O_2/CO_2燃烧方式下煤中S析出行为及其与Ca相互作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前燃煤发电仍然主导着我国70%的电力供应,而煤燃烧是SOx、NOx、颗粒物以及温室气体CO_2等污染物的最主要排放源之一,因此大力开发高效、清洁燃煤技术对国家可持续发展和能源安全具有重大意义。O_2/CO_2燃烧技术是近年来国际上公认的煤的清洁、高效利用技术,特别是温室气体CO_2减排的一项关键技术。研究表明O_2/CO_2燃烧能同时实现对CO_2、SO_2、NOx、颗粒物、痕量元素等多种污染物协同控制,因此开展这方面的研究具有重要的科学和实际意义。
     本文系统综述了国内外O_2/CO_2燃烧方式下煤基础燃烧特性,包括传热传质、着火和燃尽,污染物释放等方面研究,重点阐述了该燃烧方式下SO_2生成与控制研究现状。论文从O_2/CO_2燃烧前热解过程中硫前驱物形成与转化入手,借助于实验室立式热天平和沉降炉等实验系统,针对SOx生成与控制,系统地研究了O_2/CO_2燃烧方式下钙基脱硫剂煅烧、烧结与硫化特性;同时针对电厂锅炉机组中可吸入颗粒物的的生成与排放问题,进一步研究了炉内喷钙脱硫对气态硫和可吸入颗粒物PM_(10),尤其是亚微米颗粒物PM_1的协同控制,主要内容如下:
     首先研究了CO_2气氛下煤中硫赋存形态对硫迁移与转化的影响。O_2/CO_2燃烧方式下,N_2替代为CO_2,气氛的改变对硫前驱物生成有着重要影响,同时热解脱挥发份过程中硫的前驱物对燃烧过程中SOx生成与排放至关重要。实验结果表明:两种关键中间活性基团SH~*和active S分别来自煤中有机硫和无机硫(FeS_2)热分解过程。SH~*活性基团倾向与煤焦有机官能团反应生成H_2S,COS,和Sn分子;同时还与煤焦反应生成char-S,固定在煤焦中;而活性基团active S来自黄铁矿分解,与煤焦中有机官能团反应生成气体小分子SO_2,COS,同时还与煤焦本身反应生成新生有机硫,固定在煤焦中。此外煤中矿物强烈影响中间活性基团SH~*和active S的迁移和转化;
     其次研究了O_2/CO_2燃烧方式下燃烧工况对石灰石煅烧和烧结特性的影响。相对于传统O_2/N_2气氛,O_2/CO_2气氛下石灰石起始分解温度升高,表观活化能增大,这不仅延迟了石灰石分解而且延长了分解时间,从而缩短了烧结时间,减缓了烧结进程,改善了煅烧产物CaO孔隙结构,保障了良好的脱硫活性,使得SO_2和O_2更容易进入脱硫剂内部反应,有利于深化脱硫;温度与时间对石灰石煅烧与烧结是同时作用的,温度越高,煅烧反应速率越快,烧结也随着加快,在900-1000℃温度区间内存在一个最佳脱硫温度点,此时CaO比表面积和孔隙率最大;此外借助于烧结动力学理论计算发现,当石灰石分解结束时,停留时间的延长使得煅烧产物CaO晶粒尺寸增大,烧结变得更加严重;相比于传统O_2/N_2燃烧,气氛对石灰石煅烧和烧结的影响是显而易见的,O_2/CO_2燃烧方式能够有效地减缓烧结,为煅烧产物CaO提供良好的孔隙结构,进而为后续的脱硫提供有利条件;
     然后研究了硫化机理对石灰石脱硫效率和钙转化率的影响。与传统O_2/N_2气氛下的间接硫化CaO-SO2机理不同,O_2/CO_2燃烧方式下石灰石脱硫受直接硫化CaCO3-SO2和间接硫化CaO-SO2机理共同控制。实验结果表明,O_2/CO_2气氛下CaSO4产物层表面呈现多孔结构,脱硫效率和Ca转化率明显高于传统O_2/N_2气氛。为了更加接近实际燃煤炉内喷钙脱硫过程,借助于沉降炉研究了炉膛温度、气氛、Ca/S对炉内喷钙脱硫效率和钙利用率的影响。实验表明O_2/CO_2燃烧方式下炉内喷钙脱硫具有更高的脱硫效率和适应更高和更宽的温度范围;
     最后研究了炉内喷钙对协同脱除SO_2和可吸入颗粒物中硫的影响。S是亚微米颗粒物重要的组成成分之一,通常以SO_3、硫酸、亚硫酸或硫酸盐的形式存在于亚微米颗粒表面。通过添加石灰石可以与颗粒物表面硫反应生成颗粒较大的CaSO4,使得颗粒物尺寸向大粒径方向移动,进而显著降低亚微米颗粒物排放量,从而有效地控制了可吸入颗粒物的排放。实验结果表明:温度和氧浓度对炉内喷钙过程中颗粒物排放量的影响是通过煤焦颗粒表面温度、局部气氛以及石灰石反应活性共同实现的。随着温度的升高,亚微米颗粒物和可吸入颗粒物生成量先减小后增加;而随着氧浓度的升高,亚微米颗粒物生成量先减小后增加,而可吸入颗粒物生成量一直增加。此外相对于传统O_2/N_2气氛,O_2/CO_2燃烧方式下炉内喷钙对可吸入颗粒物和亚微米颗粒物的减排率都更高;同时亚微米颗粒物中硫与脱硫剂反应生成CaSO4转移到超微米颗粒物中,使得超微米颗粒物比例增加,这将有利于电厂静电除尘器脱除。
Coal plays a dominant role in the energy mix and is responsible for the majority (over 70%) of electricity generation in China. The use of coal is one of the biggest contributors to global emission of SOx, NOx, PM and CO2. Coal combustion under oxy-fuel conditions is recognised to be a key step-change technology for the clean and efficient utilization of coal and the mitigation of CO2 emissions. Presently, oxy-fuel combustion has been recognized as one of the most promising technologies to implement CO2 capture and simultaneously realize low NOx emission and high desulfurization efficiency as well as other pollutants control. Therefore, it has great scientific and practical significances to investigate the formation mechanisms, evolvement process and emission characteristic of pollutants during oxy-fuel combustion.
