火电机组直接空冷凝汽器空气侧强化传热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空冷技术是解决富煤缺水地区火力发电的重要选择,近年来在我国北方地区得到大力发展。为弥补空气冷却能力低的不足,火电机组汽轮机排汽的空冷凝汽器需采用翅片管束达到强化传热的目的。空气在翅片间流动的阻力损失以及在扩展表面上的传热特性是影响机组空冷系统性能的关键因素,也是火电空冷凝汽器优化设计的主要方向。
     首先针对适用于低雷诺数条件下,空气在翅片间的流动及传热的物理数学模型进行分析讨论。以此为基础,分析椭圆管矩形翅片空气侧换热的特性,对提出的偏置矩形翅片强化空气侧的换热进行研究。其次分析钢制扁平管钎焊蛇形铝翅片空气侧的换热特性,对纵向涡强化扁平管蛇形翅片空气侧的换热及新提出的交错蛇形短翅片和间断蛇形短翅片强化扁平管空气侧的换热进行深入研究。
     偏置矩形翅片强化椭圆管空气侧换热的数值结果表明,翅片偏置于空气进口方向,空气侧总的表面传热系数平均增加了4.2%,且偏置距离越大,表面传热系数越大。
     将四种不同类型的纵向涡发生器分别冲压于扁平管蛇形翅片的表面强化空气侧的换热。对三角形对涡发生器在翅片表面的冲压位置及涡的排数对流动与换热的影响进行分析,数值结果表明,三角形对涡强化了空气侧的换热,同时阻力增大。在研究风速范围内,攻角为25°的三角形对涡强化换热性能的评价指标PEC达到最高,六对三角形对涡强化空气侧表而传热系数是最高的。且当一对三角形对涡冲压在翅片的几何中心时,平均PEC可达到1.182。经PIV(粒子图像测速仪)系统的测试,得到涡发生器空气流动截面上的速度矢量图,并验证了数值结果的可行性。
     进一步通过数值和实验研究六对三角形对涡强化扁平管蛇形翅片空气侧流动和换热的特性,并拟合得出努谢尔特数和摩擦系数随雷诺数变化的实验关联式。其中,对于对流换热Re=1500-4500,而流动损失则在Re=500-4500。实验结果表明,空气侧的平均努谢尔特数增加了20.5%-59.8%,平均摩擦系数增加了12.8%-82.6%,且PEC都大于1。红外热像仪测试技术作为一种新的测试方法首次被应用,与原始结构相比,当翅片表面冲压有三角形对涡后,翅片表面的温度降低,尤其涡发生器后方的翅片表面温度明显降低。
     交错蛇形短翅片强化扁平管空气侧换热的数值和实验研究表明,交错蛇形短翅片破坏了边界层发展,揭示了其强化换热的物理机制。较长翅片断开为短翅片后,翅片表面的局部传热系数不再是单调递减,而是阶跃性地下降。空气侧表面传热系数提高了1.4%-16%。通过翅片表面温度分布的比较,在断开短翅片的空气进口处,翅片表面的温度降低。
     用数值计算方法对间断短翅片的布置方式(顺排、叉排)、短翅片排数,及不同断开间距,对空气流动与传热的影响进行分析。结果表明,在工程实际应用的空气流速范围内,间断短翅片有效地提高了空气侧的传热性能,且间断结构减小了空气与壁面的接触面积,流动压力损失的增加受到抑制。
Recently air-cooling technology has been actively developed in north China where water resource is of shortage, to solve water crisis for power plant. To compensate for the low cooling capacity of the air-cooling technology, finned flat tube is employed. As a main direction to improve the design, the resistance loss among the fins and the heat transfer of the extended surface are the main factors.
     According to the low Renolds number, the physical model regarding flow and heat transfer characteristic between fins were analyzed. Based on it, the air-side heat transfer characteristics of oval tube with rectangular fins, the oval tube with deviating-geometric-center rectangular fins, the wavy finned flat tube, the wavy finned flat tube with longitudinal vortex generators, a new staggered short fins and discontinuous short wavy fins were investigated in detail.
