嫦娥一号月球伽玛能谱数据分析与处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月球表面物质的原子或原子核在受到宇宙线粒子轰击时,会激发产生特征γ射线;此外,一些天然放射性元素也可以自发产生γ射线。不同元素释放出的γ谱线具有不同的特征能量,因此我们可以通过γ射线谱仪测量这些特征γ谱线的能量和通量,从而推算月表物质元素的种类和丰度。
     开展嫦娥月球探测工程是我国向宇宙深空探测迈出的第一步,实现了我国航天深空探测零的突破。目前月球科学已成为国际科学研究的焦点,月球具有可供人类开发和利用的各种独特资源,其特有的矿产和能源,是对地球资源的重要补充和储备,对人类社会的可持续发展具有重要的意义。
     本文围绕月表主要放射性元素的特征分布问题,通过对嫦娥一号伽玛射线谱仪在一年内的科学探测数据开展分析研究;并综合对比国内外绕月伽玛能谱探测与数据处理情况,开展了以下研究。
     1、通过对2C级数据中5,449,778条伽玛探测谱线的筛选校正、元素分布数据检查,发现异常高值现象,因此对经过该经纬度范围的所有2C级谱线文件进行经纬度做图检查,注意到伽玛探测过程中太阳粒子事件的对探测器的影响,将对应异常探测数据剔除,有效地消除了元素特征分布图中的异常条带现象,保证了生成3C级伽玛数据文件的准确性。
     2、针对放射性探测中的统计涨落现象,进行正交小波分解,利用其能量守恒的特性,确保了小波逆变换时不扩大噪声在小波域中的能量,引入非线性阈值函数,设置对于无偏估计门限,在保证计数值稳定的情况下,重构得出平滑的能谱曲线,有效降低了伽玛谱线数据的噪声波动,这对准确计算月表元素含量的特征分布具有重要的意义。
     3、在分析国内外本底处理方法的基础上,本文提出趋势线峰形加强本底扣除(TPSBE)方法。首先,将伽玛射线能谱从频域上看做低频本底和高频特征峰的叠加,滤除特征峰和杂波,得到能谱趋势线,通过趋势线计算,将能谱特征峰峰形加强。之后,利用双正交小波具有线性相位的特性,通过细节系数与零值的交界情况逐次迭代逼近峰位和波谷,并增加判断机制对结果进行筛选和校正。最后,差值构造出特征峰本底曲线。结果表明该方法分析低能段重叠峰和弱峰时具有较好的效果。
     4、对谱线中特征能量相近元素所形成的重叠峰,按均方误差极小构造各自特征峰曲线,采用高斯函数进行拟合解析。并以等面积分布图、等值线图、球面3D分布图三种形式清晰展示全月元素特征分布情况。
     5、根据对全月U、Th、K元素结果数据成图分析,三种元素的分布具有显著的相关性,主要分布于月球正月面北部,由西经70°,北纬50°;西经20°,南纬30°;东经50°,北纬70°三点组成的三角区域中,尤其在南部的云海、湿海、风暴洋区域,具有显著的高值点;在此正月面三角形区域之外及背月面,三种放射性元素的分布普遍偏低,其中在南极艾肯盆地附近有相对高值区域出现,但远低于正月面北部的三角形区域。
     6、通过对比分析嫦娥一号伽玛谱仪与阿波罗号伽玛谱仪、月球勘察者号伽玛谱仪、月亮女神号伽玛谱仪对月球放射性探测的成图结果,虽然在探月任务中探测卫星的运行轨道不同、探测时间不同、探测仪器不同,然而,数据处理结果中U、Th、K三种放射性元素的总体分布呈现出较高的一致性,能够客观反映出月球主要放射性元素的组成和分布特征。
When the nuclei of Lunar surface material bombarded by cosmic ray particles, it will produce its characteristicγ-ray excitation; besides, a number of natural radioactive elements can also spontaneously produceγ-rays. Different elements can produce gamma-ray spectra with different energy. Therefore, by measuring the energy and flux of these characteristics spectra, we can get the composition and abundance of lunar surface materials.
     China Lunar Exploration Program was the first step of deep space exploration, its successful implementation was breakthrough of China's aerospace exploration. At present, lunar has become the focus of scientists in many countries, there are a variety of unique mineral and energy resources on the moon for human development, and is an important complement and reserves to the Earth's resources, also it has a profound impact in human society for sustainable development.
     This paper focused on getting the radioactive composition and abundance of lunar surface materials, analyzed the data of gamma ray spectrometer on the Chang'E-1 during one year scientific exploration. After compared with other analyzing result of lunar detection mission, following conclusions can be drawn.
     1, After selection and calibration for 5,449,778 spectra of 2C level data, we checked the overall distribution map of elements, and found that there was some abnormally high value band shape distribution. So we extracted the latitude, longitude, measuring status and time parameters of Chang'E-1 satellite from documents, map the latitude and longitude of abnormal 2C-level files, found the possible causes, and removed the abnormal orbit data, then effectively eliminating the abnormal high counts band shape distribution in the results.
     2, In order to decreasing the statistical fluctuation in radioactive detection, we take Daubechies-4 for wavelet orthogonal decomposition. By its energy conservation characteristic, we can ensure it doesn’t increase noise energy in inverse wavelet transform. After setting the unbiased estimation threshold by non-linear threshold function, we reconstructed the smoothing spectrum with stability of count value, which was of great significance for the accuracy of quantitative element analysis.