     This thesis provided an overview of the present researches on oxy-fuel combustion fundamentals, including convective, radiative heat transfer, devolatilization and ignition, volatile and char burnout, boiler tube corrosion and gaseous pollutants emissions, ash deposition chemistry, especially focusing on SO2 formation mechanisms, evolvement process and emission characteristic and significant control during oxy-fuel combustion. This thesis investigated on sulfur transformation during CO2-pyrolysis, and then focused on effects of coal characteristics and combustion parameters on SO2 emission, desulfurization efficiency and simultaneous inhalable particles control during O2/CO2 coal combustion with in-boiler desulphurization by injection of limestone. The key findings of dissertation are as follows:
     Firstly, effect of organic and inorganic sulfur on the transformation during CO2-pyrolysis has been analyzed. The experimental results indicated that SH* evolved by organic sulfur and active S decomposed by pyrite were the two key intermediate radicals during CO2-pyrolysis. SH* radicals prefered to react with the char to form H2S, COS, and elemental sulfur, or new sulfur structures retained in the char. Active S radicals prefered to undergo secondary reactions with the char to form nascent organic sulfur structures, as well as SO2, COS. Meanwhile, inherent minerals had significant influences on the SH* radical-char and active S radical-char reactions, thus promoted the sulfur retention.
     Secondly, effect of combustion parameters on the calcination and sintering behaviors of limestone in O2/CO2 atmosphere has been discussed. There were some obviously different calcination and sintering characteristics in O2/N2 and O2/CO2 atmosphere. The initial decomposition temperature and the activation energy in O2/CO2 atmosphere needed much higher than that in conventional coal combustion. In O2/CO2 coal combustion with in-boiler desulphurization by injection of limestone, the higher decomposition temperature not only increased the desulfurization temperature range and extended the time of limestone decomposition, but also shortened the sintering time, lightened the nascent CaO sintering and improved structure characteristic of CaO, making SO2 and O2 easier entry into product lager and enabling higher degrees of sulfation. Calcination temperature and time simultaneity affected calcination and sintering, increasing temperature leaded to much increase of calcination rate and sintering rate. It was found that an optimum temperature for the highest specific surface area and porosity of CaO was between 900-1000℃. SEM energy spectrum analysis and XRD phase quantitative analysis proved that in the end of limestone decomposition, calcination time made the crystallite size of CaO increase and the sintering more seriously.
     Thirdly, effect of different mechanisms on calcination, sintering and sulfation of limestone has been discussed. The mechanism of direct sulfation under high CO2 concentration in O2/CO2 atmosphere, different from that of CaO-SO2 sulfation in conventional coal combustion, is an important reason for the high sulfation efficiency. The experimental results showed that direct sulfation enabled higher sulfation degrees and desulfurization efficiency than those observed from CaO-SO2 sulfation, because the counter-diffusion of CO2 generated from limestone decomposition formed a porous product layer. What's more, the calcination and sulfation characteristics of limestone were investigated in a laboratory drop tube furnace (DTF). The experimental results indicated that the desulfurization efficiency in O2/CO2 coal combustion was much higher than that of conventional coal combustion. More importantly, the desulfurization efficiency in O2/CO2 coal combustion maintained a high value in a wider and higher range of temperatures.
     Finally, experiments of limestone addition have been carried out in a laboratory drop-tube furnace to simultaneously study high desulfurization efficiency and reduction of inhalable particles. The experimental results indicated that the element S was an important constituent of submicron particles (PM1). In O2/CO2 coal combustion with limestone injection into furnace, limestone reacted with S to produce supermicron particles and the ratio between fine and coarse particles shifted significantly toward larger supermicron particles. Meanwhile, the influence of combustion temperature and oxygen content during O2/CO2 coal combustion with limestone injection into furnace has been analyzed. With the increase of temperature, PM1 and PM10 emission first decreased and then increased. Otherwise, with the increase of oxygen content, PM1 emission first decreased and then increased, while PM10 emission always increased due to large production of supermicron particles of calcium sulfate. The results showed that in-boiler desulphurization by injection of limestone could simultaneously realize high desulfurization efficiency as well as inhalable particles control. Furthermore, compared with in-furnace desulfurization in conventional coal combustion, O2/CO2 atmosphere provided a better control of PM emission.
引文
[1]Climate Change. Fourth Assessnent Report of Intergrovernmental Psnel on Climate Change, IPCC, Geneva.2007.
    [2]Solomon S, Q. D., Manning M, et al. Climate change 2007:the physical science basis. Contribution of working group Ⅰ to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press,2007.
    [3]World energy outlook 2007-China and India insights, Internatioal Energy Agency(IEA). IEA Publications,2007.
    [4]Davison, J. Performance and costs of power plants with capture and storage of CO2. Energy.2007,32(7):1163-1176.
    [5]Cleaner Coal in China, Internatioal Energy Agency(IEA). IEA Publications,2009.
    [6]国民经济和社会发展统计公报.北京:国家统计局,2009.
    [7]中国统计年鉴.国家统计局.2009.
    [8]BP世界能源统计.2009.
    [9]中国统计年鉴.北京:国家统计局,2000-2004.
    [10]郑楚光.洁净煤技术.武汉:华中理工大出版社,1996.
    [11]Nations, U. United Nations Framework Convention on Climate Change. Art.1992, 4(2(b)).
    [12]Nations, U. Kyoto Protocol to the United Nations Framework Convention on Climate Change. UNEP.IUC/99/10. Chatlelaine, Switzerland:United Nations Environment Programme's Information Unit for Conventions, for the Climate Change Secretariat.1997.
    [13]中国统计年鉴.北京:国家统计局,2009.
    [14]中华人民共和国环境保护部、国家统计局、农业部.第一次全国污染源普查公报[R].2010.
    [15]潘家华,牛风瑞,魏后凯.中国城市发展报告[M].社会科学文献出版社.2009.
    [16]蔡如鹏.中国每年因大气污染致门诊35万人[N/OL].中国新闻周刊,http://www.chinanews.com.cn/jk/ysbb/news/2007/12-03/10993381.shtml,2007.12.
    [17]赵越.大气污染对城市居民的健康效应及经济损失研究,环境工程.中国地质 大学博士学位论文:北京.2007.
