O_2/CO_2气氛下钙基脱硫剂脱硫机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经济发展和人口增长给环境的压力越来越大,各种环境问题层出不穷,它们直接或间接地影响生态平衡,影响人类的健康和生存。当今人类面临着三大环境问题:温室效应﹑酸雨和臭氧层破坏。而这三大环境问题均与煤燃烧有关,燃煤产生的大量的CO_2、SO_2和NO_x是引起上述问题的重要原因。控制和减缓燃煤过程中CO_2、SO_2和NO_x的排放已迫在眉睫。
     近年来,O_2/CO_2燃烧技术日渐得到人们的广泛关注。该技术是应用纯氧气及大部分再循环烟气(约80%)一起代替空气参与燃烧。烟气中CO_2浓度可以达到95%以上,从而使回收CO_2变得更容易;由于烟气再循环以及燃烧气氛中没有N_2,致使NO_x的排放大大降低;除此之外它还可以使炉内喷钙脱硫效率达到90%以上。可以说,O_2/CO_2燃烧技术是一种能够同时控制CO_2、SO_2和NO_x三种污染物的新型燃烧技术。基于此,本文针对O_2/CO_2燃烧气氛下SO_2、NO_x排放特性以及在该气氛下钙基脱硫剂的脱硫特性展开实验和理论研究,目的是为该燃烧技术的应用推广提供有价值的实验数据和理论依据。
     与常规燃烧气氛相比,O_2/CO_2气氛的主要特点就是烟气中CO_2分压较高,钙基脱硫剂在O_2/CO_2气氛下所表现出的煅烧、烧结以及硫化特性目前还不清楚。因此本文主要针对钙基脱硫剂在O_2/CO_2气氛下表现高脱硫效率的特性进行机理研究。首次对石灰石在O_2/CO_2气氛下的煅烧和烧结特性进行了系统研究。结果表明,O_2/N_2气氛下煅烧所得CaO的孔隙率和比表面积均较O_2/CO_2气氛下煅烧所得CaO的大,但O_2/CO_2气氛下煅烧所得CaO具有更大的最可几孔径,SEM的测试结果也证明了这一点。这主要是由于在O_2/CO_2气氛下石灰石完全分解时间长,相应地CaO所经历的烧结时间比在N_2/CO_2气氛下长。在延长相同烧结时间的情况下,O_2/CO_2气氛下CaO孔结构受烧结影响的程度要比O_2/N_2气氛下轻微。主要原因是由于在O_2/CO_2气氛下煅烧所得CaO比在N_2/CO_2气氛下煅烧所得CaO的系统表面能处于更稳定的状态。利用XRD对CaO的晶体结构检测结果表明,石灰石煅烧产物CaO的比表面积和晶粒度具有很好的相关性,烧结对煅烧产物CaO孔结构的影响,是通过影响其晶粒大小来实现的,随晶粒尺寸的增加,比表面积减小。
     对O_2/CO_2气氛下石灰石与SO_2之间直接硫化反应(温度低于石灰石分解温度)的研究表明,相同硫化工况下,石灰石直接硫化比煅烧后硫化可得到更高的Ca转化率。加入Na2CO_3添加剂后,石灰石的直接硫化速率及Ca转化率均有所提高。SEM能谱分析表明,加入Na2CO_3添加剂的石灰石其直接硫化产物CaSO_4中的缺陷浓度比无添加剂石灰石所形成的CaSO_4高。缺陷浓度的增加导致产物层扩散速率升高,从而使硫化速率及Ca转化率增加。石灰石直接硫化反应动力学分析表明,石灰石直接硫化在开始时由化学反应动力学控制,一旦CaSO_4产物层形成,逐渐变为由通过产物层的扩散控制。表观活化能和有效扩散系数分析表明通过产物层扩散为固态离子扩散。
     首次通过TGA-XRD相定量分析联合来研究高温下石灰石在O_2/CO_2气氛中的硫化特性。结果表明,在CaCO_3分解完全之前,硫化速率比CaCO_3分解完全之后要快的多,这主要是因为在CaCO_3分解完全之前,CaO一边由CaCO_3分解产生,一边与SO_2反应生成CaSO_4,系统中始终有新产生的CaO存在,刚产生的CaO还没有经过烧结具有较大的比表面积和孔隙率,因此表现出很高的反应活性;一旦CaCO_3分解完全,CaO由于高温烧结,比表面积和孔隙率迅速下降,表现出的反应活性也迅速降低,随之,硫化反应的速率也迅速降低。当温度高于石灰石分解温度之后,石灰石在O_2/CO_2气氛下硫化速率和Ca转化率均随CO_2分压升高而升高。
     在沉降炉上对O_2/CO_2气氛下石灰石的煅烧和脱硫特性进行了研究,并与空气气氛下进行了对比。石灰石在O_2/CO_2气氛下脱硫与在空气气氛下一样存在一最佳的脱硫温度,但O_2/CO_2气氛下最佳脱硫温度远高于空气气氛,而且所对应的脱硫效率也比在空气气氛下高的多。表明O_2/CO_2气氛更有利于高温脱硫。结合TGA-XRD相定量分析的研究结果,提出了石灰石O_2/CO_2气氛下的脱硫机理。在O_2/CO_2气氛下,高CO_2浓度使石灰石煅烧反应减慢,系统中较长时间内有高活性CaO产生,同时,由于在CaO/CaCO_3界面上CO_2的产生使CaSO_4产物层扩散阻力降低,这两方面因素导致CaO在O_2/CO_2气氛下较长时间内维持较高的硫化速率。
     对煤粉在O_2/CO_2气氛和空气两种气氛下燃烧时NO_x、SO_2排放特性实验表明,O_2/CO_2气氛下NO_x的生成量远远小于空气气氛。在不加石灰石时,气氛和温度对SO_2的生成量没有什么影响,只与煤中含硫量以及煤的种类有关。加入石灰石后在空气和O_2/CO_2两种气氛下SO_2的排放特性差别较大,当煤中加入石灰石后,O_2/CO_2气氛下SO_2的排放量较空气气氛下小,这主要是由于石灰石在O_2/CO_2气氛下可以获得更高的脱硫效率。
     以晶粒-微晶粒模型为框架,首次针对O_2/CO_2气氛,建立了石灰石煅烧和脱硫反应模型。在该模型中,考虑到O_2/CO_2气氛下CO_2分压较大,石灰石煅烧反应速率较慢,将石灰石煅烧、CaO烧结和CaO-SO_2硫化反应结合在一起建立了石灰石综合脱硫反应模型。该模型同时考虑到钙基脱硫剂硫化反应的控制机理——硫化产物层中的固态离子扩散控制。根据此模型,对O_2/CO_2气氛下石灰石煅烧反应过程中转化率和孔结构的变化以及石灰石的脱硫效率进行了计算,计算值和实验值吻合较好。
Today, economic development and population growth put more and more stress on environment, and cause all kinds of environmental problems. These affect directly or indirectly ecological balance and our health and living. The most serious three environmental problems that people must be confronted are greenhouse effect, acid rain and ozonosphere destruction now. And all of these are concerned with coal fired. The main reason for above environmental problems is CO_2、SO_2 and NO_x that emitted in course of coal burning. It is pressing to control and reduce CO_2、SO_2 and NO_x emissions in course of coal burning.
     Recently the O_2/CO_2 coal combustion technology is gradually paid extensive attention by people. This process uses pure oxygen instead of air and recycles most of the flue gas. The CO_2 concentration in flue gas may be enriched up to 95% and easy CO_2 recovery, therefore, becomes possible. Furthermore, it can greatly decrease NO_x emissions because in the combustion atmosphere there is no N_2 and most of the flue gas is recycled compared with coal combustion in air. Besides, above 90% desulfurization efficiency is also possible by limestone injection into furnace. Therefore, the O_2/CO_2 coal combustion technology is an innovative combustion technology that can control CO_2、SO_2 and NO_x emissions simultaneously. In present work the experimental and theoretical investigation on the characteristics of SO_2 and NO_x emissions and desulfurization of limestone in O_2/CO_2 combustion atmosphere was studied. It aimed at providing valuable experimental dates and theoretical foundation for the O_2/CO_2 coal combustion technology being applied.
     In O_2/CO_2 combustion atmosphere, CO_2 concentration in the flue gas is much higher compared with conventional combustion atmosphere. Under so high CO_2 concentration, the calcination, sintering and sulfation behaviors of limestone are not clear. Therefore, it is necessary to study the sulfation mechanism of Ca-based sorbents under O_2/CO_2 atmosphere. The calcination and sintering of limestone in O_2/CO_2 atmosphere were investigated systematically for the first time. The measurements showed that the specific surface area and porosity of calcined CaO in N_2/CO_2 atmosphere are bigger than that of in O_2/CO_2 atmosphere, but the latter has bigger average pore radius than the former. The fact is also testified by the SEM tests. This result is associated with the fact that the limestone completely decomposes into CaO in O_2/CO_2 atmosphere need much longer time than in N_2/CO_2 atmosphere, so the calcined CaO undergoes the longer sintering time in O_2/CO_2 atmosphere. Undergoing the same sintering time, the sintering has less influence on the pore structure of CaO calcined in O_2/CO_2 atmosphere than that of in N_2/CO_2 atmosphere, because CaO calcined in O_2/CO_2 atmosphere has lower surface energy. The crystal structures of CaO were measured with XRD. It is shown that the specific surface area of calcined CaO has a good relativity with the crystallite size. The decreasing in specific surface area with crystallite size rising shows that sintering influences the pore structure of calcined CaO by means of influencing the crystallite size.
     The direct sulfation reaction between limestone and SO_2 in O_2/CO_2 atmosphere was investigated. It is shown that the direct sulfation of limestone has a higher conversion degree than the sulfation of precalcined limestone. The Na2CO3 additives can improve the direct sulfation rate and Ca conversion degrees of limestone. SEM energy spectrum analysis proves that there is higher defect concentration in CaSO_4 product layer produced by limestone with Na2CO3 additives direct sulfation than that without additives. The increase in diffusivity in CaSO_4 product layer with defect concentration rising results in the increase in sulfation rate and Ca conversion degree. The kinetic studies of limestone direct sulfationreaction were performed. It is found that the reaction is chemically controlled in the initial stage and gradually controlled by diffusion through CaSO_4 product layer with CaSO_4 product layer forming. The higher value of the activation energy and the lower value of the diffusivity in CaSO_4 product layer suggest that mass transport through the product layer occurs by means of a solid-state ion diffusion mechanism instead of by molecular diffusion or Knudsen diffusion.
     The sulfation characteristics of limestone in O_2/CO_2 atmosphere at high temperature were studied by means of combined TGA with XRD phase quantitative analysis for the first time. The results suggest that there is a much higher sulfation rate before CaCO3 completely decomposed than after CaCO3 completely decomposed. This result is associated with the fact that CaO has higher specific surface area and porosity because of new CaO produced before CaCO3 completely decomposed. However, the specific surface area and porosity of CaO decreases quickly because there is not new CaO produced and CaO is sintered at high temperature. Therefore, the reactivity of CaO and the rate of sulfation reaction decrease quickly. The sulfation rate and Ca conversion degree of limestone in O_2/CO_2 atmosphere increase with CO_2 partial pressure when the temperature is above the equilibrium temperature.
