S. Mitsushima, K. I. Ota, et al. Electro-Oxidation of DimethylEther on Pt/C and Ptme/C Catalysts in Sulfuric Acid. Electrochim. Acta. 2006, 51(28): 6503~6509
    57 I. Mizutani, Y. Liu, S. Mitsushima, et al. Anode Reaction Mechanism and Crossover in Direct Dimethyl Ether Fuel Cell. J. Power Sources. 2006, 156(2): 183~189
    58 Y. Liu, M. Muraoka, S. Mitsushima, et al. Electrochemical and Atr-Ftir Study of Dimethyl Ether And Methanol Electro-Oxidation on Sputtered Pt Electrode. Electrochim. Acta. 2007, 52(19): 5781~5788
    59 J. H. Yoo, H. G. Choi, C. H. Chung, et al. Fuel Cells Using Dimethyl Ether. J. Power Sources. 2006, 163(1): 103~106
    60 G. Kerangueven, C. Coutanceau, E. Sibert, et al. Methoxy Methane (Dimethyl Ether) as an Alternative Fuel For Direct Fuel Cells. J. Power Sources. 2006, 157(1): 318~324
    61 P. E. Tsiakaras. PtM/C (M = Sn, Ru, Pd, W) Based Anode Direct Ethanol–Pemfcs: Structural Characteristics and Cell Performance J. Power Sources. 2007, 171(1): 107~112
    62 E. Ribadeneira, B. A. Hoyos. Evaluation of Pt–Ru–Ni and Pt–Sn–Ni Catalysts as Anodes in Direct Ethanol Fuel Cells. J. Power Sources. 2008, 180(1): 238~242
    63 R. F. Wang, S.J. Liao, S. Ji. High Performance Pd-Based Catalysts for Oxidation of Formic Acid. J. Power Sources. 2008, 180(1): 205~208
    64堤泰行,中野康宏,井尚明等.メトキシ燃料電池.第43回日本電池討論会講演要旨集.日本福岡. 2002, 10: 526~527
    65 T. Haraguchi, T. Watanabe, M. Yamashita, et al. Generation Performance of a Fuel Cell Using Hydrogen and Dimethyl Ether (DME) Mixed Gas. Electr. Eng. Jpn. 2006, 157(4): 24~29
    66 M. Mench, H. M. Chance, C. Y. Wang, et al. Direct Dimethyl Ether Polymer Electrolyte Fuel Cells for Portable Applications. J. Electrochem. Soc. 2004, 151(1): A144~A150
    67 J. H. Yu, H.G. Choi, S. M. Cho, et al. Performance of Direct Dimethyl Ether Fuel Cells at Low Temperature. Electrochem. Commun. 2005, 7(12): 1385~1388
    68 J. Y. Im, B. S. Kim, H. G. Choi, et al. Effect of Pressure for Direct FuelCells Using DME-Based Fuels. J. Power Sources. 2005, 179(1): 301~304
    69 C. G. Suo, X. W. Liu, X. C. Tang, et al. a Novel MEA Architecture for Improving the Performance of a DMFC. Electrochem. Commun. 2008, 10(10): 1606~1609
    70 L. Akyal??n, S. Kaytako?lu. Optimization of Structural Combinations on the Performance of a PEMFC's MEA. J. Power Sources. 2008, 180(2): 767~772
    71 H. L. Tang, S. L. Wang, M. Pan, et al. Performance of DMFCs Prepared By Hot-Pressed MEA and Catalyst-Coated Membrane. Fuel Cells Bulletin. 2007, 2007(5): 12~16
    72 H. L. Tang, S. L. Wang, M. Pan, et al. Performance of Direct Methanol Fuel Cells Prepared by Hot-Pressed MEA and Catalyst-Coated Membrane (CCM). Electrochim. Acta. 2007, 52(1): 3714~3718
    73 H. Y. Jung, K. Y. Cho, Y. M. Lee, et al. Influence of Annealing of Membrane Electrode Assembly (MEA) on Performance of Direct Methanol Fuel Cell (DMFC). J. Power Sources. 2007, 163(2): 952~956
    74 J. Zhang, G. P. Yin, Z. B. Wang, et al. Effects of MEA Preparation on the Performance of a Direct Methanol Fuel Cell. J. Power Sources. 2006, 160(2): 1035~1040