    [18]中国环境状况公报.国家环境保护总局.2008.
    [19]Hontgomory R, Dryor R L, Connby T W, et al. "Biochemistry" 4th ed. The C.V. Mosby.1983.
    [20]McGilvery R W. Biochemistry.3rd ed, Saunders.1983.
    [21]郑集编.普通生物化学.上海:上海科技卫生出版社,1959.
    [22]刘天齐,林肇信,刘逸农.环境保护概论.北京:高等教育出版社,1986.
    [23]曹风中.中国环境与健康报告[M].北京:中国环境科学出版社,1999.
    [24]胡伟,魏复盛.空气污染对儿童及其父母呼吸系统健康的影响[J].中国环境科学.2000,20(5):425-428.
    [25]R C Gwynn, R. T. B., and G D Thurston. A time-series analysis of acidic particulate matter and daily mortality and morbidity in the Buffalo, New York, region. Environ Health Perspect.2000,108(2):125-133.
    [26]G Touloumi, E Samoli, K Katsouyanni. Daily mortality and "winter type" air pollution in Athens, Greece--a time series analysis within the APHEA project. J Epidemiol Community Health 1996,50:47-51.
    [27]魏复蛊.空气污染对呼吸健康影响研究[M].北京:中国环境科学出版社,2001.
    [28]周燕荣,曾庆,徐放.重庆地区大气污染与住院病人动态的相关性分析[J].现代预防医学.1997,24(1):43-45.
    [29]常桂秋,王灵菇,潘小川.北京市大气污染物与儿科门急诊就诊人次关系的研究.中国校医.2003,17(4):295-297.
    [30]陈小琳,洪传洁,陶旭光,朱惠刚.上海市大气二氧化硫污染污染与常见呼吸道症状的关系[J].中国公共卫生学报.1993,12(1):1-3.
    [31]井立滨,秦怡,徐肇翊等.本溪市大气污染与急慢性呼吸系统疾病的关系.环境与健康杂志.2000,17(5):268-270.
    [32]Xu Xiping, Li Baoluo, D. C. Christiani. Association of air pollution with hospital outpatient visits in Beijing. Archives of Environmental Health.1995,50(3): 214-220.
    [33]Atkinson D.A., Sim T.C., Grant J.A. Sodium metabisulfite and SO2 release:an under-recognized hazard among shrimp fishermen. Ann Allergy.1993,71(6): 563-566.
    [34]梦紫强.环境病毒学(第一版)[M].北京:中国环境科学出版社,2003.
    [35]Estelle Levetin, Peter Van de Water. Environmental contributions to allergic disease Current Allergy and Asthma Reports.2001,1(10):506-514.
    [36]S Hajat, H.R. Anderson, R.W. Atkinson, A. Haines. Effects of air pollution on general practitioner consultations for upper respiratory diseases in London. Occupational and Environmental Medicine.2002,59:294-299.
    [37]Christian Frye, Hoelscher, B., Josef Cyrys, Matthias Wjst, et al. Association of lung function with declining ambient air pollution. Environmetal Health Perspectives. 2003,111(3):383-387.
    [38]Joachim Heinrich, Bernd Hoelscher, Christian Frye, et al. Improved air quality in reunified Germany and decreases in respiratory symptoms. Epidemiology.2002, 13(4):394-401.
    [39]中华人民共和国卫生部,中国卫生统计年鉴2004[M].北京:中国协和医科大学出版社,2004.
    [40]高军,徐希平,陈育德等.北京市东、西城区空气污染与居民死亡情况的分析[J].中华预防医学.1993,27(6):340-343.
    [41]杨晓娟,潘小川.北京市大气污染与居民心脑血管疾病死亡的时间序列分析.环境与健康杂志.2008,25(4):294-297.
    [42]王慧文,潘秀丹,林刚.沈阳市空气二氧化硫污染对心血管疾病死亡率的影响[J].环境与健康杂志.2002,19(1):50-52.
    [43]Jong-Tae Lee, H. K., et al. Air Pollution and Daily Mortality in Seven Major Cities of Korea,1991-1997[J]. Environmental Research Section A.2000,84:247-254.
    [44]常桂秋,潘小川,谢学琴等.北京市大气污染与城区居民死亡率关系的时间序列分析.卫生研究.2003,32(6):565-568.
    [45]阚海东,陈秉衡,贾健.上海市大气污染与居民每日死亡关系的病例交叉研究中华流行病学杂志.2003,10:863-867.
    [46]徐肇栩,刘允清,俞大乾等.沈阳市大气污染对死亡率的影响[J].中国公共卫生学报.1996,5(1):61-61.
    [47]Abrahamsen G., M. H. G. Effeet of acdic deposition on forest soil and vegetation[J]. Philosophical Transactions of the Royal Society of London.1984,305:369-382.
    [48]世界环境与发展委员会,我们共同的未来[M].长春:吉林人民出版社,1997.
    [49]张秀宝.大气环境污染概论[M].北京:中国环境科学出版社,1989.
    [50]刘彬.酸雨的形成、危害及防治对策[J].环境科学与技术.2001,96(4):21-23.
    [51]杨晓丽,孙素梅.译自“气象研究”(日本).1987.
    [52]边文.2006年全国S02排放及酸雨分布情况.煤炭加工与综合利用.2007,2:53-53.
    [53]杨宗慧.我国酸雨状况和对策[J].云南环境科学.2002,21(1):25-26.
    [54]陈泽伟.中国面对酸雨威胁[J].晾望新闻周刊.2004,9(38):24-25.
    [55]丁国安,王文兴.中国酸雨现状及发展趋势[J].科学通报.1997,2(42):169-173.
    [56]中国挪威重大环境合作项目研究报告,中国酸沉降综合影响观测研究(IMPACTS)[R].2002.
    [57]Hessen D.D. Acidification of the Humax Lake:effects on epilimnetie pools and fluxes of carbon. Environment International.1998,18(6):649-659.
    [58]金永平,赵多,王正花.浙江省酸雨现状及其对农业可持续发展的影响[J].环境污染与防治.1997,19(3):18-20.
    [59]Wall T.F. Combustion processes for carbon capture. Proceedings of the Combustion Institute.2007,31(1):31-47.
    [60]Tan Y., Thambimuthu K.V., Douglas M.A., et al. Oxy-fuel combustion research at the CANMET Energy Technology Center.5th Int Symp Coal Combust.2003: 550-554.