     The numerical simulations concerning deviating-geometric-center rectangular fins show that when deviating for the air inlet direction, the average air-sided heat transfer coefficient increased by4.2%. The more distance away for the center is, the bigger the heat transfer coefficent is. Four various types of punched longitudinal vortex generators were employed to enhance air-side heat transfer on the fin surface of flat tube used in direct air-cooled condenser. It was found that the delta winglet pair with attack angle25°could reach the greatest performance evaluation criteria (PEC) under the conditions of the inlet air flow velocity varied from2m s-1to5m s-1. The influences of locations on the fin surface and the row number of longitudinal vortex generator were also discussed. One delta winglet pair at the middle of fin surface and minimum row number, n=1, with the average PEC being1.182, has the best heat transfer performance of all conditions, which can be recommended for practical applications. A visualization experimental study on flow field in wind by Particle Image Velocimetry (PIV) was conducted. The numerical simulations verified that the delta winglet pairs can generator obvious longitudinal vortex pairs at the down-sweep zone.
     A further experimental and numerical investigation was conducted into flat tube wavy finned channel flows with and without punched six delta winglet pairs. The experimental correlations of Nusselt number and friction factor vs Reynolds number in the experimental region were obtained. Through comparisons between experiments and numerical simulations, the numerical feasibility was verified in the air-side heat transfer of wavy finned flat tube with and without punched six delta winglet pairs. Experimental and simulation results showed that a substantial increase in the heat transfer with six delta winglet pairs generators. It was observed that average Nusselt number increase by20.5%-59.8%and the average friction factor increase by12.8%-82.6%in experiment. And, the performance evaluation criteria, PEC, is greater than1. By employing IR thermography, temperature distribution information about wavy fin surface with and without punched six delta winglet pairs were obtained.
     It has been proved that the serrated fins can enhance heat transfer obviously by breaking the development of boundary layer periodically. In the present study, the original continuous wavy fins were disconnected to create a new structure, namely, discontinuous short wavy finned. The results showed that, compared with the. original continuous structure, the discontinuity short-wavy-fin flat tube effectively improved the air-side heat transfer at the air velocity of engineering field, and because the discontinuous fins structure reduces the contact area of air and wall, the increase in pressure loss is suppressed.
引文
[1]米利阿斯.空冷式发电厂[M].北京:机械工业出版社,1986.
    [2]丁尔谋.发电厂空冷技术[M].山西省电力工业局.水利电力出版社.1992.
    [3]http://www.caijing.com.cn/2011-01-17/110620977.html
    [4]2010年度全国600MW级火电机组能效对标及竞赛报告.太原:2011.5.
    [5]石诚,王智.某电厂空冷系统的优选分析[C].第三届全国火电空冷机组技术交流论文集,陕西,2008:109-113.
    [6]杨立军,郭跃年,杜小泽等.环境影响下的直接空冷系统运行特性研究[J].现代电力,2005,22(6):39-42.
    [7]张国庆.自然风对直接空冷发电机组的影响和运行建议[J].电力学报,2006,21(2):182-183,189.
    [8]胡学军,胡明明.关于河津电厂空冷机组过夏问题的探讨[C].第三届全国火电空冷机组技术交流论文集,陕西,2008:307-309.
    [9]王文忠,刘振华,梁志福,王润喜.600MW直接空冷机组夏季限负荷的原因及解决措施[C].第三届全国火电空冷机组技术交流论文集,陕西,2008:345-350.
    [10]刘轶斌.空冷凝汽器的防冻措施探讨[C].第三届全国火电空冷机组技术交流论文集,陕西,2008:48-51.
    [11]靳海军.电厂ACC系统的防冻方法[C].第三届全国火电空冷机组技术交流论文集,陕西,2008:162-164.
    [12]胡明明,赵亚芬,张丽格,陈克宏.直接空冷机组降低背压、提高经济性研究[C].第三届全国火电空冷机组技术交流论文集,陕西,2008:233-238.
    [13]周跃宇,刘栓弟.准大电厂2 × 300MW直接空冷系统存在的问题与改进方案[C].第三届全国火电空冷机组技术交流论文集,陕西,2008:260-266.
    [14]梁俊青,任保平,周跃宇,柴勇,徐海强.准大电厂2×300MW直接空冷 凝汽器冬季防冻问题探讨[C].第三届全国火电空冷机组技术交流论文集,陕西,2008:267-273.