     The calcination and sulfation characteristics of limestone in O_2/CO_2 atmosphere were investigated by drop-tube test facility and compared with in air. It is found that the limestone has an optimal desulfurization temperature in O_2/CO_2 atmosphere as in air. However, the optimal desulfurization temperature and corresponding desulfurization efficiency in O_2/CO_2 atmosphere is much higher than in air. It indicates that O_2/CO_2 atmosphere is in favor of limestone desulfurization at high temperature. Combined the results of TGA -XRD phase quantitative analysis, the desulfurization mechanism of limestone in O_2/CO_2 atmosphere was suggested. High CO_2 concentration slowed the limestone calcination in O_2/CO_2 atmosphere, so the system keeps on producing high activity CaO for a long time. At the same time, the diffusional resistance through CaSO_4 product layer is reduced because of the CO_2 being formed at the CaO/CaCO3 interface. The above two factors make CaO keep on a high sulfation rate for a long time. The characteristics of NO_x and SO_2 released in O_2/CO_2 atmosphere were performed and compared with in air. The results show that the released NO_x is much lower in O_2/CO_2 atmosphere than in air. The atmosphere and temperature have no effect on SO_2 emissions when the limestone is not added. After the limestone is added, the released SO_2 is much higher in air than in O_2/CO_2 atmosphere, because the limestone can achieve higher desulfurization efficiency.
     The calcination and sulfation model was established based on grain-micrograin model to simulate the calcination and sulfation reaction of limestone in O_2/CO_2 atmosphere. Considering that the high CO_2 partial pressure in O_2/CO_2 atmosphere results in slower calcination rate, the limestone calcination, calcined CaO sintering and CaO sulfation were combined to establish the integrated model of limestone desulfurization. At the same time, the true control mechanism of CaO sulfation-solid-state ion diffusion through the product layer is considered. The calcination degree, the specific surface area and porosity of calcined CaO and the desulfurization efficiency of limestone have been calculated based on this model. The calculated results are accord with the experimental values.
引文
1 International Energy Agency (IEA). Key world energy statistics[R]. 2001
    2 郑楚光. 洁净煤技术[M]. 武汉:华中理工大学出版社,1996
    3 郝吉明,王书肖,陆永琪. 燃煤二氧化硫污染控制技术手册[M]. 北京:化学工业出版社, 2001
    4 刘少康. 环境与环境保护导论[M]. 北京:清华大学出版社,2002
    5 Lindeberg Erik. Future large-scale use of fossil energy will require CO_2 sequestering and disposal[C]. In:Minisymposium on Carbon Dioxide Capture and Storage. G?teborg, Sweden, 1999
    6 Turkenburg C. Sustainable development, climate change, and carbon dioxide removal (CDR)[J]. Energy Conversion and Management, 1997, 38:s3-s12
    7 IPCC. Climate change 1995. Impacts, adaptations and mitigation of climate change: scientific technical analyses[R]. Rep. Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, 1995
    8 Lyngfelt Anders. An introduction to CO_2 capture and storage[C]. In:Second Nordic Minisymposium on Carbon Dioxide Capture and Storage. G?teborg, Sweden, 2001
    9 毛健雄,毛健全,赵树民. 煤的清洁燃烧[M]. 北京:科学出版社,2000
    10 花日茂,李湘琼. 我国酸雨的研究进展(综述)[J]. 安徽农业大学学报,1998,25(2):206-210
    11 陈静. 大气酸沉降及其环境效应的研究进展[J]. 首都师范大学学报,1999,1:79-85
    12 宋国菡,萧月芳. 酸雨对环境的影响及防止对策[J]. 农业环境保护,1998,17(3):141-143
    13 国家环保局科技标准司. 环境标准实施指南丛书:大气污染物排放标准详解[M]. 北京:中国环境科学出版社,1997
    14 杨俊杰, 高新让. 现代空中死神-酸雨[J]. 科学中国人,1997(7):53-54
    15 张新立, 李长春, 李光霞. 燃煤烟气脱硫[M]. 武汉:中国地质大学出版社, 1991
    16 U.S. Energy Information Administration. Electricity generation and environmental externalities: case studies[M]. U.S. DOE, September 1995
    17 章名耀 等. 增压流化床联合循环发电技术[M]. 南京:东南大学出版社,1998
    18 王志轩. 我国电力工业环境保护现状与展望[J]. 中国电力,1999,32(10):46-51
    19 刘炳江,郝吉明 等. 中国酸雨和二氧化硫污染控制区区划及实施政策研究[J]. 中国环境科学,1998,18(1):1-7
    20 国家环保总局. 中国环境保护工作的最新若干情况[J]. 环境保护,1998(3):5-6
    21 解振华. 控制酸雨和二氧化硫污染,改善环境质量. 酸雨和二氧化硫污染综合防治工作会议讲话,1997
    22 Yoichi Shimazaki, et al. A model analysis of clean development mechanisms to reduce both CO_2 and SO_2 emissions between Japan and China[J]. Applied Energy, 2000, 66:311-324
    23 国家环境保护总局. 酸雨控制区和二氧化硫污染控制区划分方案[J]. 环境保护,1998(3):7-10
    24 舒惠芬. 电力环境保护的发展和技术进步. 火力发电厂脱硫脱氮技术资料选编,华北电力科学研究院,1997
    25 Xu Xuchang, et al. SO_2 emission control measures in china. Three University Joint Workshop on Coal Utilization Technology,Wuhan,1999
    26 阎维平. 温室气体的排放以及烟气再循环煤粉燃烧技术的研究[J]. 中国电力,1997,30(6):59-62
    27 刘彦丰,阎维平,丁千岭. 控制和减缓电力生产过程中 CO_2 排放的技术[J]. 华北电力大学学报,2000,27(2):36-41
    28 Wolsky A M, and Brooks C. A new method of CO_2 recovery[C]. Proceedings of the 79th Annual Meeting of the Air Pollution Control Association Minneapolis, USA , 1986:22-27
    29 Wolsky A M, Daniels E J, Jody K S. Recovering CO_2 from large- and medium-size stationary combustors[J]. Journal of the Air & Waste Management Association, 1991,41:449-454
    30 Kimura N, Omata K, Kiga T, et al. The characteristics of pulverized coal combustion in O_2/CO_2 mixtures for CO_2 recovery[J]. Energy Conversion and Management, 1995, 36:805-808
    31 Okazaki K, and Ando T. NOx reduction mechanism in coal combustion with recycled CO_2[J]. Energy, 1997, 22:207-215
    32 Feng B, Ando T and Okazaki K. NO destruction and regeneration in CO_2 enriched CH4 flame[J]. JSME International Journal, 1998, 41:959-965
    33 Liu Hao, Kaneko Udai, Katagiri Shiro, et al. Efficient NO_x reduction and desulfurization in O_2/CO_2 coal combustion[C]. The 4th International Symposium on Coal Combustion, Beijing, China, 1999
    34 Liu H, Katagiri S, Okazaki K. Drastic SO_x removal and influences of various factors in O_2/CO_2 pulverized coal combustion system[J]. Energy & Fuels, 2001, 15:403-412
    35 Herzog H J, Drake E M. Carbon dioxide recovery and disposal from large energy system, Annual Review Energy Environment, 1996, 21:145-166
    36 Croiset E, Thambimuthu K, Palmer A. Coal combustion in O_2/CO_2 mixtures compared with air[J]. The Canadian Journal of Chemical Engineering, 2001, 78(2):402-407
    37 Croiset E, Thambimuthu K. NOx and SO_2 emissions from O_2/CO_2 recycle coal combustion[J]. Fuel, 2001, 80:2117-2121
    38 Thambimuthu K,Croiset E. Enriched oxygen coal-fired combustion [DB/OL]. http:\\www.netl.doe. gov/publications/ proceedings/98/98ps/ps4-4.pdf
    39 Douglas M A, Chui E, Tan Y, et al. OXY-fuel combustion at the CANMET vertical combustor research facility[DB/OL]. http:\\www.netl.doe.gov/publications/ proceedings/01/carbon_seq/4b2.pdf
    40 Okazaki K, Takano S, Kiga T. Analysis of the flame formed during oxidation of pulverized coal by an O_2-CO_2 mixtures[J]. Energy Conversion and Management, 1992, 33:459-466
    41 Kiga T, Takano S, Kimura N. Characteristics of pulverized-coal combustion in the system of oxygen/recycled flue gas combustion[J]. Energy Conversion and Management, 1997, 38:s129-s134
    42 Takano S, Kiga T, Endo Y, et al. CO_2 recovery from PCF power plant with O_2/CO_2 combustion process[J]. IHI Engineering Review, 1995, 28(4):446-450
    43 Okawa M, Kimura N, Kiga T, et al. Trial design for a CO_2 recovery power plant by burning pulverized coal in O_2/CO_2[J]. Energy Conversion and Management, 1997, 38:s123-s127
    44 Hirama T, Hosoda H, Azuma N, et al. Drastic reduction of NOx and N2O emissions from BFBC of coal by means of CO_2/O_2 combustion: effects of fuel gas recycle and coal type[C]. International Symposium of Engineering Foundation FLUIDIZATION IX, USA, 1998
    45 Andries J, Becht J G M, Hoppesteyn P D J. Pressurized fluidized bed combustion and gasification of coal using flue gas recirculation and oxygen injection[J]. Energy Conversion and Management, 1997, 38:s117-s122
    46 刘彦丰,阎维平,宋之平 等. 变氧浓度下煤焦燃烧的实验与模拟[C]. 工程热物理年会,青岛,2001. 10
    47 刘彦丰,阎维平,宋之平. 炭/碳粒在 CO_2/O_2 气氛中燃烧速率的研究[J]. 工程热物理学报,1999,20(6):769-772
    48 Liu Yanfeng, Yan Weiping, Song Zhiping, et al. A study on the combustion rates of pulverized coal char particle in O_2/CO_2 environment[C]. The 10th International Conference on Coal Science, Taiyuan, China, 1999
    49 Liu Yanfeng, Yan Weiping, Kang Zhizhong, et al. Simulation of pulverized coal combustion in O_2/CO_2 mixture[C]. The 1st U.S. China Symposium on CO_2 Emission Control Science & Technology, Hangzhou, China, 2001
    50 刘彦丰. 煤粉在高浓度 CO_2 下的燃烧与气化[D]:[博士学位论文]. 保定:华北电力大学,2001
    51 Miyamae S, Kiga T, Takano S, et al. Bench-scale testing on O_2/CO_2 combustion for CO_2 recovery[C]. JFRC/AFRC Symposium on Combustion, Haeaii, USA, 1994
    52 Santoro L, Vaccaro S, Aldi A, et al. Fly ashes reactivity in relation to coal combustion under flue gas recycling conditions[J]. Thermochimica Acta, 1997, 296:67-74
    53 Okazaki K, Liu H. Coal combustion system with CO_2 recovery and simultaneous reduction of NOx and SO_2(basic concept and mechanism)[C]. The third Asia-Pacific Conference on Combustion, Seoul, Korea, 2001:1-8
    54 Liu H, Okazaki K. Simultaneous easy CO_2 recovery and drastic reduction of SOx and NOx in O_2/CO_2 coal combustion with heat recirculation[J]. Fuel, 2003, 82:1427–1436
    55 Hu Y, Naito S, Kobayashi N, et al. CO_2, NO_x and SO_2 emissions from the combustion of coal with high oxygen concentration gases[J]. Fuel, 2000, 79:1925–1932