    [61]Jordal K., Anheden M., Yan J., et al. Oxyfuel combustion for coal-fired power generation with CO2 capture e opportunities and challenges. The 7th International conference on greenhouse gas control technologies (GHGT-7). Vancouver, Canada,. 2004.
    [62]Feron P.H.M., Hendriks, C. A. CO2 capture process principles and costs. Oil & Gas Science and Technology-Rev. IFP.2005,60(3):451-459.
    [63]Tan R., Corragio G., S., S. Oxy-coal combustion with flue gas recycle for the power generation industry-a literature review. International Flame Research Foundation (IFRF). Velsen Noord. The Netherlands,.2005.
    [64]Knudsen JN, V. P.-J., Jensen JN, Biede O. First year operating experience with a 1 t/h CO2 absorption e pilot plant at Esbjerg coal-fired power plant. VGB Power Tech. 2007,87(3):57-61.
    [65]Figueroa, J. D., Fout T., Plasynski, S., et al. Advances in CO2 capture technology-The U.S. Department of Energy's Carbon Sequestration Program. International Journal of Greenhouse Gas Control.2008,2(1):9-20.
    [66]Toftegaard M.B., Brix J., Jensen P.A., Glarborg P., et al. Oxy-fuel combustion of solid fuels. Progress in Energy and Combustion Science.2010,36(5):581-625.
    [67]Pehnt M., Henkel J. Life cycle assessment of carbon dioxide capture and storage from lignite power plants. International Journal of Greenhouse Gas Control.2009, 3(1):49-66.
    [68]Kanniche M., Gros-Bonnivard R., Jaud P., et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Applied Thermal Engineering.2010,30(1):53-62.
    [69]Beer J.M. High efficiency electric power generation:The environmental role. Progress in Energy and Combustion Science.2007,33(2):107-134.
    [70]Minchener A.J. Coal gasification for advanced power generation. Fuel.2005,84(17): 2222-2235.
    [71]Eide L.I., Bailey D.W. Precombustion decarbonisation processes. Oil & Gas Science and Technology.2005,60(3):475-484.
    [72]McDonald DK, F. T., DeVault DJ, Varagani R, Levesque S, Castor W,30 MWt clean environment development oxy-coal combustion test program, in The 33 rd international technical conference on coal utilization and fuel systems, Editor?Editors.2008:Clearwater, Florida. p.
    [73]Lambertz J., Ewers J. Clean coal power e the response of power plant engineering to climate protection challenges. VGB Power Technology [in German].2006,86(5): 72-77.
    [74]Gibbins J., Chalmers H. Preparing for global rollout:A developed country first'demonstration programme for rapid CCS deployment. Energy Policy.2008, 36(2):501-507.
    [75]Fischedick M., Gunster W., Fahlenkamp H., et al. Separation in power plants e do retrofits make sense in existing plants? VGB Power Technology [in German].2006, 4:108-117.
    [76]Wheeldon J., Booras G, Holt N. Post-combustion CO2 capture from pulverized coal plants.23rd Annual international Pittsburgh coal conference, PCC-coal-energy, environment and sustainable development.2006.
    [77]Notz R., Asprion N., Clausen I., et al. Selection and pilot plant tests of new absorbents for post-combustion carbon dioxide capture. Chemical Engineering Research and Design.2007,85(4):510-515.
    [78]Lee S., Maken S., Park J.W., et al. A study on the carbon dioxide recovery from 2 ton-CO2/day pilot plant at LNG based power plant. Fuel.2008,87(8-9):1734-1739.
    [79]Ghg I. Improvements in power generation with post-combustion capture of CO2. Report PH4/33, IEA greenhouse gas research and development programme.2004.
    [80]Gibbins J., Chalmers H. Carbon capture and storage. Energy Policy.2008,36(12): 4317-4322.
    [81]Sander M.T., Mariz C.L. The Fluor Daniel econamine FG process:Past experience and present day focus. Energy Conversion and Management.1992,33(5-8): 341-348.
    [82]Reddy S., Scherffius J., Freguia S., et al. Fluor's Econamine FG PlusSM technology e an enhanced amine-based CO2 capture process. Proceedings of the second national conference on carbon sequestration. Alexandria, VA, USA, May,.2003.
    [83]Yagi Y., Mimura T., Iijima M., et al. Improvements of carbon dioxide capture technology from flue gas. In:Greenhouse gas control technologies. Proceedings of the seventh international conference on greenhouse gas control technologies. Vancouver, Canada, Oxford, UK,5-9 September.2004.
    [84]Wegerich S., Witt A., Huizeling E., et al. Untersuchungen zurNachrustung einer CO2-Abscheidetechnologie fur das neue E.ON Kraftwerk Maasvlakte 3.39 Kraftwerktechnisches Kolloquium. Dresden, Germany,.2007.
    [85]Oexmann J., Kather A. Post-combustion CO2-capture from coal-fired power plants-wet chemical absorption processes. VGB Power Technology [in German].2009, 89(1-2):92-103.
    [86]Varagani RK, C.-P. F., Pranda P, Rostam-Abadi M, Lu Y, Bose AC., Performance simulation and cost assessment of oxy-combustion process for CO2 capture from coal-fired power plants, in The fourth annual conference on carbon sequestration, May 2-5, Editor?Editors.2005:Alexandria, VA. p.
    [87]Allam R.J., Spilsbury C.G. A study of the extraction of CO2 from the flue gas of a 500 MW pulverised coal fired boiler. Energy Conversion and Management.1992, 33(5-8):373-378.
    [88]Xu B., Stobbs R.A., White V, et al. Future CO2 capture technology options for the Canadian market. Technical Report.2007, Report No. COAL R309 BERR/Pub URN 07/1251(Doosan Babcock Energy Limited).
    [89]Horn F.L., Steinberg M. Control of carbon dioxide emissions from a power plant (and use in enhanced oil recovery). Fuel.1982,61(5):415-422.
    [90]Herzog H., Golomb D., Zemba S. Feasibility, modeling and economics of sequestering power plant CO2 emissions in the deep ocean. Environmental Progress. 1991,10(1):64-74.