    [15]卫晓峰,张艳芳,张志刚.关于直接空冷机组真空严密性试验相关问题的探讨[C].第三届全国火电空冷机组技术交流论文集,陕西,2008:304-306.
    [16]师向红.空冷机组运行中常见问题总结[C].第三届全国火电空冷机组技术交流论文集,陕西,2008:337-339.
    [17]邱丽霞,郝艳红,李润林,靳智平.直接空冷汽轮机及其热力系统[M].北京:中国电力出版社,2006.
    [18]王佩璋,徐明.600MW空冷机组直接空冷散热器与风机的新进展[J].电站辅机,2003,(1):2-15.
    [19]王佩璋.我国大型火电直接空冷技术及设备的研究与应用[J].发电设备,2006,(1):33-37.
    [20]王佩璋.我国600MW火电机组直接空冷技术的开发研究[J].电力建设,2002,23(7):5-8.
    [21]王佩璋.我国火电间接空冷机组的实践和直接空冷机组的开发[J].华北电力技术,1998,(7):34-38.
    [22]张晓军,刘江.高寒地区直接空冷系统管排数选择与冬季防冻[J].电站系统工程,2009,25(5):71.
    [23]王佩璋.我国600MW火电机组直接空冷技术的开发研究[J].电力建设,2002,23(7):5-8.
    [24]孔昭文.单排管凝汽器在直接空冷电站中的应用简介[J].内蒙古电力技术,1998,(6):40-44.
    [25]赵之东,杨丰利.直接空冷凝汽器的发展和现状[J].华北电力技术,2004,(5):44-50.
    [26]L. J. Yang, X. Z. Du, Y. P. Yang, D. Y. Liu. Influences of wind on flow and heat transfer of cooling air in direct air-cooled condensers[C]. The Eighteenth International Symposium on Transport Phenomena,2007, Daejeon, KOREA.
    [27]L. J. Yang, X. Z. Du, Y. P. Yang. Influences of wind-break wall configurations upon flow and heat transfer characteristics of air-cooled condensers in a power plant[J]. International Journal of Thermal Sciences,2011,50(10):2050-2061.
    [28]K. Duvenhage, D. G. Kroger. The influence of wind on the performance of forced draught air-cooled heat exchangers [J]. Journal of Wind Engineering and Industrial Aerodynamics,1996,62:259-277.
    [29]C. J. Meyer. Numerical investigation of the effect of inlet flow distortions on forced draught air-cooled heat exchanger performance[J]. Applied Thermal Engineering,2005,25(11):1634-1649.
    [30]顾志福,张文宏,李辉,彭继业.电厂直接空冷系统风效应风洞模拟实验研究[J].热能动力工程.2003,18(104):159-162.
    [31]Z. F. Gu, X. R. Chen, W. Lubitz, Y. Li, W. L. Luo. Wind tunnel simulation of exhaust recirculation in an air-cooling system at a large power plant[J]. InternationalJournal of Thermal Sciences,2007,46(3):308-317.
    [32]Z. F. Gu, H. L. Chen, W. H. Zhang, Y. Li, J. Y. Peng. Wind tunnel simulation on re-circulation of air-cooled condensers of a power plant[J]. Journal of Wind Engineering and Industrial Aerodynamics,2005, 93(6):509-520.
    [33]顾志福,陈学锐,李燕,菜峰.大型电厂直接冷系统风洞效应风洞模拟[J].力学学报,2005,37(5):558-563.
    [34]M. P. Van Staden, L. Pretorius, J. P. Meyer. Simulation of heat exchange in large air cooled condensers[J]. Heat Transfer 1998, Proceedings of 11th IHTC,1998, Korea.
    [35]M. P. Van Staden, L. Pretorius. Numerical modeling of the effects of ambient conditions on large power station air cooled steam condensers[J]. Fluids Engineering Division (Publication) FED, Industrial and Environmental Applications of Fluid Mechanics,1995,221:145-150.
    [36]傅松,王福禄.当前空冷电站存在的问题及国外的先进经验[J].电力情报,1995,(4):8-11.
    [37]贾宝荣.空冷凝汽器空气流动传热特性的数值模拟[D].北京:华北电力大学.2009.
    [38]杨立军,蒲罡,杜小泽,杨勇平.一种空冷单元空气导流装置流动传热特性[J].工程热物理学报,2010,31(6):1001-1004.