    56 Hu Y Q, Kobayashi N, Hasatani M, et al. The reduction of recycled-NOx in coal combustion with O_2/recycled flue gas under low recycling ratio[J]. Fuel, 2001, 80:1851-1855
    57 Hayashi J-i, Hirama T, Okawa R, et al. Kinetic relationship between NO/N_2O reduction and O_2 consumption during flue-gas recycling coal combustion in a bubbling fluidized-bed[J]. Fuel, 2002, 81:1179-1188
    58 Hosoda H, Hirama T. A novel FBC process of coal for pure oxygen added to flue-gas recycled[J]. Australian Coal Science, 1996
    59 Hosoda H, Hirama T, Azuma N, et al. NO_x and N_2O emission in bubbling fluidized-bed coal combustion with oxygen and recycled flue gas: macroscopic characteristics of their formation and reduction[J]. Energy & Fuels, 1998, 12(1):102-108
    60 王宏,董学文,邱建荣等. 燃煤在 O_2/CO_2 方式下 NO_x 生成特性的研究[J]. 燃料化学学报,2001,29(5):458-462
    61 张庆丰,郑楚光,张礼知等. 燃煤在 O_2/CO_2 气氛下 NOx 生成规律的实验研究[C]. 中国工程热物理学会燃烧学学术会议,北京,1999
    62 王宏,邱建荣,郑楚光. 燃煤在 O_2/CO_2 方式下 SO_2 生成特性的研究[J]. 华中科技大学学报(自然科学版),2002,30(1):100-102
    63 Qiu Jianrong, Zhang Xiaoping, Dong Xuewen, et al. SO_2 emission during coal combustion in O_2/CO_2 combustion cycle[C]. The 1st U.S. China Symposium on CO_2 Emission Control Science & Technology, Hangzhou, China, 2001
    64 董学文,王宏,邱建荣等. 不同气氛下燃煤 SO_2 的排放规律研究[J]. 环境科学学报,2003,23(3):322-326
    65 王宏,张礼知,邱建荣等. 高 CO_2 浓度下钙基吸收剂脱硫的实验研究[J]. 工程热物理学报,2001,22(3):374-377
    66 王宏,张礼知,陆晓华 等. O_2/CO_2 方式下钙基吸收剂在脱硫过程中微观结构变化的研究[J]. 工程热物理学报,2001,22(1):127-129
    67 张礼知,王宏,张庆丰 等. O_2/CO_2 气氛下燃煤的钙基脱硫规律的实验研究[J]. 燃料化学学报,2000,28(6):508-511
    68 周英彪,郑瑛,张礼知 等. 空气与 O_2+CO_2 气氛下钙基脱硫剂固硫规律的实验研究[J]. 热能动力工程,2001,16(4):409-411
    69 Liu H, Katagiri S, Kaneko U,et al. Sulfation behavior of limestone under high CO_2 concentration in O_2/CO_2 coal combustion[J]. Fuel, 2000, 79:945-953
    70 Liu H, Katagiri S, Okazaki K. Decomposition behavior and mechanism of calcium sulfate under the condition of O_2/CO_2 pulverized coal combustion[J]. Chemical Engineering Communications, 2001, 187:199-214
    71 郭东明. 硫氮污染防治工程技术及其应用[M]. 北京:化学工业出版社,2002
    72 肖文德. 二氧化硫脱除与回收[M]. 北京:化学工业出版社, 2001
    73 García-Labiano F, Abad A, Diego L F de, et al. Calcination of calcium-based sorbents at pressure in a broad range o f CO_2 concentrations[J]. Chemical Engineering Science, 2002, 57:2381-2393
    74 Borgwardt R H. Sintering of nascent calcium oxide[J]. Chemical Engineering Science, 1989, 44(1):53-60
    75 Bortz S J, Flament P. Recent IFRF fundamental and pilot scale studies on the direct sorbent injection process[R]. Proceedings: First Joint Symposium on Dry SO_2 and Simultaneous SO_2/NOx Control Technologies, 1, EPA-600/9-85/020a, NTIS PB85-232353, 1985
    76 Milne C R, Silcox G D, Pershing D W, et al. High-temperature, short-time sulfation of calcium-based sorbents. 2. Experimental data and theoretical model predictions[J]. Industrial & Engineering Chemistry Research, 1990, 29(11):2201-2214
    77 Powell E K, Searcy D W. The rate and activation enthalpy of decomposition of CaCO3[J]. Metallurgical Transactions B (Process Metallurgy), 1980, 11B(3): 427-432
    78 Borgwardt R H. Calcination kinetics and surface area of dispersed limestone particles[J]. AIChE Journal, 1985, 31(1):103-111
    79 郑瑛,史学锋,容伟,郑楚光. 石灰石快速煅烧及表面积形成的实验研究[J]. 华中理工大学学报,1999,27(3):43-45
    80 Ghosh-Dastidar A, Mahuli S, Agnihotri R, et al. Ultrafast calcination and sintering of Ca(OH)2 powder: experimental and modeling[J]. Chemical Engineering Science, 1995, 50(13): 2029-2040
    81 Silcox Geoffrey D, Kramlich John C, Pershing David W. A mathematical model for the flash calcinations of dispersed CaCO3 and Ca(OH)2 particles[J]. Industrial & Engineering ChemistryResearch, 1989, 28(1):155-160
    82 Murthy M S, Harish B R, Rajanandam K S, et al. Investigation on the kinetics of thermal decomposition of calcium carbonate[J]. Chemical Engineering Science, 1994, 49(13): 2198-2204
    83 Rajeswara Rao T, Gunn D J, Bowen J H. Kinetics of calcium carbonate decomposition[J]. Chemical Engineering Research & Design,1989, 67(1): 38-47
    84 Khinast J, Krammer G F, Brunner C, et al. Decomposition of limestone: the influence of CO_2 and particle size on the reaction rate[J]. Chemical Engineering Science, 1996, 51(4):623-634
    85 Zarkanitis Solon, Sotirchos Stratis V. Pore structure and particle size effects on limestone capacity for SO_2 removal[J]. AIChE Journal, 1989, 35(5):821-830
    86 Borgwardt Robert H. Calcium oxide sintering in atmospheres containing water and carbon dioxide[J]. Industrial & Engineering Chemistry Research, 1989, 28(4):493-500
    87 Bruce Kevin R, Gullett Brian K, Beach Laura O. Comparative SO_2 reactivity of CaO derived from CaCO3 and Ca(OH)2[J]. AIChE Journal, 1989, 35(1):37-41
    88 Irabien Angel, Viguri Javier R, Ortiz Inmaculada. Thermal dehydration of calcium hydroxide. 1. Kinetic model and parameters[J]. Industrial & Engineering Chemistry Research, 1990, 29(8):1599-1606
    89 Sasaoka Eiji, Uddin Md Azhar, Nojima Shigeru. Novel preparation method of macroporous lime from limestone for high-temperature desulfurizaiton[J]. Industrial & Engineering Chemistry Research, 1997, 36(9):3639-3646
    90 Murthy M S, Harish B R, Rajanandam K S, et al. Investigation on the kinetics of thermal decomposition of calcium carbonate[J]. Chemical Engineering Science, 1994, 49(13):2198-2204
    91 Newton Gerald H, Chen Shih Lin, Kramlich John C. Role of porosity loss in limiting SO_2 capture by calcium based sorbents[J]. AIChE Journal, 1989, 35(6):988-994
    92 Alvfors Per, Svedberg Gunnar. Modeling of the simultaneous calcinations, sintering and sulphation of limestone and dolomite[J]. Chemical Engineering Science, 1992, 47(8):1903-1912
    93 Gullett B K, Bruce K R. Pore distribution changes of calcium-based sorbents reacting with sulfur dioxide[J]. AIChE Journal, 1987, 33(10):1719-1726
    94 Milne Corey R, Silcox Geoffrey D, Pershing David W, et al. Calcination and sintering models for application to high-temperature, short-time sulfation of calcium-based sorbents[J]. Industrial & Engineering Chemistry Research, 1990, 29(2):139-149
    95 Wei S-H, Mahuli S K, Agnihotri, R, et al. High surface area calcium carbonate: pore structural properties and sulfation characteristics[J]. Industrial & Engineering Chemistry Research, 1997, 36(6):2141-2148
    96 Hu N, Scaroni A W. Fragmentation of calcium-based sorbents under high heating rate, short residence time conditions[J]. Fuel, 1995,74(3):374–382
    97 Newton G H, Harrison D J, Silcox G D, Pershing D W. Control of SOx emissions by in-furnace sorbent injection: carbonates vs. hydrates[J]. Environ. Prog., 1986, 5(2):140–145
    98 Al-Shawabkeh A, Matsuda H, Hasatani M. Comparative reactivity of two different Ca(OH)2 —derived oxides for SO_2 capture[J]. Journal of Chemical Engineering of Japan, 1994, 27(5):650–656
    99 Carello S A, Vilela A C F. Evaluation of the reactivity of south Brazilian limestones in relation to pure SO_2 through thermoanalysis and scanning electron microscopy[J]. Industrial & Engineering Chemistry Research, 1993, 32(12):3135–3142
    100 Agnew J, Hampartsoumian E, Jones J M, Nimmo W. The simultaneous calcination and sintering of calcium based sorbents under a combustion atmosphere[J]. Fuel, 2000, 79(12): 1515–1523
    101 钟秦. 石灰石与 SO_2 反应动力学的研究[J]. 化学反应工程与工艺, 1994, 10(4): 329-336
    102 Mai M C, Edgar T F. Surface area evolution of calcium hydroxide during calcination and sintering[J]. AIChE Journal, 1989, 35(1): 30-36
    103 Hanson C, Tullin C. Sintering of calcium carbonate and lime mud in a carbon dioxide atmosphere[J]. Journal of Pulp and Paper Science, 1996, 22(9):327-331
    104 Beruto D, Searcy A W, Searcy A W. CO_2 catalyzed surface area and porosity changes in high-surface area CaO aggregates[J]. J. Am. Ceramic Soc., 1984,67:512-515
    105 Fuertes A B, Alvarez D, Rubiera F, et al. Surface area and pore size changes during sintering of calcium-oxide particles[J]. Chemical Engineering Communications, 1991, 109:73-88
    106 Adanez Juan, Gayan Pilar, Garcia-Labiano Francisco. Comparison of mechanistic models for the sulfation reaction in a broad range of particle sizes of sorbents[J]. Industrial & Engineering Chemistry Research, 1996, 35(7):2190-2197
    107 Sotirchos Stratis V, Zarkanitis S. Inaccessible pore volume formation during sulfation of calcined limestone[J]. AIChE Journal, 1992, 38(10):1536-1551
    108 Wang Wuyin, Bjerle Ingemar. Modeling of high-temperature desulfurization by Ca-based sorbents[J]. Chemical Engineering Science, 1998, 53(11):1973-1989
    109 Burganos V N, Sotirchos S V. Diffusion in pore networks: effective medium theory and smooth field approximation[J]. AIChE Journal, 1987, 33(10):1678-1689
    110 Dam-Johansen K, Ostergaard K. High-temperature reaction between sulphur dioxide and limestone. II. An improved experimental basis for mathematical model[J]. Chemical Engineering Science, 1991, 40(3):839-845
    111 Dam-Johansen K, Ostergaard K. High-temperature reaction between sulphur dioxide and limestone. I. comparison of limestones in two laboratory reactors and a pilot plant[J]. Chemical Engineering Science, 1991, 46(3):827-837