    [91]Dillon D.J., Panesar R.S., Wall R.A., et al. Oxy-combustion processes for CO2 capture from advanced supercritical PF and NGCC power plant.7th international conference on greenhouse gas control technologies. Vancouver, Canada, September,. 2004.
    [92]Dillon DJ, W. V., Allam RJ, Wall RA, Gibbins J, Oxy combustion processes for CO2 capture from power plant. Engineering Investigation Report, in IEA Greenhouse Gas Research and Development Programme:June, Editor∧Editors.2005. p.
    [93]Kather A., Klostermann M., Hermsdorf C., et al. Konzept fur ein 600 MWel Steinkohlekraftwerk mit CO2-Abtrennung auf Basis des Oxyfuel-Prozesses. Kraftwerksbetrieb unter kunftigen Rahmenbedingungen,38. Kraftwerkstechnisches Kolloquium. Dresden, Germany,24-25, October,.2006.
    [94]Rezvani S., Huang Y., Mcllveen-Wright D., et al. Comparative assessment of sub-critical versus advanced super-critical oxyfuel fired PF boilers with CO2 sequestration facilities. Fuel.2007,86(14):2134-2143.
    [95]Eide L. I., Anheden M., Lyngfelt A., et al. Novel capture processes. Oil & Gas Science and Technology.2005,60(3):497-508.
    [96]Abu-Khader, Mazen M. Recent Progress in CO2 Capture/Sequestration:A Review. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects.2006, 28(14):1261-1279.
    [97]Hossain M.M., de Lasa H.I. Chemical-looping combustion (CLC) for inherent CO2 separations--a review. Chemical Engineering Science.2008,63(18):4433-4451.
    [98]Abraham B.M., Asbury J.G., Lynch E.P., et al. Coal-oxygen process provides CO2 for enhanced oil recovery. Oil and Gas Journal.1982,80:68-75.
    [99]Buhre, B. J. P., Elliott, L. K., Sheng, C. D., Gupta, R. P., et al. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science.2005,31(4):283-307.
    [100]Croiset E., Thambimuthu K., Palmer A. Coal combustion in O2/CO2 mixtures compared with air. The Canadian Journal of Chemical Engineering.2000,78(2): 402-407.
    [101]Wang C.S., Berry G.F., Chang K.C., Wolsky A.M. Combustion of pulverized coal using waste carbon dioxide and oxygen. Combustion and Flame.1988,72(3): 301-310.
    [102]Liu H., Zailani R., Gibbs B.M. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2. Fuel.2005,84(7-8):833-840.
    [103]Tan Y., Croiset E., Douglas M.A., Thambimuthu K.V. Combustion characteristics of coal in a mixture of oxygen and recycled flue gas. Fuel.2006,85(4):507-512.
    [104]Kiga T., Takano S., Kimura N., Omata K., et al. Characteristics of pulverized-coal combustion in the system of oxygen/recycled flue gas combustion. Energy conversion and management.1997,38:S129-S134.
    [105]Kimura N., Omata K., Kiga T., Takano S., et al. The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery. Energy Conversion and Management.1995,36(6-9):805-808.
    [106]Shaddix C.R., Molina A. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proceedings of the combustion institute.2009,32(2):2091-2098.
    [107]Molina A., Shaddix C.R. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion. Proceedings of the combustion institute.2007,31(2):1905-1912.
    [108]Huang X., Jiang X., Han X., Wang H. Combustion Characteristics of Fine-and Micro-pulverized Coal in the Mixture of O2/CO2. Energy Fuels.2008,22(6): 3756-3762.
    [109]Shaddix CR, M. A. Understanding the effects of O2 and CO2 on NOx formation during oxy-coal combustion. In:3rd Workshop of the IEA GHG international oxy-combustion network. Yokohama, Japan; March 5-6.2008.
    [110]Miller J.A., Bowman C.T. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science.1989,15(4):287-338.
    [111]Johnsson J.E. Formation and reduction of nitrogen oxides in fluidized-bed combustion. Fuel.1994,73(9):1398-1415.
    [112]Glarborg P., Jensen A.D., Johnsson J.E. Fuel nitrogen conversion in solid fuel fired systems. Progress in Energy and Combustion Science.2003,29(2):89-113.
    [113]Woycenko DM, v. d. K. W., Roberts PA. Combustion of pulverised coal in a mixture of oxygen and recycled flue gas. Summary of the APG research program. Summary of the APG research program, IFRF Doc. F98/Y/4. Ijmuiden, The Netherlands: International Flame Research Foundation (IFRF); October 1995.
    [114]Hu Y., Naito S., Kobayashi N., Hasatani M. CO2, NOx and SO2 emissions from the combustion of coal with high oxygen concentration gases. Fuel.2000,79(15): 1925-1932.
    [115]Croiset E., Thambimuthu K.V. NOx and SO2 emissions from O2/CO2 recycle coal combustion. Fuel.2001,80(14):2117-2121.
    [116]Wall T., Liu Y., Spero C., Elliott L., et al. An overview on oxyfuel coal combustion--State of the art research and technology development. Chemical Engineering Research and Design.2009,87(8):1003-1016.
    [117]Wall TF, E. L., Khare S, Liu Y, Yamada T, Tamura M, et al. Ash impacts in oxy-fuel combustion. In:Proceedings:impacts of fuel quality on power production. Utah, USA.2006.
    [118]Zheng L., Furimsky E. Assessment of coal combustion in O2/CO2 by equilibrium calculations. Fuel Processing Technology.2003,81(1):23-34.
    [119]Maier J., Dhungel B., Monckert P., Kull R., et al. Impact of recycled gas species (SO2, NO) on emission behaviour and fly ash quality during oxy-coal combustion. In:Proceedings of the 33rd international technical conference on coal utilization and fuel systems. Clearwater, Florida, June 1-5.2008.
    [120]Maier J., Dhungel B., Monckert P., Scheffknecht G. Combustion and emission behavior under oxyfuel conditions. In:39. Kraftwerktechnisches Kolloquium. Dresden, Germany; October 11-12.2007.
    [121]Monckert P., Dhungel B., Kull R., Maier J. Impact of combustion conditions on emission formation (SO2, NOx) and fly ash. In:3rd workshop of the IEA GHG international oxy-combustion network. Yokohama, Japan, March 5-6.2008.