    75 S. Song, G. Wang, W. Zhou, et al. The Effect of the MEA Preparation Procedure on Both Ethanol Crossover and DEFC Performance. J. Power Sources. 2005, 140(1): 103~110
    76 J. H. Kim, H. Y. Ha, I. H. Oh, et al. Influence of the Solvent in Anode Catalyst Ink on the Performance of a Direct Methanol Fuel Cell. J. Power Sources. 2004, 135(1-2): 29~35
    77 J. S. Lee, K. I. Han, S. O. Park, et al. Performance and Impedance under Various Catalyst Layer Thicknesses in DMFC. Electrochim. Acta. 2004, 50(2-3): 807~810
    78 G. Q. Lu, C. Y. Wang, T. J. Yen, et al. Development and Characterization of a Silicon-Based Micro Direct Methanol Fuel Cell. Electrochim. Acta. 2004, 49(5): 821~828
    79 C. Lim, C. Y. Wang. Development of High-Power Electrodes for aLiquid-Feed Direct Methanol Fuel Cell. J. Power Sources. 2003, 113(1): 145~150
    80 W. R. W. Daud, A. B. Mohamad, A. A. H. Kadhum, et al. Performance Optimisation of PEM Fuel Cell during MEA Fabrication. Energ. Convers. Manage. 2004, 45(20): 3239~3249
    81 S. L. Wang, G. Q. Sun, G. X. Wang, et al. Improvement of Direct Methanol Fuel Cell Performance by Modifying Catalyst Coated Membrane Structure. Electrochem. Commun. 2005, 7(10): 1007~1012
    82 G. X. Wang, G. Q. Sun, Z. H. Zhou, et al. Performance Improvement in Direct Methanol Fuel Cell Cathode Using High Mesoporous Area Catalyst Support. Electrochem. Solid-State Lett. 2005, 8(1): A12~A16
    83 C. S. Kim, Y. G. Chun, D. H. Peck, et al. A Novel Process to Fabricate Membrane Electrode Assemblies for Proton Exchange Membrane Fuel Cells. Int. J. Hydrogen Energy. 1998, 23 (11): 1045~1048
    84 M. S. Wilson, S. Gottesfeld. Thin-Film Catalyst Layers for Polymer Electrolyte Fuel Cell. J. Appl. Electrochem. 1992, 22(1): 1~7
    85 S. Gottesefld, M. Wilson. High Performance Catalyzed Membrane of Ultra-Low Pt Loadings of Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 1992, 139(2): L28~L30
    86 E. Gulzow, R. Reissner, S. Weisshaar, et al. Progress in DMFC Development Using the Dry Spraying Preparation Technique. Fuel Cells. 2003, 3(1-2): 48~51
    87 E. Gulzow, T. kaz, R. Reissner, et al. Study of Membrane Electrode Assemblies for Direct Methanol Fuel Cells, J. Power Sources. 2002, 105(2): 261~266
    88 E. Gulzow, T. Kaz. New Results of PEFC Electrodes Produced by the DLR Dry Preparation Technique. J. Power Sources. 2002, 106(1-2): 122~125
    89 Z. B. He, J. Chen, D. Liu. Deposition and Electrocatalytic Properties of Platinum Nanoparticals on Carbon Nanotubes for Methanol Electrooxidation. Mater. Chem. Phy. 2004, 85(2-3): 396~401
    90 M. S. Loffler, B. Gross, H. Natter, et al. Synthesis and Characterization of Catalyst Layers for Direct Methanol Fuel Cell Applications. Phys.Chem. Chem. Phys. 2001, 3(3): 333~336
    91 E. J. Taylor, E. B. Anderson, R. K. Vilambin. Preparation of High Platinum Utilization Gas Diffusion Electrodes for Proton Exchange Membrane Fuel Cell. J. Electrochem. Soc. 1992, 139(5): L45~L46
    92 A. Missiroli, F. Soavi, M. Mastragostino. Increased Performance of Electrodeposited PtRu/C-Nafion Catalysts for DMFC. Electrochem. Solid-State Lett. 2005, 8 (2): A110~A114