    112 Laursen K, Duo W, Grace J R, et al. Sulfation and reactivation characteristics of nine limestones[J]. Fuel, 2000, 79(2):153-163
    113 Ye Zhicheng Wang Wuyin, Zhong Qin, et al. High temperature desulfurization using fine sorbent particles under boiler injection conditions[J]. Fuel, 1995, 74(5):743-760
    114 Sotirchos Stratis V, Zarkanitis, Solon. Distributed pore size and length model for porous media reacting with diminishing porosity[J]. Chemical Engineering Science, 1993, 48(8):1487-1502
    115 Simons G A, Garman A R. The kinetic rate of SO_2 sorption by CaO[J]. AIChE Journal, 1987, 33(2):211-217
    116 Mahuli S K, Agnihotri R, Chauk S, et al. Pore-structure optimization of calcium carbonate for enhanced sulfation[J]. AIChE Journal, 1997, 43(9):2323-2335
    117 Simons G A, Garman A R. Small pore closure and the deactivation of the limestone sulfation reaction[J]. AIChE Journal, 1986, 32(9):1491-1499
    118 Sotirchos Stratis V, Yu Huei-Chung. Overlapping grain models for gas-solid reactions with solid product[J]. Industrial & Engineering Chemistry Research, 1988, 27(5):836-845
    119 Marsh D W, Ulrichson D L. Rate and diffusional study of the reaction of calcium oxide with sulfur dioxide[J]. Chemical Engineering Science, 1985, 40(3):423-433
    120 Alvfors Per, Svedberg Gunnar. Modeling of the sulphation of calcined limestone and dolomite-a gas-solid reaction with structural changes in the presence of inert solids[J]. Chemical Engineering Science, 1988, 43(5):1183-1193
    121 Efthimiadis Evangelos A, Sotirchos Stratis V. Sulfidation of limestone-derived calcines[J]. Industrial &Engineering Chemistry Research, 1992, 31(10):2311-2321
    122 Hartman M, Trnka O. Influence of temperature on the reactivity of limestone particles with sulfur dioxide[J]. Chemical Engineering Science, 1980, 35(5): 1189-1194
    123 Bhatia S K, Perlmuter D D. The effect of pore structure on fluid-solid reactions: application to the SO_2-lime reaction[J]. AIChE Journal, 1981, 27: 226-234
    124 Borgwardt Robert H, Bruce Kevin R, Blake James. An investigation of product-layer diffusivity for CaO sulfation[J]. Industrial & Engineering Chemistry Research, 1987, 26(10):1993-1998
    125 Hsia C, St Pierre G R. Diffusion through CaSO4 formed during the reaction of CaO with SO_2 and O_2[J]. AIChE Journal, 1993, 39(4):698-700
    126 Hsia C, St Pierre G R, Fan L-S. Isotope study on diffusion in CaSO4 formed during sorbent-flue-gas reaction[J]. AIChE Journal, 1995, 41(10):2337-2340
    127 Duo W, Sevill J P K, Kirkby N F, Clift R. Formation of product layers in solid-gas reactions for removal of acid gases[J]. Chemical Engineering Science, 1994, 49(24A): 4429-4442
    128 Duo Wenli, Laursen Karin, Lim Jim, et al. Crystallization and fracture: formation of product layers in sulfation of calcined limestone[J]. Powder Technology, 2000, 111(1): 154-167
    129 Duo Wenli, Laursen Karin, Lim Jim, et al. Crystallization and fracture: product layer diffusion in sulfation of calcined limestone[J]. Industrial & Engineering Chemistry Research, 2004, 43(18): 5653-5662
    130 Bjerle I, Ye Z. Particle structure change of CaO during high temperature sulphatization[J]. Chem. Eng. Technol., 1991, 14(5):357-362
    131 Bjerle Ingemar, Xu Fuming, Ye Zhicheng. Useful experimental technical for the study of heterogeneous reactions[J]. Chemical Engineering Technology, 1992, 15(3):151-161
    132 Ghosh-Dastidar A, Mahuli S K, Agnihotri R, Fan L-S. Investigation of high reactivity calcium carbonate sorbent for enhanced SO_2 removal[J]. Industrial & Engineering Chemistry Research, 1996, 35(2):598
    133 Fan L-S, Ghosh-Dastidar A, Mahuli S K. Chemical sorbent and methods of making and using same[P]. US Patent, No. 08/584,089. 1998-01-06
    134 Agnihotri R, Mahuli S K, Chauk S S, Fan L-S. Influence of surface modifiers on the structure of precipitated calcium carbonate[J]. Industrial & Engineering Chemistry Research, 1999, 38: 2283-2291
    135 Wei S-H, Mahuli S K, Agnihotri R, Fan L-S. High-surface area calcium carbonate: pore structural properties and sulfation characteristics[J]. Industrial & Engineering Chemistry Research, 1997, 36:2141-2148
    136 刘现卓,赵长遂,钱晓东,吴新. 石灰石孔隙结构改性及其脱硫性能研究[J]. 燃烧科学与技术, 2003, 9(3):280-284
    137 赵长遂,刘现卓,吴新,钱晓东. 石灰石闪蒸改性及脱硫性能的试验研究[J]. 工程热物理学报, 2003, 24(4):714-716
    138 刘现卓, 赵长遂 等. 石灰石闪蒸改性试验研究[J]. 东南大学学报(自然科学版),2002,32(5):698-701
    139 陈传敏,赵长遂,韩松,刘现卓. 闪蒸处理对石灰石脱硫性能的影响[J]. 热能动力工程,2004,19(3):238-241
    140 Zhao Changsui,Zhu Aiqiang,Liu Xianzhuo,et al. Investigation on desulfurization characteristic of modified limestone treated by sudden water evaporation[C], 4th Korea-China Joint Workshop on Clean Energy Technology, Jeju Island, Korea, October 2002
    141 陈亚非,高翔. 金属氧化物对 Ca(OH)_2 脱硫影响的研究[J]. 工程热物理学报,1997,18(4):517-520
    142 肖佩林,沈迪新. 高温固硫反应中锶化合物的促进作用[J]. 环境化学,1994,13(5): 389-394
    143 陈德珍,张鹤声. NaCl 对石灰石脱硫催化效果的理论分析[J]. 工程热物理学报,1997,18(2):242-245
    144 葛岭梅,许满贵. 添加剂对煅烧石灰石孔结构的影响[J]. 湘潭矿业学院学报,1998,13(3):51-55
    145 Paolo Davini, et al. An investigation of the influence of sodium chloride on the desulphurization properties of limestone[J]. Fuel, 1992, 71: 831-834
    146 Juan Adanez, Vanessa Fierro, Francisco Garcia-Labiano, et al. Study of modified calcium hydroxides for enhancing SO_2 removal during sorbent injection in pulverized coal boilers[J]. Fuel, 1997, 76(3):257-265
    147 Stouffer Mark R et al. An investigation of CaO sulfation mechanisms in boiler sorbent injection[J]. AIChE Journal, 1989, 35(8):1253-1262
    148 Kirchgessner D A, Lorrain J M. Lignosulfonate-modified calcium hydroxide for sulfur dioxide control[J]. Industrial and Engineering Chemistry Research, 1987, 26(11):2397-2400
    149 Kirchgessner D A, Jozewiez W. Enhancement of reactivity in surfactant-modified sorbents for sulfur dioxide control[J]. Industrial and Engineering Chemistry Research, 1989, 28(4):413-418
    150 滕斌,高翔,刘海蛟等. 添加剂对消石灰结构特性和脱硫性能的影响[J]. 浙江大学学报(工学版), 2004, 38(2):23-239
    151 Kirchgessner D A, Jozewicz W. Structural changes in surfactant-modified sorbents during furnace injection[J]. AIChE Journal, 1989,35(3):500-506
    152 王春波,沈湘林. 调质碳酸钙硫化机理的实验研究[J]. 环境科学学报,21(6):664-668
    153 王春波,沈湘林. Na2CO 调质钙基脱硫剂硫化机理实验研究[J]. 工程热物理学报,23(5):641-644
    154 Wang Chunbo, Shen Xianglin, Li Daji. An investigation on sulfation mechanisms of Ca-based sorbent modified by sodium salt[J]. Developments in Chemical Engineering and Mineral Processing, 2002, 10(5-6):647-656
    155 Wang Chunbo, Shen Xianglin, Xu Yiqian. Investigation on sulfation of modified Ca-based sorbent[J]. Fuel Processing Technology, 2002, 79:121– 133
    156 Laursen K, Grace J R, Lim C J. Enhancement of the sulfur capture capacity of limestones by the addition of Na2CO3 and NaCl[J]. Environmental Science and Technology, 2001, 35(21): 4384-4389
    157 Laursen Karin, Kern Arnt A, Grace John R, Lim C Jim. Characterization of the enhancement effect of Na2CO3 on the sulfur capture capacity of limestones[J]. Environmental Science and Technology, 2003, 37(16): 3709-3715
    158 陈鸿伟,王春波. 复合调质提高 CaO 固硫率的试验研究[J]. 环境科学学报, 1999,19(4):357-361
    159 王春波,谢海洋. 提高 CaO 固硫率的实验及分析[J]. 华北电力大学学报, 1999, 26(2): 85-90
    160 王春波,陈鸿伟,沈湘林. EtOH 调质 CaO 粒径对其脱硫效果影响的实验研究[J]. 热能动力工程, 2000, 15(90):630-633
    161 Sasaoka E, Sada N, Uddin M A. Preparation of macroporous lime from natural lime by swelling method with acetic acid for high-temperature desulfurization[J]. Industrial & Engineering Chemistry Research, 1998, 37:3943-1949
    162 Sasaoka E, Uddin M A and Nojima S. Novel preparation method of mcroporous lime from limestone for high-temperature desulfurization[J]. Industrial & Engineering Chemistry Research, 1997, 36:3639-3646
    163 Wu S, Sumie N, Su C, et al. Preparation of macroporous lime from natural lime by swelling method with water and acetic acid mixture for removal of sulfur dioxide at high-temperature. Industrial & Engineering Chemistry Research, 2002, 41: 1352-1356
    164 Murakam Takahiro, Kurita Noriyuki, Naruse Ichiro. Molecular dynamics simulations of the effect of NaCl-doping on the calcination characteristics in desulfurization processes. Journal of Chemical Engineering of Japan, 2003,36(3):225-230
    165 Qiu Kuanrong, Lindqvist Oliver. Direct sulfation of limestone at elevated pressures[J]. Chemical Engineering Science, 2000, 55(16):3091-3100
    166 Zevenhoven R, Yrjas P, Hupa M. Sulfur dioxide capture under PFBC conditions: the influence of sorbent particle structure[J]. Fuel, 1998, 77(4): 285-292
    167 Alvarez Elena, Gonzalez Juan F. High pressure thermogravimetric analysis of the direct sulfation of Spanish calcium-based sorbents[J]. Fuel, 341-348
    168 Tullin C, Nyman G, Ghardashkhani S. Direct sulfation of CaCO_3: the influence of CO_2 partial pressure[J]. Energy & Fuels, 1993, 7(4):512-519
    169 Zevenhoven C, Yrjas K, Hupa M. Product Layer Development during sulfation and sulfidation of uncalcined limestone particles at elevated pressures[J]. Industrial & Engineering Chemistry Research, 1998, 37:2639-2646
    170 Buroni M, Carugati A, Piero G, et al. Behaviour of calcium-based sorbents towards SO_2 capture in a high pressure thermobalance[J]. Fuel, 1992, 71:919-923