    [39]孙立国,孙康明,田亚钊.直接空冷机组冬季启停冻结问题及防范措施[J].电力设备,2006,(10):70-72.
    [40]阎秦,徐二树,杨勇平,马良玉,王兵树.直接空冷凝汽器仿真模型的研究[J].动力工程,2008,(3):381-385+458.
    [41]C. J. Meyer, D. G. Kroger. Numerical investigation of the effect of fan performance on forced draught air-cooled heat exchanger plenum chamber aerodynamic behaviour[J]. Applied Thermal Engineering,2004,24(2): 359-371.
    [42]J. R. Bredell, D. G. Kroger, G. D. Thiart. Numerical investigation of fan performance in a forced draft air-cooled steam condenser[J]. Applied Thermal Engineering,2006,26(8):846-852.
    [43]P. J. Hotchkiss, C. J. Meyer, T. W. von Backstrom. Numerical investigation into the effect of cross-flow on he performance of axial flow fans in forced draught air-cooled[J]. Applied Thermal Engineering,2006,26(2):200-208.
    [44]张遐龄,杨旭,李向群,安亦然.火电厂空冷平台换热的数值模拟[J].水动力学研究与进展,2005,20(z1):874-880.
    [45]侯小龙.VGB导则中直接空冷凝汽器验收试验测量方法[J].热力透平,2004,33(4):250-255.
    [46]杨立军,杜小泽,杨勇平,徐则林.空冷凝汽器验收考核实验中的几个原则[J].现代电力,2007,(4):52-55.
    [47]A. F. du Preez, D. G. Kroger. The effect of the heat exchanger arrangement and wind-break walls on the performance of natural draft dry-cooling towers subjected to cross-winds [J]. Journal of Wind Engineering and Industrial Aerodynamics,1995,58:293-303.
    [48]W. Groenewald, D. G. Kroger. Effect of mass transfer on turbulent friction during condensation inside ducts [J]. International Journal of Heat and Mass Transfer,1995,38(18):3385-3392.
    [49]C. J. Meyer, D. G. Kroger. Numerical investigation of the effect of fan performance on forced draught air-cooled heat exchanger plenum chamber aerodynamic behaviour[J]. Applied Thermal Engineering,2004,24:359-371.
    [50]C. A. Salta, D. G. Kroger. Effect of inlet flow distortions on fan performance in forced draught air-cooled heat exchangers [J]. Heat Recovery Systems and CHP.1995,15(6):555-561.
    [51]A. E. Conradie, J. D. Buys, D. G. Kroger. Performance optimization of dry-cooling system for power plants throught SQP methods[J]. Applied Thermal Engineering,1998,18(1-2):25-45.
    [52]K. Duvenhage, J. A. Vermeulen. C. J. Meyer, D. G. Kroger. Flow distortions at the fan inlet of forced-draught air-cooled heat exchangers [J]. Applied Thermal Engineering,1996,16:741-752.
    [53]C. J. Meyer, D. G. Kroger. Plenum chamber flow losses in forced draught air-cooled heat exchangers[J]. Applied Thermal Engineering,1998,18(9): 875-893.
    [54]C. J. Meyer, D. G. Kroger. Air-cooled heat exchanger inlet flow losses [J]. Applied Thermal Engineering,2001,21(9):771-786.
    [55]A. Erek, B. Ozerdem, L. Bilir, Z. Llken. Effect of geometrical parameters on heat transfer and pressure drop characteristics of plate fin and tube heat exchangers[J]. Applied Thermal Engineering,2005,25(14-15):2421-2431.
    [56]刘学,王忠会,石磊,石祥彬.超临界直接空冷机组排汽管道系统优化设计[J].电力建设,2008,(10):45-47.
    [57]黄素怡,杨金宝.横掠椭圆矩形翅片管束的放热[J].工程热物理论文集,1986.武汉:249-252.
    [58]商延福,张秋云.矩形钢翅片椭圆管簇的试验研究[J].热能动力工程,1997,12(3):96-98.
    [59]马晓茜,梁淑华.空气横掠两种翅片管冷凝元件的对比试验[J].电站辅机,1997,(3):13-16.
    [60]马晓茜.翅片管冷凝器的实验研究[J].节能,1997,(1):9-13.