    93 Y. Y. Shao, G. P. Yin, J. J. Wang, et al. In-situ Deposition of Highly Dispersed Pt Nanoparticles on Carbon Black Electrode for Oxygen Reduction. J. Electrochem. Soc. 2006, 153 (7): A1261~A1265
    94 S. J. C. Cleghorn, X. Ren, T. E. Springer, et al. PEM Fuel Cells for Transportation and Stationary Power Generation Applications. Int. J. Hydrogen Energy. 1997, 22(12): 1137~1144
    95 G. Bender, T. A. Zawodzinski, A. P. Saab. Fabrication of High Precision PEFC Membrane Electrode Assemblies. J. Power Sources. 2003, 124(1): 114~117
    96 J. T. Müeller, P. M. Urban. Impedance Studies on Direct Methanol Fuel Cell Anodes. J. Power.Sources. 1999, 84(2): 157~160
    97 M. S. Wilson,J. A. Valerio,S. Gottesefld. Low Platinum Loading Electrodes of Polymer Electrolyte Fuel Cells Fabricated Using Thermoplastic Ionomers. Electrochim. Acta. 1995, 40 (3): 355~363
    98 S. Hirano, J. Kim, S. Srinivasan. High Performance Proton Exchange Membrane Fuel Cell with Sputter-Deposited Pt Layer Electrode. Electrochim. Acta. 1997, 42(10): 1587~1593
    99 Z. B. Wang, P. J. Zuo, X. P. Wang, et al. Studies of Performance Decay of Pt/C Catalysts with Working Time of Proton Exchange Membrane Fuel Cell. J. Power Sources. 2008, 184(1): 245~250
    100 W. Bi, T. F. Fuller. Modeling of PEM Fuel Cell Pt/C Catalyst Degradation. J. Power Sources. 2008, 178(1): 188~196
    101 X. W. Yu, S. Y. Ye. Recent Advances in Activity and Durability Enhancement of Pt/C Catalytic Cathode in PEMFC: Part I. Physico-Chemical and Electronic Interaction between Pt and Carbon Support, and Activity Enhancement of Pt/C Catalyst. J. PowerSources. 2007, 172(1): 133~144
    102 X. W. Yu, S. Y. Ye. Recent Advances in Activity and Durability Enhancement of Pt/C Catalytic Cathode in PEMFC: Part II: Degradation Mechanism and Durability Enhancement of Carbon Supported Platinum Catalyst. J. Power Sources. 2007, 172(1): 145~154
    103 J. G. Oh, C. H. Lee, H. S. Kim. Surface Modified Pt/C as a Methanol Tolerant Oxygen Reduction Catalyst for Direct Methanol Fuel Cells. Electrochem. Commun. 2007, 9(10): 2629~2632
    104 W. L. Xu, X. C. Zhou, C.P. Liu, et al. The Real Role of Carbon in Pt/C Catalysts for Oxygen Reduction Reaction. Electrochem. Commun. 2007, 9(5): 1002~1006
    105 J. J. Wang, G. P. Yin, Y. Y. Shao, et al. Effect of Carbon Black Support Corrosion on the Durability of Pt/C Catalyst. J. Power Sources. 2007, 171(2): 331~339
    106 J. H. Zeng, J. Y. Lee. More Active PtRu/C Catalyst for Methanol Electrooxidation by Reversal of Mixing Sequence in Catalyst Preparation. Mater. Chem. Phys. 2007, 104(2-3): 336~341
    107 S. Y. Yan, G. Q. Sun, J. Tian, et al. Polyol Synthesis of Highly Active PtRu/C Catalyst with High Metal Loading. Electrochim. Acta. 2006, 52(4): 1692~1696
    108 J. Zhu, Y. Su, F. Y. Cheng, et al. Improving the Performance of PtRu/C Catalysts for Methanol Oxidation by Sensitization and Activation Treatment. J. Power Sources. 2007, 166(2): 331~336