    [122]Wall T.F., Elliott L., Khare S., Liu Y., Y. T., Tamura M, et al. Ash impacts in oxy-fuel combustion. In:Proceedings:impacts of fuel quality on power production. Utah, USA.2006.
    [123]Khare S.P., Wall T.F., Farida A.Z., Liu Y., et al. Factors influencing the ignition of flames from air-fired swirl pf burners retrofitted to oxy-fuel. Fuel.2008,87(7): 1042-1049.
    [124]Suriyawong A., Gamble M., Lee M.H., Axelbaum R., et al. Submicrometer Particle Formation and Mercury Speciation Under O2/CO2 Coal Combustion. Energy Fuels. 2006,20(6):2357-2363.
    [125]Becht J. Pressurized fluidized bed gasification of coal using flue gas recirculation and oxygen injection. Energy conversion and management.1996,37(6-8):855-860.
    [126]Okazaki K., Ando T. NOx reduction mechanism in coal combustion with recycled CO2. Energy.1997,22(2-3):207-215.
    [127]Varhegyi G., Till F. Comparison of temperature-programmed char combustion in CO2/O2 and Ar-O2 mixtures at elevated pressure. Energy & Fuels.1999,13(2): 539-540.
    [128]Khan M.R. Prediction of sulphur distribution in products during low temperature coal pyrolysis and gasification. Fuel.1989,68(11):1439-1449.
    [129]Attar A. Chemistry, thermodynamics and kinetics of reactions of sulfur in coal-gas reactions:A review. Fuel.1978,57(4):201-212.
    [130]Ibarra J.V., Bonet A.J., Moliner R. Release of volatile sulfur compounds during low temperature pyrolysis of coal. Fuel.1994,73(6):933-939.
    [131]Patrick J.W. Sulphur release from pyrites in relation to coal pyrolysis. Fuel.1993, 72(3):281-285.
    [132]Yan J., Yang J., Liu Z. SH radical:The key intermediate in sulfur transformation during thermal processing of coal. Environment Science Technology.2005,39(13): 5043-5051.
    [133]Chen H., Li B., Zhang B. Decomposition of pyrite and the interaction of pyrite with coal organic matrix in pyrolysis and hydropyrolysis. Fuel.2000,79(13):1627-1631.
    [134]Coats A.W., Bright N.F.H. The kinetics of the thermal decomposition of pyrite. Canadian Journal of Chemistry.1966,44(10):1191-1195.
    [135]Pemsler J.P., Lam R.K.F., Litchfield J.K., Dallek, S., et al. Discharge Behavior and Thermal Stability of Synthetic FeS Cathode Material. Journal of the Electrochemical Society.1990,137(1):1-7.
    [136]Watkinson A.P., Germain C. Thermal decomposition of pyrite in fluidized Beds. Can. Metall. Quartery.1972,11(3):535-547.
    [137]Boyabat N., zer A.K., Bayrakceken S., Gulabolu, M. Thermal decomposition of pyrite in the nitrogen atmosphere. Fuel Processing Technology.2004,85(2-3): 179-188.
    [138]Gryglewicz G., Jasienko S. The behaviour of sulphur forms during pyrolysis of low-rank coal. Fuel.1992,71(11):1225-1229.
    [139]Monteiro J.L.F. Thermal decomposition of pyrite in a fluidized bed. The Canadian Journal of Chemical Engineering.1981,59(4):511-516.
    [140]Liu F., Li W., Chen H., Li, B. Uneven distribution of sulfurs and their transformation during coal pyrolysis. Fuel.2007,86(3):360-366.
    [141]Gryglewicz G Sulfur transformations during pyrolysis of a high sulfur Polish coking coal. Fuel.1995,74(3):356-361.
    [142]Telfer M., Zhang D. The influence of water-soluble and acid-soluble inorganic matter on sulphur transformations during pyrolysis of low-rank coals. Fuel.2001, 80(14):2085-2098.
    [143]Guerses S. Investigation of relation between both sulfur removal and adsorption capacity with surface morphology of a pyrolysed Turkish lignite. Fuel.2003,82(8): 1013-1019.
    [144]Liu Q., Hu H., Zhou Q., Zhu, S.,et al. Effect of mineral on sulfur behavior during pressurized coal pyrolysis. Fuel Processing Technology.2004,85(8-10):863-871.
    [145]Yan R., Chin Terence, Ng Y.L., Duan, H., et al. Influence of Surface Properties on the Mechanism of H2S Removal by Alkaline Activated Carbons. Environmental Science & Technology.2004,38(1):316-323.
    [146]Mukherjee S., Borthakur P.C. Effects of alkali treatment on ash and sulphur removal from Assam coal. Fuel Processing Technology.2004,85(2-3):93-101.
    [147]Hu G., Dam-Johansen K., Wedel S., Hansen, J. P. Decomposition and oxidation of pyrite. Progress in Energy and Combustion Science.2006,32(3):295-314.
    [148]Yani S., Zhang D.K. Transformation of organic and inorganic sulfur in a lignite during pyrolysis:Influence of inherent and added inorganic matter. In the 32th International Symposium on Combustion. Montreal, Canda.2008.
    [149]Yani S., Zhang D.K. An experimental study into pyrite transformation during pyrolysis of Australian lignite samples. Fuel.2010,89(7):1700-1708.
    [150]Karaca, S., Bayrak, R., Gurses, A. Investigation of relation between both sulfur removal and adsorption capacity with surface morphology of a pyrolysed Turkish lignite. Fuel.2003,82(8):1013-1019.
    [151]Messenbock R.C., Dugwell D.R., Kandiyoti R. Coal Gasification in CO2 and Steam: Development of a Steam Injection Facility for High-Pressure Wire-Mesh Reactors. Energy & Fuels.1999,13(1):122-129.
    [152]Jamil K., Hayashi J., Li C.Z. Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor. Fuel.2004,83(7-8): 833-843.
    [153]Duan L.B., Zhao C.S., Zhou W., Qu,C., et al. Investigation on Coal Pyrolysis in CO2 Atmosphere. Energy & Fuels.2009,23(7):3826-3830.
    [154]Snow M.J.H., Longwell J.P., Sarofim A.F. Direct sulfation of calcium carbonate. Industrial & Engineering Chemistry Research.1988,27(2):268-273.