    [61]宋富强.翅片管换热表面传热特性的数值研究及场协同原理分析[D].西安:西安交通大学.2002.3.
    [62]陈亚平,孙凤祥.椭圆铝翅钢管空冷器的传热及流阻性能研究[J].热力发电,2003,(3):22-28.
    [63]李妩,吴振亚.钢制矩形翅片椭圆管簇的放热及阻力试验研究[J].流体机械,1981,(9):1-7.
    [64]张鹏,史佑吉,高伟桐,胡三季.进风角度对钢制椭圆翅片管散热器热力阻力特性的影响[J].热力发电,1997,(1):19-21.
    [65]王厚华,罗庆,苏华,范亚明.大直径圆孔翅片管的传热与流阻性能实验研究[J].制冷学报,2002,(2):25-29.
    [66]李启良,赵兰萍.矩形翅片椭圆管热交换器流动和换热特性的数值模拟[J].流体机械,2006,34(8):67-70.
    [67]张春雨.火电厂空冷装置运行经济性诊断理论的研究[D].西安:西安交通大学.1999.6.
    [68]明廷臻,党艳辉,刘伟,黄素逸.椭圆管矩形翅片空冷器流体流动与传热特性数值分析.化工学报,2009,60(6):1380-1384.
    [69]杨立军,周健,杜小泽,刘登瀛,杨勇平.扁平管外蛇行翅片空间的流动换热性能数值模拟[J].工程热物理学报,2007,28(1):122-124.
    [70]张凯峰,杨立军,杜小泽,杨勇平.空冷凝汽器波形翅片扁平管管束外空气流动传热特性[J].中国电机工程学报,2008,28(26):24-28.
    [71]C. C. Wang, Y. J. Chang. Sensible heat and friction characteristics of plate fin-and-tube heat exchangers having plane fins[J]. Int J.Refrig,1996,19(4): 223-230.
    [72]T. A. Ibrahim, A. Gomaa. Thermal performance criteria of elliptic tube bundle in crossflow[J]. International Journal of Thermal Sciences,2009,48(11): 2148-2158.
    [73]马义伟,孙庆复.横掠高低翅片管簇气流阻力的试验研究[J].哈尔滨工业大学学报,1980,(1):57-69.
    [74]陈坚,董海生,尚希禹,马义伟.几种翅片管单管管外放热及气流阻力的试验研究[J].石油化工设备,1989,18(2):5-8.
    [75]马义伟,杨泽茂.空冷器翅片管簇的几个最佳设计参数的选择[J].哈尔滨工业大学学报,1985,(增刊):7-13.
    [76]马义伟,孙庆复.空气横掠翅片管簇的放热和阻力试验研究[J].化工炼油机械通讯,1980,专辑:3-15.
    [77]马义伟,孙庆复.空气横掠绕片和镶片管簇的放热和阻力的试验研究[J].石油学报,1984,5(1):107-115.
    [78]L. S. Ismail, C Ranganayakulu, R. K. Shah. Numerical study of flow patterns of compact plate-fin heat exchangers and generation of design data for.offset and wavy fins. International Journal of Heat and Mass Transfer,2009, 52(17-18):3972-3983.
    [79]杨立军,杜小泽,杨勇平等.火电站直接空冷凝汽器性能考核评价方法[J].中国电机工程学报,2007,27(2):59-63.
    [80]A. E. Bergles. ExHFT for fourth generation heat transfer technology[J]. Experimental Thermal and Fluid Science,2002,26(2-4): 335-344.
    [81]A. E. Bergles. Heat transfer enhancement the encouragement and accommodation of high heat fluxes [J]. J. Heat Transfer,1997,119:8-19.
    [82]S. M. Pesteei, P. M. V. Subbarao, R. S. Agarwal. Experimental study of the effect of winglet location on heat transfer enhancement and pressure drop in fin-tube heat exchangers[J]. Applied Thermal Engineering,2005,25: 1684-1696.
    [83]C. Lin, Y. Liu, J. Leu. Heat transfer and fluid flow analysis for plate-fin and oval tube heat exchangers with vortex generators[J]. Heat Transfer Engineering, 2008,29:588-596.