    109 Y. Q. Xu, X. F. Xie, J. W. Guo, et al. Effects of Annealing Treatment and pH on Preparation of Citrate-Stabilized PtRu/C Catalyst. J. Power Sources. 2006, 162(1): 132~140
    110 G. Wu, L. Li, B. Q. Xu. Effect of Electrochemical Polarization of PtRu/C Catalysts on Methanol Electrooxidation. Electrochim. Acta. 2004, 50(1): 1~10
    111 M. S. Hyun, S. K. Kim, B. Lee, et al. Effect of NaBH4 Concentration on the Characteristics of PtRu/C Catalyst for the Anode of DMFC Prepared by the Impregnation Method. Catal. Today. 2008, 132(1-4):138~145
    112 A. S. Arico, V. Antonucci, N. Giordanon, et al. Methanol Oxidation on Carbon Supported Platinum Tin Electrodes in Sulfuric Acid. J. Power Sources. 1994, 50(3): 295~309
    113 M. P. Janssen, N. J. Moolhuyse. State and Action of the Tin Atoms in Platinum Tin Catalyst for Methanol Fuel Cells. J. Catal. 1977, 46(3): 289~296
    114 A. K. Shunka, A. S. Arico, K. M. Elkhatib, et al. An X-ray Photoelectron Spectroscopic Study on the Effect of Ru and Sn Additions to Platinized Carbons. Appl. Surf. Sci. 1999, 137(1-4): 20~29
    115 S. Mylswamy, C. Y. Wang, R. S. Liu, et al. Anode Catalysts for Enhanced Methanol Oxidation: An in situ XANES Study of PtRu/C and PtMo/C Catalysts. Chem. Phys. Lett. 2005, 412(4-6): 444~448
    116 Z. B. Wang, G. P. Yin, J. Zhang, et al. Co-catalyst Effect of Ni in the Methanol Electro-Oxidation on Pt-Ru/C Catalyst for Direct Methanol Fuel Cell. Electrochim. Acta. 2006, 51(26): 5691~5697
    117 Z. B. Wang, G. P. Yin, J. Zhang, et al. Investigation of Ethanol Electrooxidation on a Pt-Ru-Ni/C Catalyst for a Direct Ethanol Fuel Cell. J. Power Sources. 2006, 160(1): 37~43
    118 P. K. Shen, C. C. Tseunga. Anodic Oxidation of Methanol Pt/WO3 in Acidic Media. J. Electrochem. Soc. 1994, 141(11): 3082~3089
    119 K. Lasch, L. Jorissen, J. Garche. The Effect of Metal Oxides as Co-Catalysts for the Electro-Oxidation of Methanol on Platinum-Ruthenium. J. Power Sources. 1999, 84(2): 225~230
    120 J. F. Drillet, A. Ee, J. Friedemann, et al. Oxygen Reduction at Pt and Pt70Ni30 in H2SO4/CH3OH Solution. Electrochim. Acta. 2002, 47(12): 1983~1988
    121 E. Antolini, J. R. C. Salgado, E. R. Gozalez. Carbon Supported Pt75M25 (M = Co, Ni) Alloys as Anode and Cathode Electrocatalysts for Direct Methanol Fuel Cells. J. Electroanal. Chem. 2005, 580(1): 145~154
    122 E. Antolini, J. R. C. Salgado, A. M. dos Santos, et al. Carbon-Supported Pt-Ni Alloys Prepared by the Borohydride Methodas Electrocatalysts for DMFCs. Electrochem. Solid-State Lett. 2005, 8(4): A226~A230
    123 H. Yang, N. Alonso-Vante, J. M. Leger, et al. Tailoring, Structure, and Activity of Carbon-Supported Nanosized Pt-Cr Alloy Electrocatalysts for Oxygen Reduction in Pure and Methanol-Containing Electrolytes. J. Phys. Chem. B. 2004, 108(6): 1938~1947
    124 W. Z. Li, W. J. Zhou, H. Q. Li, et al. Nano-stuctured Pt-Fe/C as Cathode Catalyst in Direct Methanol Fuel Cell. Electrochim. Acta. 2004, 49(7): 1045~1055
    125 A. S. Arico, Z. Poltarzewski, H. Kim, et al. Investigation of a Carbon-supported Quaternary Pt-Ru-Sn-W Catalyst for Direct Methanol Fuel Cells. J. Power Sources. 1995, 55(2): 159~166