    171 Snow M J H, Longwell J P and Sarofim A F. Direct sulfation of calcium carbonate[J]. Industrial & Engineering Chemistry Research, 1988, 27(2):269-273
    172 Hajaligol M R, Longwell J P and Sarofim A F. Analysis and modeling of the direct sulfation of CaCO3[J]. Industrial & Engineering Chemistry Research, 1988, 27:2203-2210
    173 Zhong Q. Direct sulfation reaction of SO_2 with calcium carbonat[J]. Thermochimica Acta, 1995, 260:125-136
    174 Fuertes A B, Velasco G, Alvarez T, Fernandez M J. Sulfation of dolomite particles at high CO_2 partial pressures[J]. Thermochimica Acta, 1995, 254:63-78
    175 Fuertes A B, Velasco G, Fuente T, Alvarez T. Study of the direct sulfation of limestone particles at high CO_2 partial pressures[J]. Fuel Processing Technology, 1994, 38:181-192
    176 Fuertes A B, Velasco G, Fernandez M J Alvarez T. Analysis of the Direct Sulfation of Calcium Carbonate[J]. Thermochimica Acta, 1994, 242:161-172
    177 Krishnan S V, Sotirchos S V. Sulfation of high purity limestones under simulated PFBC conditions[J]. Canadian Journal of Chemical Engineering, 1993, 71(2): 244-255
    178 Iisa K, Hupa M. Rate-limiting processes for the desulfurization reaction at elevated pressures[J]. Journal of the Institute of Energy, 1992, 65:201-205
    179 Fuertes A B, Fernandez M J. The effect of metallic salt additives on direct sulfation of calcium carbonate and on decomposition of sulfated samples[J]. Thermochimica Acta, 1996, 276:257-269
    180 Ulerich N H, Newby R A, Keairns D L. Thermochimica Acta, 1980, 36:1-16
    181 Spartinos Demetrios N, Vayenas Costas G. Kinetics of sulphation of limestone and precalcined limestone[J]. Chemical Engineering and Processing, 1991, 30(2):97-106
    1 Wang Wuyin, Bjerle Ingemar. Modeling of high-temperature desulfurization by Ca-based sorbents[J]. Chemical Engineering Science, 1998, 53(11):1973-1989
    2 Carello S A, Vilela A C F. Evaluation of the reactivity of south Brazilian limestones in relation to pure SO_2 through thermoanalysis and scanning electron microscopy[J]. Industrial & Engineering Chemistry Research, 1993, 32(12):3135–3142
    3 Zarkanitis Solon, Sotirchos Stratis V. Pore structure and particle size effects on limestone capacity for SO_2 removal[J]. AIChE Journal, 1989, 35(5):821-830
    4 Hajaligol M R, Longwell J P and Sarofim A F. Analysis and modeling of the direct sulfation of CaCO3[J]. Industrial & Engineering Chemistry Research, 1988, 27:2203-2210
    5 Zhong Q. Direct sulfation reaction of SO_2 with calcium carbonate[J]. Thermochimica Acta, 1995, 260:125-136
    6 Fuertes A B, Velasco G, Alvarez T, Fernandez M J. Sulfation of dolomite particles at high CO_2 partial pressures[J]. Thermochimica Acta, 1995, 254:63-78
    7 Ye Zhicheng Wang Wuyin, Zhong Qin, et al. High temperature desulfurization using fine sorbent particles under boiler injection conditions[J]. Fuel, 1995, 74(5):743-760
    8 Adanez Juan, Gayan Pilar, Garcia-Labiano Francisco. Comparison of mechanistic models for the sulfation reaction in a broad range of particle sizes of sorbents[J]. Industrial & Engineering Chemistry Research, 1996, 35(7):2190-2197(Barrett E P, Joyner L S, Halenda P P. J Am Chem Soc, 1951, 73(1):373)
    9 严继明等. 吸附与凝聚-固体的表面与孔[M]. 北京:科学出版社,1986
    1 Borgwardt R H. Calcination kinetics and surface area of dispersed limestone particles[J]. AIChE Journal, 1985, 31: 103–111
    2 Murthy M S, Harish B R, Rajanandam K S, et al. Investigation on the kinetics of thermal decomposition of calcium carbonate[J]. Chemical Engineering Science, 1994, 49(13): 2198-2204
    3 Milne C R. High-temperature, short-time sulfation of calcium-based sorbents. 1. Theoretical sulfation model[J]. Industrial & Engineering Chemistry Research, 1990, 29(11): 2192-2201
    4 Efthimiadis Evangelos A, Sotirchos Stratis V. Sulfidation of limestone-derived calcines[J]. Industrial & Engineering Chemistry Research, 1992, 31(10):2311-2321
    5 Rao T R, Gunn D J, and Bowen J H. Kinetics of calcium carbonate decomposition[J]. Chemical Engineering Research and Design, 1989, 67: 38–47
    6 Sotirchos Stratis V. Inaccessible pore volume formation during sulfation of calcined limestone[J]. AIChE Journal, 1992, 38(10):1536
    7 Zarkanitis Solon, Sotirchos Stratis V. Pore structure and particle size effects on limestone capacity for SO_2 removal[J]. AIChE Journal, 1989, 35(5):821-830
    8 Wang Wuyin, Bjerle Ingemar. Modeling of high-temperature desulfurization by Ca-based sorbents[J]. Chemical Engineering Science, 1998, 53(11):1973-1989
    9 Ingraham J R, and Marier P. Kinetic studies on the thermal decomposition of calcium carbonate[J]. Canadian Journal of Chemical Engineering, 1963, 41: 170–173
    10 Silcox G D, Kramlich J C, and Pershing D W. A mathematical model for the flash calcination of dispersed CaCO3 and Ca(OH)2 particles[J]. Industrial and Engineering Chemistry Research, 1989, 28: 155–160
    11 Khraisha Y H, and Dugwell D R. Thermal decomposition of limestone in a suspension reactor[J]. Chemical Engineering Research and Design, 1989, 67: 52–57
    12 Fuertes A B, Marban G, and Rubiera F. Kinetics of thermal decomposition of limestone particles in a fluidized bed reactor[J]. Transactions of the Institution of Chemical Engineers , 1993, 71(A): 421–428
    13 Khinast J, Krammer G F, Brunner C, and Staudinger G. Decomposition of limestone: The influence of CO_2 and particle size on the reaction rate[J]. Chemical Engineering Science, 1996, 51: 623–634
    14 Darroudi T, Searcy A W. Effect of CO_2 pressure on the rate of decomposition of calcite[J]. Journal of Physical Chemistry, 1981, 85: 3971–3974
    15 Dennis J S, Hayhurst A N. The effect of CO_2 on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds[J]. Chemical Engineering Science, 1987, 42: 2361–2372
    16 Hashimoto, H. Thermal decomposition of calcium carbonate (II): Effects of carbon dioxide[J]. Journal of Chemical Society of Japan, 1962, 64: 1162–1165
    17 Hyatt E P, Cutler I B, and Wadsworth M E. Calcium carbonate decomposition in carbon dioxide atmosphere[J]. Journal of American Ceramic Society, 1958, 41: 70–74
    18 Mai M C, Edgar T F. Surface area evolution of calcium hydroxide during calcination and sintering[J]. AIChE Journal, 1989, 35(1): 30-36
    19 Wang Y, and Thomson W J. The effects of steam and carbon dioxide on calcite decomposition using dynamic X-ray diffraction[J]. Chemical Engineering Science, 1995, 50: 1373–1382
    20 Fuertes A B, Alvarez D, Rubiera F, Pis J J, and Marban G. Simultaneous calcination and sintering model for limestone particles decomposition[J]. Transactions of the Institution of Chemical Engineers, 1993, 71(A): 69–76
    21 García-Calvo E, Arranz M A, and Leton P. Effect of impurities in the kinetics of calcite decomposition[J]. Thermochimica Acta, 1990, 170: 7–11
    22 Hu N, and Scaroni A W. Calcination of pulverized limestone particles under furnace injection conditions[J]. Fuel, 1996, 75: 177–186
    23 Milne C R, Silcox G D, Pershing D W, and Kirchgessner D A. Calcination and sintering models for applications to high-temperature, short-time sulfation of calcium-based sorbents[J]. Industrial and Engineering Chemistry Research, 1990, 29: 139–149
    24 叶瑞伦,方永权,陆佩文. 无机材料物理化学[M]. 北京:中国建筑工业出版社,1986
    25 章燕豪. 物理化学[M]. 上海:上海交通大学出版社,1988
    26 邓景发,范康年. 物理化学[M]. 北京:高等教育出版社,1993
    27 蔡千正. 热分析[M]. 北京:高等教育出版社,1993
    28 李余增. 热分析[M]. 北京:清华大学出版社,1987
    29 陈镜泓,李传儒. 热分析及其应用[M]. 北京:科学出版社,1985
    30 Khraisha Y H, Dugwell DR. Thermal decomposition of couldon limestone in a thermogravimetric analyzer[J], Chemical Engineering Research and Design, 1989, 67: 48-51
    31 Gallagher P K, Johnson D W. Thermochimica Acta, 1973, 6: 67
    32 García-Labiano F, Abad A, Diego L F de, et al. Calcination of calcium-based sorbents at pressure in a broad range o f CO_2 concentrations[J]. Chemical Engineering Science, 2002, 57:2381-2393
    33 Borgwardt R H. Sintering of nascent calcium oxide[J]. Chemical Engineering Science, 1989, 44(1):53-60
    34 郑瑛,史学锋,容伟,郑楚光. 石灰石快速煅烧及表面积形成的实验研究[J]. 华中理工大学学报,1999,27(3):43-45
    35 Silcox Geoffrey D, Kramlich John C, Pershing David W. A mathematical model for the flash calcinations of dispersed CaCO3 and Ca(OH)2 particles[J]. Industrial & Engineering Chemistry Research, 1989, 28(1):155-160
    36 Sasaoka Eiji, Uddin Md Azhar, Nojima Shigeru. Novel preparation method of macroporous lime from limestone for high-temperature desulfurizaiton[J]. Industrial & Engineering Chemistry Research, 1997, 36(9):3639-3646
    37 Alvfors Per, Svedberg Gunnar. Modeling of the simultaneous calcinations, sintering and sulphation of limestone and dolomite[J]. Chemical Engineering Science, 1992, 47(8):1903-1912
    38 Wei S-H, Mahuli S K, Agnihotri, R, et al. High surface area calcium carbonate: pore structural properties and sulfation characteristics[J]. Industrial & Engineering Chemistry Research, 1997, 36(6):2141-2148
    39 Agnew J, Hampartsoumian E, Jones J M, Nimmo W. The simultaneous calcination and sintering of calcium based sorbents under a combustion atmosphere[J]. Fuel, 2000, 79(12): 1515–1523.