    [84]J. X. ZHU, N. K. Mitra, M. Fiebig. Effects of longitudinal vortex generators on heat transfer and flow loss in turbulent channel flows[J]. International Journal of Heat Mass Transfer,1993,36(9):2339-2347.
    [85]M. Fiebig. Embedded vortices in internal flow:heat transfer and pressure loss enhancement[J]. Int. J. Heat and Fluid Flow,1995,16(5):376-388.
    [86]A. Grosse-Gorgemann, D. Weber, M. Fiebig. Experimental and Numerical Investigation of Self-Sustained Oscillations in Channels with Periodic Structures [J]. Experimental Thermal and Fluid Science,1995,11:226-233.
    [87]J. X. Zhu, M. Fiebig, N. K. Mitra. Numerical investigation of turbulent flows and heat transfer in a rib-roughened channel with longitudinal vortex generators[J]. International Journal of Heat Mass Transfer,1995,38(3): 495-501.
    [88]Y. Chen, M. Fiebig, N. K. Mitra. Conjugate heat transfer of a finned oval tube with a punched longitudinal vortex generator in form of a delta winglet-parametric investigations of the winglet[J]. International Journal of Heat and Mass Transfer,1998,41:3961-3978.
    [89]Y. Chen, M. Fiebig, N. K. Mitra. Heat transfer enhancement of a finned oval tube with punched longitudinal vortex generators in-line[J]. International Journal of Heat and Mass Transfer,1998,41:4151-4166.
    [90]王令,陈秋炀,曾敏,周砚耕,王秋旺,黄彦平,肖泽军.矩形窄通道内带纵向涡发生器的传热强化[J].化工学报,2006,57(11):2549-2553.
    [91]M. Fiebig. Vortices, generators and heat transfer[J]. Trans. IChemE(part A), 1998,76:108-123.
    [92]M. S. Sohal, J. E. O'Brien. Improving air-cooled condenser performance using winglets and oval tubes in a geothermal power plant[J]. Geothermal Resources Council Transactions,2001,25:1-7.
    [93]Jacobi A M, Shah R K. Heat transfer surface enhancement through the use of longitudinal vortices:a review of progress[J]. Experimental Thermal and Fluid Science,1995,11:295-309.
    [94]C. M. B. Russell, T. V. Jones, G. H. Lee. Heat transfer enhancement using vortex generations[J]. Heat Transfer 1982, Proc.Swventh Heat Transfer Conf., Hemisphere, New York,1982,3:283-288.
    [95]A. Y. Turk, G. H. Junkhan. Heat transfer enhancement downstream of vortex generators on a flat plate[J]. Heat Transfer 1986, Proc. Eighth Int.Heat Transfer Conf., Hemisphere, New York,1986,6:2903-2908.
    [96]M. S. Sohal, K. Torii, J. E. O'Brien, G. Biswas. Applcation of vortex gennrators and oval tubes to enhance performance of air-cooled condensers and other heat exchangers[J]. New Energy Industrial Technology Development Organization (Research report).
    [97]M. Fiebig, A. Valencia, K. Mitra. Local heat transfer and flow losses in fin-and-tube heat exchangers with vortex generators:A comparison of round and flat tubes[J]. Experimental Thermal and Fluid Science,1994,8(1):35-45.
    [98]M. Fiebig, A. Valencia, N. K. Mitra. Wing-type vortex generators for fin-and-tube heat exchangers[J]. Experimental Thermal and Fluid Science, 1993,7:287-295.
    [99]Y. Chen, M. Fiebig, N. K. Mitra. Heat transfer enhancement of finned oval tubes with staggered punched longitudinal vortex generators[J]. International Journal of Heat and Mass Transfer,2000,43:417-435.
    [100]R. S. Matos, J. V. C. Vargas, T. A. laursen, A. Bejan. Optimally staggered finned circular and elliptic tubes in forced convection[J]. International Journal of Heat and Mass Transfer,2004,47(6):1347-1359.
    [101]H. M. Sahin, A. R. Dal, E. Baysal.3-D Numerical study on the Correlation between variable inclined fin angles and thermal behavior in plate fin-tube heat exchanger[J]. Applied Thermal Engineering,2007,27(11):1806-1816.
    [102]J. S. Leu, Y. H. Wu, J. Y. Jang. Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators[J]. International Journal of Heat and Mass Transfer,2004, 247(19-20):4327-4338.