    126 L. Xiong, A. Manthiram. Synthesis and Characterization of Methanol Tolerant Pt/TiOx/C Nanocomposites for Oxygen Reduction in Direct Methanol Fuel Cells. Electrochim. Acta. 2004, 49(24): 4163~4170
    127 W. Z. Li, C. H. Liang, J. S. Qiu, et al. Carbon Nanotubes as Support for Cathode Catalyst of a Direct Methanol Fuel Cell. Carbon. 2002, 40(5): 791~794
    128 G. X. Wang, G. Q. Sun, Z. H. Zhou, et al. Performance Improvement in Direct Methanol Fuel Cell Cathode Using High Mesoporous Area Catayst Support. Electrochem. Solid-State Lett. 2005, 8 (1): A12~A16
    129 Y. C. Liu, X. P. Qiu, Y. Q. Huang, et al. Influence of Preparation Process of MEA with Mesocarbon Microbeads Supported Pt-Ru Catalysts on Methanol Electro-Oxidation. J. Appl. Electrochem. 2002, 32(11): 1279~1285
    130 M. C. Lefebvre, Z. G. Qi, P. G. Pickup. Electronically Conducting Proton Exchange Polymers as Catalyst Supports for Proton Exchange Membrane Fuel Cells-Electrocatalysis of Oxygen Reduction, Hydrogen Oxidation, and Methanol Oxidation. J. Electrochem. Soc. 1999, 146(6): 2054~2058
    131 Z. B. Wang, G. P. Yin, P. F. Shi. Effects of Ozone Treatment of Carbon Support on Pt-Ru/C Catalysts Performance for Direct Methanol Fuel Cell. Carbon. 2006, 44(1): 133~140
    132王振波,尹鸽平,孙迎超等.碳载体前处理对DMFC Pt-Ru/C的催化剂性能影响研究.炭素. 2005, 123(3): 25~29
    133 Y. Y. Shao, G. P. Yin, Y. Z. Gao, et al. Durability Study of Pt/C and Pt/CNTs Catalysts under Simulated PEM Fuel Cell Conditions. J. Electrochem. Soc. 2006, 153 (6): A1093~A1097
    134 J. J. Pan, H. N. Zhang, M. Pan. Self-Assembly of Nafion Molecules onto Silica Nanoparticles Formed in Situ through Sol–Gel Process. J. Colloid. Interf. Sci. 2008, 326(1): 55~60
    135 J. D. Jeon, S. Y. Kwak. Nafion/Sulfatedβ-Cyclodextrin Composite Membranes for Direct Methanol Fuel Cells. J. Power Sources. 2008, 185(1): 49~54
    136 S. E. Nam, S. O. Kim, Y. Kang, et al. Preparation of Nafion/Sulfonated Poly(Phenylsilsesquioxane) Nanocomposite as High Temperature Proton Exchange Membranes. J. Membr. Sci. 2008, 322(2): 466~474
    137 Y. G. Jin, S. Z. Qiao, L. Zhang, et al. Novel Nafion Composite Membranes with Mesoporous Silica Nanospheres as Inorganic Fillers. J. Power Sources. In Press
    138 K.P. Wang, S. McDermid, J. Li, et al. Preparation and Performance of Nano Silica/Nafion Composite Membrane for Proton Exchange Membrane Fuel Cells. J. Power Sources. 2008, 184(1): 99~103
    139 Y. M. Kim, K. W. Park, J. H. Chio. A Pd-Impregnated Nanocomposite Nafion Membrane for Use in High-Concentration Methanol Fuel in DMFC. Electrochem. Commun. 2003, 5(7): 571~574
    140 S. H. Kwak, T. H. Yang, C. S. Kim, et al. The Effect of Platinum Loading in the Self-Humidifying Polymer Electrolyte Membrane on Water Uptake. J. Power Sources. 2003, 118(1-2): 200~204
    141 Z. Q. Ma, P. Cheng, T. S. Zhao. A Palladium-Alloy Deposited Nafion Membrane for Direct Methanol Fuel Cells. J. Membr. Sci. 2003, 215(1-2): 327~336