    [155]Liu H., Katagiri S., Kaneko U., Okazaki, K. Sulfation behavior of limestone under high CO2 concentration in O2/CO2 coal combustion. Fuel.2000,79(8):945-953.
    [156]Hajaligol M.R., Longwell J.P., Sarofim A.F. Analysis and modeling of the direct sulfation of calcium carbonate. Industrial & Engineering Chemistry Research.1988, 27(12):2203-2210.
    [157]Fuertes A.B., Velasco G., Fernandez M. J., Alvarez, T. Analysis of the direct sulfation of calcium carbonate. Thermochimica Acta.1994,242:161-172.
    [158]Liu H., Okazaki K. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation. Fuel.2003,82(11): 1427-1436.
    [159]Liu H., Katagiri S., Okazaki K. Drastic SOx removal and influences of various factors in O2/CO2 pulverized coal combustion system. Energy Fuels.2001,15(2): 403-412.
    [160]Chen C.M., Zhao C.S., Liang C., Pang, K. Calcination and sintering characteristics of limestone under O2/CO2 combustion atmosphere. Fuel Processing Technology. 2007,88(2):171-178.
    [161]陈传敏,赵长遂,赵毅.石灰石直接硫化反应动力学研究.燃烧科学与技术.2009,15(5):388-392.
    [162]王宏,张礼知.高CO2浓度下钙基吸收剂脱硫的实验研究.工程热物理学报.2001,22(3):374-377.
    [163]王宏,张礼知.02/CO2方式下钙基吸收剂在脱硫过程中微观结构变化的研究.工程热物理学报.2001,22(1):127-129.
    [164]张礼知,王宏.02/C02气氛下燃煤的钙基脱硫规律的实验研究.燃料化学学报.2000,28(6):508-512.
    [165]周英彪,郑瑛.空气与02/C02气氛下钙基脱硫剂固硫规律的实验研究.热能动力工程.2001,16(4):409-411.
    [166]Yu D.X., Xu M.H., Yao H., Liu, X. W., et al. Physicochemical properties and potential health effects of nanoparticles from pulverized coal combustion. Chinese Science Bulletin.2009,54(7):1243-1250.
    [167]Neville M., Quann R.J., Haynes B.S., Sarofim, A. F. Vaporization and condensation of mineral matter during pulverized coal combustion. Symposium (International) on Combustion.1981,18(1):1267-1274.
    [168]Quann R.J., Sarofim A.F. Vaporization of refractory oxides during pulverized coal combustion. Symposium (International) on Combustion.1982,19(1):1429-1440.
    [169]Kauppinen E.I., Pakkanen T.A. Coal combustion aerosols:a field study. Environmental Science and Technology.1990,24(12):1811-1818.
    [1701 Zhang L., Ninomiya Y., Yamashita T. Formation of submicron particulate matter (PM1) during coal combustion and influence of reaction temperature. Fuel.2006, 85(10-11):1446-1457.
    [171]Sheng C., Li Y Experimental study of ash formation during pulverized coal combustion in O2/CO2 mixtures. Fuel.2008,87(7):1297-1305.
    [172]Sheng C., Li Y, Liu X., Yao, H., et al. Ash particle formation during O2/CO2 combustion of pulverized coals. Fuel Processing Technology.2007,88(11-12): 1021-1028.
    [173]Sheng C., Lu Y., Gao X., Yao, H. Fine Ash Formation during Pulverized Coal CombustionA Comparison of O2/CO2 Combustion versus Air Combustion. Energy Fuels.2007,21(2):435-440.
    [174]Suriyawong A., Hogan J.C.J., Jiang, J. K., Biswas, P. Charged fraction and electrostatic collection of ultrafine and submicrometer particles formed during O2/CO2 coal combustion. Fuel.2008,87(6):673-682.
    [175]Okawa M., Kimura N., Kiga T., et al. Trial design for a CO2 recovery power plant by burning pulverized coal in O2/CO2. Energy Conversion and Management.1997, 38:123-127.
    [176]Nakayama S., Noguchi Y, Kiga T., et al. Pulverized coal combustion in O2/CO2 mixtures on a power plant for CO2 recovery. Energy Conversion and Management. 1992,33(5-8):379-386.
    [177]Simmons M., Miracca I., Gerdes K. Oxyfuel technologies for CO2 capture:a techno-economic overview.7th international conference on greenhouse gas control technologies. Vancouver, Canada, September,.2004,7:5-9.
    [178]Chatel-Pelage F., Varagani R., Pranda P., et al. Applications of oxygen for NOx control and CO2 capture in coal-fired power plants. Thermal Science.2006,10(3): 119-142.
    [179]Payne R., Chen S.L., Wolsky A.M., Richter W.F. CO2 recovery via coal combustion in mixtures of oxygen and recycled flue gas. Combustion science and technology. 1989,67(1):1-16.
    [180]Senior C.L., Zeng T., Che J., Ames, M. R., et al. Distribution of trace elements in selected pulverized coals as a function of particle size and density. Fuel Processing Technology.2000,63(2-3):215-241.
    [181]Pusz S., Krzto A., Komraus J.L., Martinez-Tarazona, M. R., et al. Interactions between organic matter and minerals in two bituminous coals of different rank. International Journal of Coal Geology.1997,33(4):369-386.
    [182]Querol X., Klika Z., Weiss Z., Finkelman, R. B., et al. Determination of element affinities by density fractionation of bulk coal samples. Fuel.2001,80(1):83-96.
    [183]Zhuang X., Querol X., Plana F., Alastuey, A., et al. Determination of elemental affinities by density fractionation of bulk coal samples from the Chongqing coal district, Southwestern China. International Journal of Coal Geology.2003,55(2-4): 103-115.
    [184]Yu J., Lucas J., Strezov V., Wall, T. Swelling and char structures from density fractions of pulverized coal. Energy and Fuels.2003,17(5):1160-1174.
    [185]Liu, X., Xu, M., Yao, H., Yu, D., et al. The Formation and Emission of Particulate Matter during the Combustion of Density Separated Coal Fractions. Energy Fuels. 2008,22(6):3844-3851.
    [186]Swaine, D. J., Goodarzi, F. Environmental aspects of trace elements in coal. Kluwer Academic Publishers,1995.
    [187]Swaine, D. J. Trace elemental in coal. London:Butterworths,1990.