    [103]B. Lu, P. X. Jiang. Experimental and numerical investigation of convection heat transfer in a rectangular channel with angled ribs[J]. Experimental Thermal and Fluid Science,2006,30(6):513-521.
    [104]孙东亮,陶文铨,王良璧.涡强化扁管管片散热器传热特性及场协同原理分析[J].工程热物理学报,2006,27(2):325-327.
    [105]宋长华,李隆键.矩形翅片的传热分析与数值模拟[J].工业加热,2005,34(3),14-16.
    [106]P. Chu, Y. L. He, Y. G. Lei, L. T. Ttian, R. Li. Three-dimensional numerical study on fin-and-oval-tube heat exchanger with longitudinal vortex generators[J]. Applied Thermal Engineering,2008,29:859-876.
    [107]杨泽亮,宋卓睿,宋耀祖.纵向涡发生器强化换热的场协同分析[J].华南理工大学学报(自然科学版),2002,30(6):33-35.
    [108]姚刚,杨泽亮.纵向涡强化换热的实验研究[J].实验力学,2001,16(2):158-162.
    [109]张永恒,王良璧,曹茹.带涡发生器的圆管管片式换热器流场及温度场的数值分析[J].甘肃科学学报,2005,17(3):76-81.
    [110]过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社.2004.
    [111]林宗虎,汪军,李瑞阳,崔国民等编著.强化传热技术[M].北京:化学工业出版社,2006.
    [112]顾维藻,神家锐,马重芳,张玉明著.强化传热[M].北京:科学出版社,1990.
    [113]张力,王敬.不同错开位置的锯齿翅片的热力特性研究[J].内燃机学报,1998,16(2):238-243.
    [114]董军启,陈江平,陈之久.锯齿翅片的传热与阻力性能试验[J].化工学报,2007,58(2):281-285.
    [115]曲乐,贾林祥.锯齿与打孔翅片表面性能数值模拟[J].低温工程,2008,(1):51-56.
    [116]M. Manglik, E. Bergles. Heat transfer and pressure drop correlations for the rectangular offset strip fin compact heat exchanger[J]. Experimental Thermal and Fluid Science,1995,10(2):171-180.
    [117]J. Q. Dong, J. P. Chen, Z. J. Chen, Y. M. Zhou. Air-side thermal hydraulic performance of offset strip fin aluminum heat exchangers[J]. Applied Thermal Engineering,2007,27:306-313.
    [118]Y. J. Du, C. C Wang. An experimental study of the airside performance of the superslit fin-and-tube heat exchangers[J]. International Journal of Heat and Mass Transfer,2000,43(24):4475-4482.
    [119]L. Buzzonia, R. Dall'Olioa, M. Spigaa. Efficiency of the unit cell in rectangular finned tube arrangements[J]. Applied Thermal Engineering,1999, 19(11):1147-1156.
    [120]甘庆军,简弃非,许石嵩.换热器翅片表面空气流动热力过程的三维数 值模拟[J].制冷,2004,23(2):5-9.
    [121]史里希廷H.边界层理论(下册)[M].徐燕候等译.北京:科学出版社,1991.
    [122]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [123]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [124]崔恒.流体二维图像测速技术的研究[D].大连:大连理工大学,2006.
    [125]王平让.PIV图像后处理新方法研究[D].大连:大连理工大学,2004.
    [126]文键,厉彦忠,王斯民,周爱民,等.基于PIV技术队换热器入口流场的可视化研究[J].哈尔滨工业大学学报,2008,8(1):113-117.
    [127]贾蓉.空冷凝汽器带三角翼翅片的流动特性试验研究[D].北京:华北电力大学,2010.
    [128]恽起麟.风洞实验数据的误差与修正[M].北京,国防工业出版社,1996
    [129]P. J. Heggs, P. P. Stones. The Effects of Non-Uniform Heat Transfer Coefficients in the Design of Finned Tube Air-cooled Heat Exchangers [J]. International Heat Transfer Conference. Munchen.1982,3:209-214.
    [130]王厚华,杨延萍,江村.译片矩形翅片表面的换热系数分布[J].重庆建筑大学学报,1998,20(5):57-60.
    [131]宋富强,屈治国,何雅玲,陶文铨.低速下空气横掠翅片管换热规律的数值研究[J].西安交通大学学报,2002,36(9):899-902.