    142 H. S. Park, Y. J. Kim, W. H. Hong. Physical and Electrochemical Properties of Nafion/Polypyrrole Composite Membrane for DMFC. J. Membr. Sci. 2006, 272(1-2): 28~36
    143 M. A. Smit, A. L. Ocampoa, M. A. E. Medina. A Modified NafionMethanol Fuel Cell. J. Power Sources. 2003, 124(1): 59~64
    144 J. Zhu, R. R. Sattler, A. Garsuch. Optimisation of Polypyrrole/Nafion Composite Membranes for Direct Methanol Fuel Cells. Electrochim. Acta. 2006, 51(19): 4052~4060
    145 H. L. Lin, T. L. Yu, L. N. Huang. Nafion/PTFE Composite Membranes for Direct Methanol Fuel Cell Applications. J. Power Sources. 2005, 150(4): 11~19
    146李磊,张军,吴洪等.直接甲醇燃料电池新型聚合物膜的研究.电化学. 2002, 8(2): 177~181
    147吴洪,王宇新,王世昌.新型阻醇质子导电聚合物膜PVA/Nafion共混膜的制备及性能研究.高校化学工程学报. 2002, 16(3): 326~330
    148 L. Li, J. Zhang, Y. X. Wang. Sulfonated Poly (Ether ether ketone) Membranes for Direct Methanol Fuel Cell. J. Membr. Sci. 2003, 226(1-2): 159~167
    149 R. T. S. M. Lakshmi, J. M. Haack, K. Schlenstedt, et al. Sulphonated Poly (Ether Ether Ketone) Copolymers: Synthesis, Characterisation and Membrane Properties. J. Membr. Sci. 2005, 261(1-2): 27~35
    150 Y. S. Kim, L. Dong, M. A. Hicknera, et al. Processing Induced Morphological Development in Hydrated Sulfonated Poly (Arylene Ether Sulfone) Copolymer Membranes. Polymer. 2003, 44(19): 5729~5736
    151 D. S. Kim, H. B. Park, J. W. Rhim, et al. Preparation and Characterization of Crosslinked PVA/SiO2 Hybrid Membranes Containing Sulfonic Acid Groups for Direct Methanol Fuel Cell Applications. J. Membr. Sci. 2004, 240(1-2): 37~48
    152 D. J. Jones, J Roziere. Recent Advances in the Functionalisation of Polybenzimidazole and Polyetherketone for Fuel Cell Applications. J. Membr. Sci. 2001, 185(1): 41~58
    153 M. L. Ponce, L. A. S. A. Prado, V. Silva, et al. Membranes for Direct Methanol Fuel Cell Based on Modified Heteropolyacids. Desalination. 2004, (162): 383~391
    154 A. J. Seen. Nafion: an Excellent Support for Metal-Complex Catalysts.J. Mol. Catal. A-Chem. 2001, 177(1): 105~112
    155 G. Sasikumar, J. W. Ihma, H. Ryu. Dependence of Optimum Nafion Content in Catalyst Layer on Platinum Loading. J. Power Sources. 2004, 132(1-2): 11~17
    156 Y. H. Chu, Y. G. Shul, W. C. Choi, et al. Evaluation of the Nafion Effect on the Activity of Pt-Ru Electrocatalysts for the Electro-Oxidation of Methanol. J. Power Sources. 2003, 118(1-2): 334~341
    157 S. J. Lee, S. Mukerjee, J. McBreen, et al. Effects of Nafion Impregnation on Performances of PEMFC Electrodes. Electrochim. Acta. 1998, 43(24): 3693~3701
    158 G. Sasikumar, J. W. Ihma, H. Ryu. Optimum Nafion Content in PEM Fuel Cell Electrodes. Electrochim. Acta. 2004, 50(2-3): 601~605
    159 E. Antolini, L. Giorgi, A. Pozio, et al. Influence of Nafion Loading in the Catalyst Layer of Gas-Diffusion Electrodes for PEFC. J. Power Sources. 1999, 77(2): 136~142
    160李建玲,毛宗强,徐景明.直接甲醇燃料电池性能研究.电池. 2002, 32(2): 72~74
    161 A. K. Shulka, P. A. Chritensen, A. J. Dickinson, et al. A Liquid-Feed Solid Polymer Electrolyte Direct Methanol Fuel Cell Operating at Near-ambient Conditions. J. Power Sources. 1998, 76(1): 54~59