    [188]Swaine, D. J. The organic association of elements in coals. Org. Geochem.1992, 18(3):259-261.
    [189]Querol, X., Cabrera, L., Pickel, W., Lopez-Soler, A., et al. Geological controls on the coal quality of the Mequinenza subbituminous coal deposit, northeast Spain. International Journal of Coal Geology.1996,29(1-3):67-91.
    [190]Querol, X., Klika, Z., Weiss, Z., Finkelman, R. B., et al. Determination of element affinities by density fractionation of bulk coal samples. Fuel.2001,80(1):83-96.
    [191]Zhuang, X., Querol, X., Plana, F., Alastuey, A., et al. Determination of elemental affinities by density fractionation of bulk coal samples from the Chongqing coal district, Southwestern China. International Journal of Coal Geology.2003,55(2-4): 103-115.
    [192]Casanovas, J., Ricart, J. M., Illas, F., Jimenez-Mateos, J. M. The interpretation of X-ray photoelectron spectra of pyrolized S-containing carbonaceous materials. Fuel. 1997,76(14-15):1347-1352.
    [193]Kozowski M. XPS study of reductively and non-reductively modified coals. Fuel. 2004,83(3):259-265.
    [194]Chen H., Li B., Yang J.I., Zhang, B. Transformation of sulfur during pyrolysis and hydropyrolysis of coal. Fuel.1998,77(6):487-493.
    [195]Lin L., Khang S.J., Keener T.C. Coal desulfurization by mild pyrolysis in a dual-auger coal feeder. Fuel Processing Technology.1997,53(1-2):15-29.
    [196]Lambert J.M., Simkovich G, Walker P.L. Production of pyrrhotites by pyrite reduction. Fuel.1980,59(10):687-690.
    [197]Quyn D.M., Wu H., Li C.Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅰ. Volatilisation of Na and Cl from a set of NaCl-loaded samples. Fuel.2002, 81(2):143-149.
    [198]Robert C.W. CRC Handbook of Chemistry and Physics 70th Edition[M].1990.
    [199]James S. Lange's Handbook of Chemistry[M].1967.
    [200]蔡千正.热分析[M].北京:高等教育出版社.1993.
    [201]李余增.热分析[M].北京:清华大学出版社.1987.
    [202]Khinast J., Krammer G.F., Brunner C., Staudinger, G. Decomposition of limestone: the influence of CO2 and particle size on the reaction rate. Chemical Engineering Science.1996,51(4):623-634.
    [203]Dennis J.S., Hayhurst A.N. The effect of CO2 on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds. Chemical Engineering Science.1987,42(10):2361-2372.
    [204]Hyatt E.P., Cutler I.B., Wadsworth M.E. Calcium carbonate decomposition in carbon dioxide atmosphere. Journal of the American Ceramic Society.1958,41(2): 70-74.
    [205]Garcia-Labiano F., Abad A., De Diego L.F., Gayan, P., et al. Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chemical Engineering Science.2002,57(13):2381-2393.
    [206]Borgwardt R.H., Roache N. F., Bruce K.R. Surface area of calcium oxide and kinetics of calcium sulfide formation. Environmental Progress.1984,3(2):129-135.
    [207]Borgwardt R.H., Bruce K.R. Effect of specific surface area on the reactivity of CaO with SO2. AIChE Journal.1986,32(2):239-246.
    [208]Borgwardt H. Sintering of nascent calcium oxide. Chemical Engineering Science. 1989,44(1):53-60.
    [209]Tullin C., Ljungstroem E. Reaction between calcium carbonate and sulfur dioxide. Energy Fuels.1989,3(3):284-287.
    [210]Tullin C., Nyman G, Ghardashkhani S. Direct sulfation of calcium carbonate:the influence of carbon dioxide partial pressure. Energy Fuels.1993,7(4):512-519.
    [211]Davini P. Thermogravimetric study of the characteristics and reactivity of CaO formed in the presence of small amounts of SO2. Fuel.1995,74(7):995-998.
    [212]刘小伟.燃煤特性和燃烧工况对可吸入颗粒物形成的影响研究.热能工程.2008,华中科技大学博士学位论文:武汉.
    [213]Normann F., Andersson K., Leckner B., Johnsson, F. Emission control of nitrogen oxides in the oxy-fuel process. Progress in Energy and Combustion Science.2009, 35(5):385-397.
    [214]Krishnamoorthy G., Veranth J.M. Computational modeling of CO/CO2 ratio inside single char particles during pulverized coal combustion. Energy Fuels.2003,17(5): 1367-1371.
    [215]Liu, X., Xu, M., Yao, H., Yu, D., et al. Effect of combustion parameters on the emission and chemical composition of particulate matter during coal combustion. Energy Fuels.2007,21(1):157-162.
    [216]Quann R.J., Neville M., Janghorbani M., Mims, C. A., et al. Mineral matter and trace-element vaporization in a laboratory-pulverized coal combustion system. Environmental Science & Technology.1982,16(11):776-781.
    [217]Linak W.P., Peterson T.W. Mechanisms governing the composition and size distribution of ash aerosol in a laboratory pulverized coal combustor. in:Elsevier, vol.21,1988.399-410.
    [218]Yu D.X., Xu M.H., Yu Y., Liu, X. Swelling behavior of a Chinese bituminous coal at different pyrolysis temperatures. Energy Fuels.2005,19(6):2488-2494.
    [219]Ninomiya Y., Zhang L., Sato A., Dong, Z. Influence of coal particle size on particulate matter emission and its chemical species produced during coal combustion. Fuel Processing Technology.2004,85(8-10):1065-1088.
    [220]Yu J., Strezov V., Lucas J., Wall, T. Swelling behaviour of individual coal particles in the single particle reactor. Fuel.2003,82(15-17):1977-1987.
    [221]Hamilton L.H. Char morphology and behaviour of Australian vitrinites of various ranks pyrolysed at various heating rates. Fuel.1981,60(10):909-913.
    [222]Zygourakis K. Effect of pyrolysis conditions on the macropore structure of coal-derived chars. Energy Fuels.1993,7(1):33-41.
    [223]Timothy L.D., Sarofim A.F., Beer J.M. Characteristics of single particle coal combustion. In:Elsevier.1982,19:1123-1130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700