    [132]屠珊,杨冬,黄锦涛,陈听宽,罗毓珊.椭圆翅片管空冷器流动传热特性的研究[J].热能动力工程,2000,15(89):455-458.
    [133]J. E. O'Brien, M. S. Sohal, P. C. Wallstedt. Local heat transfer and pressure drop for finned-tube heat exchangers using oval tubes and vortex generators[J]. Journal of Heat Transfer,2004,126(5):826-835.
    [134]M. Fiebig, A. Valencia, N. K. Mitra. Wing-type Vortex Generators for Fin-and-Tube Heat Exchangers[J]. Experimental Thermal and Fluid Science, 1993,7:287-295.
    [135]张来,杜小泽,杨立军,冯丽丽,杨勇平.开孔矩形翅片椭圆管流动与换热特性的数值研究[J].工程热物理学报,2006,27(6):990-992.
    [136]张来.电站直接空冷系统异型管的流动与换热特性[D].北京:华北电力大学.2006.4.
    [137]宋文吉.矩形通道内纵向涡发生器的换热和流动特性研究[D].青岛:青岛科技大学,2006.
    [138]陈辉,许建林,王潇芹,梅元贵.攻击角对纵向涡错排椭圆管板式翅片强化传热的影响[J].制冷与空调,2005,(4):9-13.
    [139]杨泽亮,宋卓睿,宋耀祖.纵向涡发生器强化换热的场协同分析[J].华南理工大学学报(自然科学版),2002,30(6):33-35.
    [140]魏晋.纵向涡的发生及强化换热性能的数值研究[D].天津:河北工业大学,2002.
    [141]许伟.几种典型翅片传热及阻力特性的数值研究与分析[D].北京:清华大学,2005.
    [142]J. S. Leu, Y. H. Wu, J. Y. Jang. Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators[J]. International Journal of Heat and Mass Transfer,2004, 47(19-20):4327-4338.
    [143]许建林,吴炜,陈辉,梅元贵.翼高对涡产生器式扁管板式翅片强化传热的影响[J].制冷与空调,2004,(3):22-25.
    [144]楚攀,何雅玲,李瑞,雷勇刚.带纵向涡发生器的椭圆管翅片换热器数值分析[J].工程热物理学报,2008,29(3):488-490.
    [145]C. B. Allison, B. B. Dally. Effect of a delta-winglet vortex pair on the performance of a tube-fin heat exchanger[J]. International Journal of Heat and Mass Transfer,2007,50:5065-5072.
    [146]Y. H. Zhang, X. Wu, L. B. Wang, K. W. Song, Y. X. Dong, S. Liu. Comparison of heat transfer performance of tube bank fin with mounted vortex generators to tube bank fin with punched vortex generators[J]. Experimental Thermal and Fluid Science,2008,33(1):58-66.
    [147]过增元,李志信,周森泉,熊大曦.换热器中的温差场均匀性原则[J].中国科学E辑:技术科学,1996,26(1):25-31.
    [148]N.C.DeJong, L.W.Zhang, A.M.Jacobi, S.Balachandar, D.K.Tafti.A complementary experimental and numerical study of the flow and heat transfer in offset strip-fin heat exchangers [J]. Journal of Heat Transfer,1998,120(3): 690-698.
    [149]R. L. Burton, A. M. Jacobi, G. J. Michna. An experimental study of the friction factor and mass transfer performance of an offset-Strip fin array at very high Reynolds numbers [J]. J. Heat Transfer.2007,129(9):1134-1140.
    [150]E. G. Eckert, R. J. Goldstein, S. V. Patankar, E. Pfender, J. W. Ramsey, T. W. Simon, E. M. Sparrow. Heat transfer—a review of 1981 literature[J]. International Journal of Heat and Mass Transfer.1982,25(12): 1783-1812.
    [151]W. Liu, Z. C. Liu, Y. S. Wang, et al. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger[J]. Sci China Ser E-Tech Sci,2009,52(10):2952-2959.
    [152]S. P. Wang, Q. L. Chen, B. J. Zhang, et al. A general theoretical principle for single-phase convection heat transfer enhancement. Sci China Ser E-Tech Sci,2009,52(12):3521-3526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700