    162 A. Oedegaard, C. Hebling, A. Schmitz. Influence of Diffusion Layer Properties on Low Temperature DMFC. J. Power Sources. 2004, 127(1-2): 187~196
    163 P. Argyropoulos, K. Scott, W. M. Taama. Gas Evolution and Power Performance in Direct Methanol Fuel Cells. J. Appl. Electrochem. 1999, 29(6): 663~671
    164 C. Xu, T. S. Zhao, Q. Ye. Effect of Anode Backing Layer on the Cell Performance of a Direct Methanol Fuel Cell. Electrochim. Acta. 2006, 51(25): 5524~5531
    165 S. Y. Cha, W. M. Lee. Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrane Surface. J. Electrochem. Soc. 1999, 146(11): 4055~4060
    166 V. A.Paganin, E. A. Ticianelli, E. R.Gonzalez. Development and Electrochemical Studies of Gas Diffusion Electrodes for Polymer Electrolyte Fuel Cells. J. Appl. Electrochem. 1996, 26(3): 297~304
    167 L. Giorgi, E. Antolini, A. Pozio, et al. Influence of the PTFE Content in the Diffusion Layer of Low-Pt Loading Electrodes for Polymer Electrolyte Fuel Cells. Electrochim. Acta. 1998, 43(24): 3675~3680
    168 C. Lim, C. Y. Wang. Effects of Hydrophobic Polymer Content in GDL on Power Performance of a PEM Fuel Cell. Electrochim. Acta. 2004, 49(24): 4149~4156
    169 G. G. Park, Y. J. Sohn, T. H. Yang, et al. Effect of PTFE Contents in the Gas Diffusion Media on the Performance of PEMFC. J. Power Sources. 2004, 131(1-2): 182~187
    170 G. Lin, T. V. Nguyen. Effect of Thickness and Hydrophobic Polymer Content of the Gas Diffusion Layer on Layer on Electrode Flooding Level in a PEMFC. J. Electrochem. Soc. 2005, 152(10): A1942~1948
    171 D. Bevers, R. Rogers, M. V. Bradke. Examination of the Influence of PTFE Coating on the Properties of Carbon Paper in Polymer Electrolyte Fuel Cells. J. Power Sources. 1996, 63(2): 193~201
    172 X. M. Ren, T. E. Springer, S. Gottesfeld. Water and Methanol Uptakes in Nafion Membranes and Membrane Effects on Direct Methanol Cell Performance. J. Electrochem. Soc. 2000, 147(1): 92~98
    173 E. Antolini, R. R. Passos, E. A. Ticianelli. Effects of the Carbon Powder Characteristics in the Cathode Gas Diffusion Layer on the Performance of Polymer Electrolyte Fuel Cells. J. Power Sources. 2002, 109(2): 477~482
    174 Y. Liu, X. F. Xie, Y. M. Shang, et al. Power Characteristics and Fluid Transfer in 40 W Direct Methanol Fuel Cell Stack. J. Power Sources. 2007, 164(1): 322~327
    175 F. Urbani, G. Squadrito, O. Barbera, et al. Polymer Electrolyte Fuel Cell Mini Power Unit for Portable Application. J. Power Sources. 2002, 169(2): 344~337
    176 S. Andrian, J. Meusinger. Process Analysis of a Liquid-Feed DirectMethanol Fuel Cell System. J. Power Sources. 2000, 91(2): 193~201
    177 X. G. Zhang, D. Zheng, T.Wang, et al. A Preliminary Study of a Miniature Planar 6-Cell PEMFC Stackcombined with a Small Hydrogen Storage Canister. J. Power Sources. 2007, 166(2): 441~444
    178 A. L. M. Reddy, S. Ramaprabhu. Design and Fabrication of Carbon Nanotube-Based Microfuel Cell and Fuel Cell Stack Coupled with Hydrogen Storage Device. In. J. Hydrogen Energ. 2007, 32(17): 4272~4278