    40 Hanson C, Tullin C. Sintering of calcium carbonate and lime mud in a carbon dioxide atmosphere[J]. Journal of Pulp and Paper Science, 1996, 22(9):327-331
    41 Beruto D, Searcy A W, Searcy A W. CO_2 catalyzed surface area and porosity changes in high-surface area CaO aggregates[J]. J. Am. Ceramic Soc., 1984,67:512-515
    42 Fuertes A B, Alvarez D, Rubiera F, et al. Surface area and pore size changes during sintering of calcium-oxide particles[J]. Chemical Engineering Communications, 1991, 109:73-88
    43 浙江大学,武汉工业大学,上海化工学院,华南工学院. 硅酸盐物理化学[M]. 北京:中国建筑工业出版社,1980
    44 Borgwardt Robert H. Calcium oxide sintering in atmospheres containing water and carbon dioxide[J]. Industrial & Engineering Chemistry Research, 1989, 28(4):493-500
    45 Gullett B K, Bruce K R. Pore distribution changes of calcium-based sorbents reacting with sulfur dioxide[J]. AIChE Journal, 1987, 33(10):1719-1726
    46 Milne C R, Silcox G D, Pershing D W, et al. High-temperature, short-time sulfation of calcium-based sorbents. 2. Experimental data and theoretical model predictions[J]. Industrial & Engineering Chemistry Research, 1990, 29(11):2201-2214
    47 Borgwardt R H, Roache N F, and Bruce K R. Surface area of calcium oxide and kinetics of calcium sulfide formation[J]. Environ. Prog. 1984, 3: 129
    48 Borgwardt R H and Bruce K R. Effect of specific surface area on the reactivity of CaO with SO_2[J]. AIChE Journal, 1986, 32(2): 239-246
    49 祁景玉. X射线结构分析[M]. 上海:同济大学出版社,2003
    50 丛秋滋. 多晶二维X射线衍射[M]. 北京:科学出版社,1997
    51 崔国文. 缺陷、扩散与烧结[M]. 北京:清华大学出版社,1990
    52 果世驹. 粉末烧结理论[M]. 北京:冶金工业出版社,2002
    1 Sotirchos Stratis V, Zarkanitis S. Inaccessible pore volume formation during sulfation of calcined limestone[J]. AIChE Journal, 1992, 38(10):1536-1551
    2 Dam-Johansen K, Ostergaard K. High-temperature reaction between sulphur dioxide and limestone. I. comparison of limestones in two laboratory reactors and a pilot plant[J]. Chemical Engineering Science, 1991, 46(3):827-837
    3 Sotirchos Stratis V, Zarkanitis, Solon. Distributed pore size and length model for porous media reacting with diminishing porosity[J]. Chemical Engineering Science, 1993, 48(8):1487-1502
    4 Simons G A, Garman A R. The kinetic rate of SO_2 sorption by CaO[J]. AIChE Journal., 1987, 33(2):211-217
    5 Simons G A, Garman A R. Small pore closure and the deactivation of the limestone sulfation reaction[J]. AIChE Journal., 1986, 32(9):1491-1499
    6 Marsh D W, Ulrichson D L. Rate and diffusional study of the reaction of calcium oxide with sulfur dioxide[J]. Chemical Engineering Science, 1985, 40(3):423-433
    7 Alvfors Per, Svedberg Gunnar. Modeling of the sulphation of calcined limestone and dolomite-a gas-solid reaction with structural changes in the presence of inert solids[J]. Chemical Engineering Science, 1988, 43(5):1183-1193
    8 Bhatia S K, Perlmuter D D. The effect of pore structure on fluid-solid reactions: application to the SO_2-lime reaction[J]. AIChE Journal, 1981, 27: 226-234
    9 Borgwardt Robert H, Bruce Kevin R, Blake James. An investigation of product-layer diffusivity for CaO sulfation[J]. Industrial & Engineering Chemistry Research, 1987, 26(10):1993-1998
    10 Hsia C, St Pierre G R. Diffusion through CaSO_4 formed during the reaction of CaO with SO_2 and O_2[J]. AIChE Journal, 1993, 39(4):698-700
    11 Hsia C, St Pierre G R, Fan L-S. Isotope study on diffusion in CaSO4 formed during sorbent-flue-gas reaction[J]. AIChE Journal, 1995, 41(10):2337-2340
    12 Bjerle I, Ye Z. Particle structure change of CaO during high temperature sulphatization[J]. Chem. Eng. Technol., 1991, 14(5):357-362
    13 Snow M J H, Longwell J P and Sarofim A F. Direct sulfation of calcium carbonate[J]. Industrial & Engineering Chemistry Research, 1988, 27(2):269-273
    14 Hajaligol M R, Longwell J P and Sarofim A F. Analysis and modeling of the direct sulfation of CaCO3[J]. Industrial & Engineering Chemistry Research, 1988, 27:2203-2210
    15 Zhong Q. Direct sulfation reaction of SO_2 with calcium carbonat[J]. Thermochimica Acta, 1995, 260:125-136
    16 Fuertes A B, Velasco G, Alvarez T, Fernandez M J. Sulfation of dolomite particles at high CO_2 partial pressures[J]. Thermochimica Acta, 1995, 254:63-78
    17 Fuertes A B, Velasco G, Fuente T, Alvarez T. Study of the direct sulfation of limestone particles at high CO_2 partial pressures[J]. Fuel Processing Technology, 1994, 38:181-192
    18 Fuertes A B, Velasco G, Fernandez M J Alvarez T. Analysis of the Direct Sulfation of Calcium Carbonate[J]. Thermochimica Acta, 1994, 242:161-172
    19 Krishnan S V, Sotirchos S V. Sulfation of high purity limestones under simulated PFBC conditions[J]. Canadian Journal of Chemical Engineering, 1993, 71(2): 244-255
    20 Iisa K, Hupa M. Rate-limiting processes for the desulfurization reaction at elevated pressures[J]. Journal of the Institute of Energy, 1992, 65:201-205
    21 Fuertes A B, Fernandez M J. The effect of metallic salt additives on direct sulfation of calcium carbonate and on decomposition of sulfated samples[J]. Thermochimica Acta, 1996, 276:257-269
    22 Ulerich N H, Newby R A, Keairns D L. Thermochimica Acta, 1980, 36:1-16
    23 Spartinos Demetrios N, Vayenas Costas G. Kinetics of sulphation of limestone and precalcined limestone[J]. Chemical Engineering and Processing, 1991, 30(2):97-106
    24 Liu H, Katagiri S, Kaneko U,et al. Sulfation behavior of limestone under high CO_2 concentration in O_2/CO_2 coal combustion[J]. Fuel, 2000, 79:945-953
    25 Okazaki K, Liu H. Coal combustion system with CO_2 recovery and simultaneous reduction of NOx and SO_2(basic concept and mechanism)[C]. The third Asia-Pacific Conference on Combustion, Seoul, Korea, 2001:1-8
    26 Liu H, Okazaki K. Simultaneous easy CO_2 recovery and drastic reduction of SOx and NOx in O_2/CO_2 coal combustion with heat recirculation[J]. Fuel, 2003, 82:1427–1436
    27 章燕豪. 物理化学[M]. 上海:上海交通大学出版社,1988
    28 Wang Chunbo, Shen Xianglin, Li Daji. An investigation on sulfation mechanisms of Ca-based sorbentmodified by sodium salt[J]. Developments in Chemical Engineering and Mineral Processing, 2002, 10(5-6):647-656
    29 Wang Chunbo, Shen Xianglin, Xu Yiqian. Investigation on sulfation of modified Ca-based sorbent[J]. Fuel Processing Technology, 2002, 79:121– 133
    30 Laursen K, Grace J R, Lim C J. Enhancement of the sulfur capture capacity of limestones by the addition of Na2CO3 and NaCl[J]. Environmental Science and Technology, 2001, 35(21): 4384-4389
    31 Laursen Karin, Kern Arnt A, Grace John R, Lim C Jim. Characterization of the enhancement effect of Na2CO3 on the sulfur capture capacity of limestones[J]. Environmental Science and Technology, 2003, 37(16): 3709-3715
    32 Mahuli S K, Agnihotri R, Chauk S, et al. Pore-structure optimization of calcium carbonate for enhanced sulfation[J]. AIChE Journal., 1997, 43(9):2323-2335
    33 塞克利 J, 埃文斯 J W, 索恩 H Y. 气-固反应[M]. 北京:中国建筑工业出版社,1986
    34 孙康. 宏观反应动力学及其解析方法[M]. 北京:冶金工业出版社,1998
    35 Zevenhoven R, Yrjas P, Hupa M. Sulfur dioxide capture under PFBC conditions: the influence of sorbent particle structure[J]. Fuel, 1998, 77(4): 285-292
    36 Bruce Kevin R, Gullett Brian K, Beach Laura O. Comparative SO_2 reactivity of CaO derived from CaCO3 and Ca(OH)2[J]. AIChE Journal, 1989, 35(1):37-41
    37 Pigford R H, Sliger G. Rate of diffusion-controlled reaction between a gas and a porous solid aphere[J]. Industrial & Engineering Chemistry Research, 1973, 12: 85-91
    38 Gopalakrishanan R, Seehra M S. Kinetics of the high-temperature reaction of SO_2 with CaO using gas-phase Fourier trasform infrared apectroscopy[J]. Energy & Fuels, 1990, 4: 226-230
    39 裴光文,钟维烈,岳书彬. 单晶、多晶和非晶物质的 X 射线衍射[M]. 济南:山东大学出版社,1989
    40 祁景玉. X 射线结构分析[M]. 上海:同济大学出版社,2003
    41 Jung H, Thomson W J. Dynamic X-ray diffraction for shrinking-core reaction studies[J]. Industrial & Engineering Chemistry Research, 1991, 30: 1629-1634
    1 Mahuli S K, Agnihotri R, Chauk S, et al. Pore-structure optimization of calcium carbonate for enhanced sulfation[J]. AIChE Journal, 1997, 43(9):2323-2335
    2 Borgwardt R H. Calcination kinetics and surface area of dispersed limestone particles[J]. AIChE Journal, 1985, 31(1):103-111
    3 Ghosh-Dastidar A, Mahuli S, Agnihotri R, et al. Ultrafast calcination and sintering of Ca(OH)2 powder: experimental and modeling[J]. Chemical Engineering Science, 1995, 50(13): 2029-2040
    4 García-Labiano F, Abad A, Diego L F de, et al. Calcination of calcium-based sorbents at pressure in a broad range o f CO_2 concentrations[J]. Chemical Engineering Science, 2002, 57:2381-2393
    5 Silcox Geoffrey D, Kramlich John C, Pershing David W. A mathematical model for the flash calcinations of dispersed CaCO3 and Ca(OH)2 particles[J]. Industrial & Engineering Chemistry Research, 1989, 28(1):155-160
    6 Alvfors Per, Svedberg Gunnar. Modeling of the simultaneous calcinations, sintering and sulphation of limestone and dolomite[J]. Chemical Engineering Science, 1992, 47(8):1903-1912
    7 Milne Corey R, Silcox Geoffrey D, Pershing David W, et al. Calcination and sintering models for application to high-temperature, short-time sulfation of calcium-based sorbents[J]. Industrial & Engineering Chemistry Research, 1990, 29(2):139-149
    8 郑瑛,史学锋,容伟,郑楚光. 石灰石快速煅烧及表面积形成的实验研究[J]. 华中理工大学学报,1999,27(3):43-45
    9 Agnew J, Hampartsoumian E, Jones J M, Nimmo W. The simultaneous calcination and sintering of calcium based sorbents under a combustion atmosphere[J]. Fuel, 2000, 79(12): 1515–1523
    10 Milne C R, Silcox G D, Pershing D W, et al. High-temperature, short-time sulfation of calcium-based sorbents. 2. Experimental data and theoretical model predictions[J]. Industrial & Engineering Chemistry Research, 1990, 29(11):2201-2214
    11 Murakam Takahiro, Kurita Noriyuki, Naruse Ichiro. Molecular dynamics simulations of the effect of NaCl-doping on the calcination characteristics in desulfurization processes. Journal of Chemical Engineering of Japan, 2003,36(3):225-230