    179 S. J. Kim, J. Lee, K. Y. Kong, et al. Hydrogen Generation System Using Sodium Borohydride for Operation of a 400 W-scale Polymer Electrolyte Fuel Cell Stack. J. Power Sources. 2007, 170(2): 412~418
    180 M.W. Knobbe, W. He, P.Y. Chong, et al. Active Gas Management for PEM Fuel Cell Stacks. J. Power Sources. 2004, 138(1-2): 94~100
    181 N. H. Wong, S. Heryanto. The Study of Active Stack Effect to Enhance Natural Ventilation Using Wind Tunnel and Computational Fluid Dynamics (CFD) Simulations. Energ. Buildings. 2004, 36(7): 668~678
    182李巨峰,王涛,夏保佳.自呼吸式微型PEMFC性能的研究.电池. 2005, 35(1): 21~22
    183王瑛,李相一,李元龙.自由呼吸式质子交换膜燃料电池的研究—三维数值分析阴极流道结构对电池性能的影响.电源技术. 2006, 30(3): 206~210
    184王涛,陈聪,李巨峰等.微型氢气/空气自呼吸式质子交换膜燃料电池.高等学校化学学报. 2004, 25(10): 1928~1930
    185 Y. J. Kim, B. Bae, M. A. Scibioh, et al. Behavioral Pattern of a Monopolar Passive Direct Methanol Fuel Cell Stack. J. Power Sources. 2006, 157(1): 253~259
    186 Y. H. Chan, T.S. Zhao, R. Chen, et al. A Small Mono-Polar Direct Methanol Fuel Cell Stack with Passive Operation. J. Power Sources. 2008, 178(1): 118~124
    187 V. Baglio, A. Stassi, F. V. Matera, et al. Investigation of Passive DMFC Mini-Stacks at Ambient Temperature. Electrochim. Acta. In Press
    188 V. Baglio, A. Stassi, F. V. Matera, et al. Optimization of Properties andOperating Parameters of a Passive DMFC Mini-Stack at Ambient Temperature. J. Power Sources. 2008, 180(2): 797~802
    189王明华,朱新坚,隋升等.千瓦级PEMFC电堆的研制.电源技术. 2004, 28(3): 150~153
    190 T. Ito, M. Kunimatsu. Fabrication of a Micro DMFCs Array Made of Photosensitive Glass. Electrochem. Commun. 2006, 8(1): 91~94
    191张熙贵,王涛,夏保佳等. 8单体自呼吸式微型PEMFC电堆设计与性能.电源技术. 2005, 29(6): 392~395
    192 V. Radmilovic, H. A. Gasteiger, P. N. Ross. Structure and Chemical-Compostion of a Supported Pt-Ru Electrocatalyst for Methanol Oxidation. J. Catal. 1995, 154(1): 98~106
    193 Z. B. Wang, G. P. Yin, P. F. Shi. Stable Pt-Ru/C Catalysts Prepared from New Precursors by Thermal Reduction for Direct Methanol Fuel Cell. J. Electrochem. Soc. 2005, 152(12): A2406~A2412
    194 A. Pozio, M. De Francesco, A. Cemmi, et al. Comparison of High Surface Pt/C Catalysts by Cyclic Voltammetry. J. Power Sources. 2002, 105(1): 13~19
    195 C. Lim, C. Y. Wang. Effects of Hydrophobic Polymer Content in GDL on Power Performance of a PEM Fuel Cell. Electrochim. Acta. 2004, 49(24): 4149~4156
    196周兆云,王华平,王朝生等.用于燃料电池碳纤维纸的研究进展.材料导报. 2007, 21(7): 108~110
    197 G. Dlubek, K. Saarinen, H. M. Fretwell. The Temperature Dependence of the Local Free Volume in Polyethylene and Polytetrafluoroethylene: A Positron Lifetime Study. J. Poly. Sci.: Part B: Polymer Physics. 1998, 36(9): 1513~1528
    198 Y. H. Pan. Advanced Air-breathing Direct Methanol Fuel Cells for Portable Applications. J. Power Sources. 2006, 161(1): 282~289
    199张连洪,揭伟平,谢春刚等.温度、压力和湿度对PEMFC堆电效率的影响.天津大学学报. 2007, 40(5):594~598
    200 Q. Z. Lai, G. P. Yin, J. Zhang, et al. Influence of Cathode Oxygen Transport on the Discharging Time of Passive DMFC. J. Power Sources. 2008, 175(1):458~463

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700