    12 Wang Chunbo, Shen Xianglin, Xu Yiqian. Investigation on sulfation of modified Ca-based sorbent[J]. Fuel Processing Technology, 2002, 79:121– 133
    13 王春波,沈湘林. Na_2CO 调质钙基脱硫剂硫化机理实验研究[J]. 工程热物理学报,23(5):641-644
    14 Wang Chunbo, Shen Xianglin, Li Daji. An investigation on sulfation mechanisms of Ca-based sorbent modified by sodium salt[J]. Developments in Chemical Engineering and Mineral Processing, 2002, 10(5-6):647-656
    15 Laursen K, Grace J R, Lim C J. Enhancement of the sulfur capture capacity of limestones by the addition of Na2CO3 and NaCl[J]. Environmental Science and Technology, 2001, 35(21): 4384-4389
    16 Laursen Karin, Kern Arnt A, Grace John R, Lim C Jim. Characterization of the enhancement effect of Na2CO3 on the sulfur capture capacity of limestones[J]. Environmental Science and Technology, 2003, 37(16): 3709-3715
    17 Liu H, Katagiri S, Kaneko U,et al. Sulfation behavior of limestone under high CO_2 concentration in O_2/CO_2 coal combustion[J]. Fuel, 2000, 79:945-953
    18 Tullin C, Nyman G, Ghardashkhani S. Direct sulfation of CaCO3: the influence of CO_2 partial pressure[J]. Energy & Fuels, 1993, 7(4):512-519
    19 Zevenhoven C, Yrjas K, Hupa M. Product Layer Development during sulfation and sulfidation of uncalcined limestone particles at elevated pressures[J]. Industrial & Engineering Chemistry Research, 1998, 37:2639-2646
    20 Snow M J H, Longwell J P and Sarofim A F. Direct sulfation of calcium carbonate[J]. Industrial & Engineering Chemistry Research, 1988, 27(2):269-273
    21 Hajaligol M R, Longwell J P and Sarofim A F. Analysis and modeling of the direct sulfation of CaCO3[J]. Industrial & Engineering Chemistry Research, 1988, 27:2203-2210
    22 Fuertes A B, Velasco G, Alvarez T, Fernandez M J. Sulfation of dolomite particles at high CO_2 partial pressures[J]. Thermochimica Acta, 1995, 254:63-78
    1 Wolsky A M, and Brooks C. A new method of CO_2 recovery[C]. Proceedings of the 79th Annual Meeting of the Air Pollution Control Association Minneapolis, USA , 1986:22-27
    2 Wolsky A M, Daniels E J, Jody K S. Recovering CO_2 from large- and medium-size stationary combustors[J]. Journal of the Air & Waste Management Association, 1991,41:449-454
    3 Kimura N, Omata K, Kiga T, et al. The characteristics of pulverized coal combustion in O_2/CO_2 mixtures for CO_2 recovery[J]. Energy Conversion and Management, 1995, 36:805-808
    4 Okazaki K, and Ando T. NOx reduction mechanism in coal combustion with recycled CO_2[J]. Energy, 1997, 22:207-215
    5 Feng B, Ando T and Okazaki K. NO destruction and regeneration in CO_2 enriched CH4 flame[J]. JSME International Journal, 1998, 41:959-965
    6 Liu Hao, Kaneko Udai, Katagiri Shiro, et al. Efficient NOx reduction and desulfurization in O_2/CO_2 coal combustion[C]. The 4th International Symposium on Coal Combustion, Beijing, China, 1999
    7 Liu H, Katagiri S, Okazaki K. Drastic SOx removal and influences of various factors in O_2/CO_2 pulverized coal combustion system[J]. Energy & Fuels, 2001, 15:403-412
    8 Croiset E, Thambimuthu K, Palmer A. Coal combustion in O_2/CO_2 mixtures compared with air[J]. The Canadian Journal of Chemical Engineering, 2001, 78(2): 402-407
    9 Croiset E, Thambimuthu K. NOx and SO_2 emissions from O_2/CO_2 recycle coal combustion[J]. Fuel, 2001, 80:2117-2121
    10 Okazaki K, Takano S, Kiga T. Analysis of the flame formed during oxidation of pulverized coal by an O_2-CO_2 mixtures[J]. Energy Conversion and Management, 1992, 33:459-466
    11 Kiga T, Takano S, Kimura N. Characteristics of pulverized-coal combustion in the system of oxygen/recycled flue gas combustion[J]. Energy Conversion and Management, 1997, 38:s129-s134
    12 Takano S, Kiga T, Endo Y, et al. CO_2 recovery from PCF power plant with O_2/CO_2 combustion process[J]. IHI Engineering Review, 1995, 28(4):446-450
    13 Okawa M, Kimura N, Kiga T, et al. Trial design for a CO_2 recovery power plant by burning pulverized coal in O_2/CO_2[J]. Energy Conversion and Management, 1997, 38:s123-s127
    14 Hirama T, Hosoda H, Azuma N, et al. Drastic reduction of NOx and N2O emissions from BFBC of coal by means of CO_2/O_2 combustion: effects of fuel gas recycle and coal type[C]. International Symposium of Engineering Foundation FLUIDIZATION IX, USA, 1998
    15 Andries J, Becht J G M, Hoppesteyn P D J. Pressurized fluidized bed combustion and gasification of coal using flue gas recirculation and oxygen injection[J]. Energy Conversion and Management, 1997, 38:s117-s122
    16 刘彦丰,阎维平,宋之平. 炭/碳粒在 CO_2/O_2 气氛中燃烧速率的研究[J]. 工程热物理学报,1999,20(6):769-772
    17 Liu Yanfeng, Yan Weiping, Song Zhiping, et al. A study on the combustion rates of pulverized coal char particle in O_2/CO_2 environment[C]. The 10th International Conference on Coal Science, Taiyuan, China, 1999
    18 Liu Yanfeng, Yan Weiping, Kang Zhizhong, et al. Simulation of pulverized coal combustion in O_2/CO_2 mixture[C]. The 1st U.S. China Symposium on CO_2 Emission Control Science & Technology, Hangzhou, China, 2001
    19 Miyamae S, Kiga T, Takano S, et al. Bench-scale testing on O_2/CO_2 combustion for CO_2 recovery[C]. JFRC/AFRC Symposium on Combustion, Haeaii, USA, 1994
    20 Santoro L, Vaccaro S, Aldi A, et al. Fly ashes reactivity in relation to coal combustion under flue gas recycling conditions[J]. Thermochimica Acta, 1997, 296:67-74
    21 Okazaki K, Liu H. Coal combustion system with CO_2 recovery and simultaneous reduction of NOx and SO_2(basic concept and mechanism)[C]. The third Asia-Pacific Conference on Combustion, Seoul, Korea, 2001:1-8
    22 Liu H, Okazaki K. Simultaneous easy CO_2 recovery and drastic reduction of SO_x and NO_x in O_2/CO_2 coal combustion with heat recirculation[J]. Fuel, 2003, 82:1427–1436
    23 Hu Y, Naito S, Kobayashi N, et al. CO_2, NO_x and SO_2 emissions from the combustion of coal with high oxygen concentration gases[J]. Fuel, 2000, 79:1925–1932
    24 Hu Y Q, Kobayashi N, Hasatani M, et al. The reduction of recycled-NO_x in coal combustion with O_2/recycled flue gas under low recycling ratio[J]. Fuel, 2001, 80: 1851-1855
    25 Hayashi J-i, Hirama T, Okawa R, et al. Kinetic relationship between NO/N_2O reduction and O_2 consumption during flue-gas recycling coal combustion in a bubbling fluidized-bed[J]. Fuel, 2002, 81:1179-1188
    26 Hosoda H, Hirama T. A novel FBC process of coal for pure oxygen added to flue-gas recycled[J]. Australian Coal Science, 1996
    27 Hosoda H, Hirama T, Azuma N, et al. NO_x and N_2O emission in bubbling fluidized-bed coal combustion with oxygen and recycled flue gas: macroscopic characteristics of their formation and reduction[J]. Energy & Fuels, 1998, 12(1):102-108
    28 王宏,董学文,邱建荣等. 燃煤在 O_2/CO_2 方式下 NO_x 生成特性的研究[J]. 燃料化学学报,2001,29(5):458-462
    29 张庆丰,郑楚光,张礼知等. 燃煤在 O_2/CO_2 气氛下 NOx 生成规律的实验研究[C]. 中国工程热物理学会燃烧学学术会议,北京,1999
    30 王宏,邱建荣,郑楚光. 燃煤在 O_2/CO_2 方式下 SO_2 生成特性的研究[J]. 华中科技大学学报(自然科学版),2002,30(1):100-102
    31 Qiu Jianrong, Zhang Xiaoping, Dong Xuewen, et al. SO_2 emission during coal combustion in O_2/CO_2 combustion cycle[C]. The 1st U.S. China Symposium on CO_2 Emission Control Science & Technology, Hangzhou, China, 2001
    32 董学文,王宏,邱建荣等. 不同气氛下燃煤 SO_2 的排放规律研究[J]. 环境科学学报,2003,23(3):322-326
    33 吴忠标. 大气污染控制技术[M]. 北京:化学工业出版社,2002
    34 岑可法,倪明江,骆仲泱等. 循环流化床锅炉理论、设计与运行[M]. 北京:中国电力出版社,1998
    35 Mark Thomas K. The release of nitrogen oxides during char combustion[J]. Fuel, 1997, 76(6): 457-473
    36 Li Y H, Radovic L R, Lu R Q, et al. A New kinetic model for the NO-carbon reaction[J]. Chemical Engineering Science, 1999, 54: 4125-4136
    37 Ohtsuka Y, Wu Z. Nitrogen release during fixed-bed gasification of several coals with CO_2: factors controlling formation of N2[J]. Fuel, 1999, 78: 521-527
    38 Chu X, Schmidt L D. Intrinsic rates of NO_x-carbon reactions[J]. Industrial & Engineering Chemistry Research, 1993, 32(7):1359-1366
    39 Courtemanche B, Levendis Y A. A laboratory study on the NO, NO 2, SO_2, CO and CO_2 emissions from the combustion of pulverized coal, municipal waste plastics and tires[J]. Fuel, 1998, 77(3): 183-196
    40 新井纪男. 燃烧生成物的发生与抑制技术[M]. 北京:科学出版社,2001
    41 Spliethoff H, Greul U, et al. Basic effects on NO_x emissions in air staging and reburning at a bench-scale test facility[J]. Fuel, 1996 75(5): 560
    42 Zaugg S D, Blackham A U, Hedman P O and Smoot L D. Sulfur pollutant formation during coal combustion[J]. Fuel, 1989, 68:346
    1 Rajeswara Rao T, Gunn D J, Bowen J H. Kinetics of calcium carbonate decomposition[J]. Chemical Engineering Research & Design, 1989, 67(1): 38-47
    2 Milne Corey R, Silcox Geoffrey D, Pershing David W, et al. High-temperature, short-time sulfation of calciumbased sorbents. 1. Theoretical sulfation model[J]. Industrial & Engineering Chemistry Research,1990, 29(2):2192-2201
    3 Murthy M S, Harish B R, Rajanandam K S, et al. Investigation on the kinetics of thermal decomposition of calcium carbonate[J]. Chemical Engineering Science, 1994, 49(13): 2198-2204
    4 Sumana Keener, Khang Soon-jai. A structural pore development model for calcinations[J]. Chemical Engineering Communications, 1992, 117: 279- 291
    5 Silcox Geoffrey D, Kramlich John C, Pershing David W. A mathematical model for the flash calcinations of dispersed CaCO3 and Ca(OH)2 particles[J]. Industrial & Engineering Chemistry Research, 1989, 28(1):155-160
    6 Hu Naiyi, Scaroni Alan W. Calcination of pulverized limestone particles under furnace injection conditons [J]. Fuel, 1996, 75:177- 186
    7 García-Labiano F, Abad A, Diego L F de, et al. Calcination of calcium-based sorbents at pressure in a broad range o f CO_2 concentrations[J]. Chemical Engineering Science, 2002, 57:2381-2393
    8 German RM, Munir ZA. Surface area reduction during isothermal sintering[J]. J. Am. Ceram. Soc., 1976, 59:379-383
    9 Nicholson, D. Variation of surface area during the thermal decomposition of solids. Trans Faraday Soc. 1965. 61:990-998
    10 Ranade P V and Harrison D P. The grain model applied to porous solids with varying structural properties[J]. Chemical Engineering Science, 1979, 34, 427–432.
    11 Ghosh-Dastidar A, Mahuli S, Agnihotri R, et al. Ultrafast calcination and sintering of Ca(OH)2 powder: experimental and modeling[J]. Chemical Engineering Science, 1995, 50(13): 2029-2040
    12 Mai M C, Edgar T F. Surface area evolution of calcium hydroxide during calcination and sintering[J]. AIChE Journal, 1989, 35(1): 30-36
    13 Mahuli S K, Agnihotri R, Jadhav R, et al. Combined calcination, sintering and sulfation model for CaCO3-SO_2 reaction[J]. AIChE Journal, 1999, 45(2): 367-382
    14 Milne Corey R, Silcox Geoffrey D, Pershing David W, et al. Calcination and sintering models for application to high-temperature, short-time sulfation of calcium-based sorbents[J]. Industrial & Engineering Chemistry Research, 1990, 29(2):139-149
    15 Borgwardt R H. Calcination kinetics and surface area of dispersed limestone particles[J]. AIChE Journal, 1985, 31(1):103-111
    16 Fuertes A B, Marban G, and Rubiera F. Kinetics of thermal decomposition of limestone particles in a fluidized bed reactor[J]. Transactions of the Institution of Chemical Engineers , 1993, 71(A): 421–428
    17 谢建云, 傅维标. 碳酸钙颗粒煅烧过程的统一数学模型[J]. 燃烧科学与技术,2002, 8(3):270-274
    18 郑瑛, 史学锋, 柳朝晖,郑楚光. 弥散石灰石颗粒煅烧和表面积形成的数值模拟[J]. 华中理工大学学报, 1999, 27(3): 40-42
    19 Hyatt E P, Cutler I B, and Wadsworth M E. Calcium carbonate decomposition in carbon dioxide atmosphere[J]. Journal of American Ceramic Society, 1958, 41: 70–74
    20 Dennis J S, Hayhurst A N. The effect of CO_2 on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds[J]. Chemical Engineering Science, 1987, 42: 2361–2372
    21 Fuller E N, Schettler P D, Giddings J C. A new method for prediction of binary gas-phase diffusion coefficients[J]. Industrial & Engineering Chemistry, 1966, 58(5): 19-27
    22 Borgwardt R H. Sintering of nascent calcium oxide[J]. Chemical Engineering Science, 1989, 44(1):53-60
    23 Mahuli S K, Agnihotri R, Chauk S, et al. Pore-structure optimization of calcium carbonate for enhanced sulfation[J]. AIChE Journal, 1997, 43(9):2323-2335
    24 Agnew J, Hampartsoumian E, Jones J M, Nimmo W. The simultaneous calcination and sintering ofcalcium based sorbents under a combustion atmosphere[J]. Fuel, 2000, 79(12): 1515–1523
    25 Gullett B K, Bruce K R. Pore distribution changes of calcium-based sorbents reacting with sulfur dioxide[J]. AIChE Journal, 1987, 33(10):1719-1726
    26 Milne C R, Silcox G D, Pershing D W, et al. High-temperature, short-time sulfation of calcium-based sorbents. 2. Experimental data and theoretical model predictions[J]. Industrial & Engineering Chemistry Research, 1990, 29(11):2201-2214
    1 Szekely J and Evans J W. A structural model for gas–solid reactions with a moving boundary[J]. Chemical Engineering Science, 1970, 25, 1091–1107.
    2 Pigford R L and Sliger G. Rate of diffusion controlled reaction between a gas and a porous solid sphere[J]. Ind. Engng Chem. Process Des. Dev. 1973, 12, 85–91.
    3 Hartman M and Coughlin R W. Reaction of sulfur dioxide with limestone and the grain model[J]. AIChE Journal, 1976, 22, 490–497.
    4 Dam-Johansen K, Hansen P F B and Ostergaard K. High-temperature reaction between sulphur dioxide and limestone–III. A grain-micrograin model and its verification[J]. Chemical Engineering Science, 1991, 46, 847–853.
    5 Ranade P V and Harrison D P. The grain model applied to porous solids with varying structural properties[J]. Chemical Engineering Science, 1979, 34, 427–432.
    6 Alvfors P, Svedberg G. Modelling of the simultaneous calcination, sintering and sulphation of limestone and dolomite [J]. Chemical Engineering Science, 1992, 48(8): 1903
    7 Lindner B and Simonsson D. Comparison of structural models for gas–solid reactions in porous solids undergoing structural changes[J]. Chemical Engineering Science, 1981, 36, 1519–1527.
    8 Ramachandran P A and Smith J M. A single-pore model for gas–solid noncatalytic reactions[J]. AIChE Journal, 1977, 23, 353–361.
    9 Christman P G and Edgar T F. Distributed pore-size model for sulfation of limestone[J]. AIChE Journal, 1983, 29, 388–395.
    10 Kocaefe D, Karman D and Steward F R. Interpretation of the sulfation rate of CaO, MgO, and ZnO with SO_2 and SO3[J]. AIChE Journal, 1987, 33, 1835–1843.
    11 Chauk Shriniwas S. Kinetics of high-pressure removal of hydrogen sulfide using calcium oxide powder[J]. AIChE Journal, 2000, 46(6): 1157-1167
    12 Bhatia S K and Perlmutter D D. A random pore model for fluid–solid reactions: I. isothermal, kinetic control[J]. AIChE Journal, 1980, 26, 379–386.
    13 Bhatia S K and Perlmutter D D. The effect of pore structure on fluid–solid reaction: application of the SO_2–lime reaction[J]. AIChE Journal, 1981, 27,226–234.
    14 Bhatia S K and Perlmutter D D. A random pore model for fluid–solid reactions: II diffusion and transport effects[J]. AIChE Journal, 1981, 27, 247–254.
    15 Simons G A, Garman A R and Boni A A. The kinetic rate of SO_2 sorption by CaO[J]. AIChE Journal, 1987, 33, 211–217.
    16 Simons G A and Garman A R. Small pore closure and the deactivation of the limestone sulfation reaction[J]. AIChE Journal, 1986, 32, 1491–1499.
    17 Reyes S and Jensen K F. Estimation of effective transport coefficients in porous solids based on percolation concepts[J]. Chemical Engineering Science, 1985, 40, 1723–1734.
    18 Reyes S and Jensen K F. Percolation concepts in modeling of gas–solid reactions–III application to sulation of calcined limestones[J]. Chemical Engineering Science, 1987, 42, 565–574.
    19 Sotirchos S V. Overlapping grain models for gas-solid reactions with solid product[J]. Industrial & Engineering Chemistry, 1988, 27: 836
    20 Milne Corey R, Silcox Geoffrey D, Pershing David W, et al. High-temperature, short-time sulfation of calciumbased sorbents. 1. Theoretical sulfation model[J]. Industrial & Engineering Chemistry Research, 1990, 29(2):2192-2201
    21 Hartman M, Trnka O. Influence of temperature on the reactivity of limestone particles with sulfurdioxide[J]. Chemical Engineering Science, 1980, 35(5): 1189-1194
    22 Borgwardt Robert H, Bruce Kevin R, Blake James. An investigation of product-layer diffusivity for CaO sulfation[J]. Industrial & Engineering Chemistry Research, 1987, 26(10):1993-1998
    23 Hsia C, St Pierre G R. Diffusion through CaSO4 formed during the reaction of CaO with SO_2 and O_2[J]. AIChE Journal, 1993, 39(4):698-700
    24 Hsia C, St Pierre G R, Fan L-S. Isotope study on diffusion in CaSO4 formed during sorbent-flue-gas reaction[J]. AIChE Journal, 1995, 41(10):2337-2340
    25 Mahuli S K, Agnihotri R, Jadhav R, et al. Combined calcination, sintering and Sulfation model for CaCO3-SO_2 reaction[J]. AIChE Journal, 1999, 45(2): 367-382
    26 Alvfors Per, Svedberg Gunnar. Modeling of the sulphation of calcined limestone and dolomite-a gas-solid reaction with structural changes in the presence of inert solids[J]. Chemical Engineering Science, 1988, 43(5):1183-1193
    27 孙康. 宏观反应动力学及其解析方法[M]. 北京: 冶金工业出版社. 1998.
    28 Milne Corey R, Silcox Geoffrey D, Pershing David W, et al. Calcination and sintering models for application to high-temperature, short-time sulfation of calcium-based sorbents[J]. Industrial & Engineering Chemistry Research, 1990, 29(2):139-149
    29 Huizenga D G, Smith D M. Knudsen diffusion in random assemblages of uniform spheres[J]. AIChE Journal, 1986, 32: 773-781

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700