     3, Based on analyzing of some background estimation methods, we proposed the Trend line Peak Strengthening for Background Estimation (TPSBE) method, decomposited the spectrum in frequency domain, get the trend line and enhanced the characteristic peaks. Then, we found the position of peaks and valleys by biorthogonal wavelet decomposition. After correction of the result, we estimated the background by interpolation. Using this method, we can well extract the information of elemental characteristic peaks, especially for the low energy band section in which the weak peaks information were submerged in high background counts.
     4, For the overlapping peaks in the spectra, such as the characteristic peaks of potassium and magnesium, we decomposited them by Gaussian function fitting method according to minimum mean square error principle. The result of lunar radioactive elements distribution was clearly shown by equal-area map, contour map, spherical 3D map.
     5, According to the distribution map of U, Th, K elements, there was a significant correlation-ship, all of them were mainly distributed in the northern near side of lunar, within an big triangular region constituted by west longitude 70°, north latitude 50°; West longitude 20°, south latitude 30°; east longitude 50°, north latitude 70°north latitude. Particularly in the south of the Mare Nubium, Mare Humorum, the Oceanus procellarum, were significant high-value distribution. Outside the big triangular region the counts were generally low. While in the Antarctic Aiken Basin there was a relatively high value area, but much lower than that in the big triangular region.
     6, Comparing Chang'E-1 GRS’s result with that of Apollo, Lunar Prospector, and Kaguya, although different mission with different detecting devices, in different satellite orbit, during different time, the data processing result for three radioactive elements of Uranium, thorium, potassium presented high consistency in distribution map, which could objectively reflect the main radioactive element composition and distribution on the moon,.
引文
[1] Arnold J.R.The Gamma Spectrum of the Moon’s Surface. proceedings of the Lunar and Planetary Exploration Colloquium[C]. Space and Information Systems Division. North American Aviarion Inc., Downey, 1958.
    [2] Vinogradov A.P, Surkov Yu.A, Chernov G.M, et a1.Gamma Investigation of the Moon and Composition of the Lunar Rocks[C]. proceedings of In Moon and Planets II, North Holland, Amsterdam, 1968.
    [3] Patterson J.H, Franzgrote E.J, Turkevich A.L. Alpha scattering experiment on Surveyor 7: Comparison with Surveyors 5 and 6[J]. J.Geophys.Res. 1969, 74: 6120-6148.
    [4] Turkevich A.L. Comparison of the analytical results from the Surveyor, Apollo,and Luna Missions[C]. Proceedings of Lunar Sci.Conf.2. 1971 :1209-1215.
    [5] Barrington T.M., Marshall J.H., Arnold J.R. The Apollo Gamma-ray Spectrometer [J]. Nuclear Instruments and Methods. 1974, 118:401-411.
    [6] Larry G.Evans, Richard D.Starr, Johannes Bruckner. Elemantal composition from gamma-ray spectroscopy of the NEAR-Shoemaker landing site on 433 Eros.[J] Meteoritics & Planetary Science. 2001, 36:1639-1660.
    [7] G.Scott Hubbard, William Feldman, Sylvia A.Cox, et al. Lunar Prospector: First Results and Lessons Learned[J]. Acta Astronautica. 2002,50:39-47.
    [8] B.Dieza, W.C.Feldmanb, N.Mangold. Contribution of Mars Odyssey GRS at Central Elysium Planitia[J]. Icarus. 2009, 200(1):19-29.
    [9] Hasebe N, Yamashita N, Okudaira O. The high precision gamma-ray spectrometer for lunar polar orbiter SELENE[J]. Adv Space Res. 2008, 42:323-330.
    [10] Hasebe N, Shibamura E, Miyachi T. First Results of High Performance Ge Gamma-Ray Spectrometer Onboard Lunar Orbiter SELENE (KAGUYA)[J]. J.Phys.Soc.Jpn, 2009, 78:18-25.
    [11] Kanji Tasaka. Standard spectrum method for the analysis of gamma-ray spectra from semiconductor detectors[J]. Nuclear Instruments and Methods. 1973, 109(3):547-556
    [12] P.E. Clark. Continuous smoothing of spectra in a multichannel analyser used for M?ssbauer studies[J]. Nuclear Instruments and Methods. 1969, 67(1):164-168
    [13] Ryan C.G, Clayton E, Criffin W.L. SNIP,a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications[J]. Nuclear Instruments and Methods B. 1988, 60:396-402.
    [14] Donald D.Burgess. Background estimation for gamma-ray spectrometry[J]. Nuclear Instruments and Methods in Physics Research. 1983, 214:431-434
    [15] Clair J. Sullivan, Scott E. Generation of customized wavelets for the analysis ofγ-ray spectra[J]. Nuclear Instruments and Methods in Physics Research A. 2007, 579(1): 275-278
    [16] L.Loska, J.Janczyszyn. A method of searching for peaks and multiplets inγ-ray spectra[J]. Applied Radiation and Isotopes. 1997, 48(1):127-132
    [17] M.Jandel, M.Morhác, J.Kliman. Decomposition of continuumγ-ray spectra using synthesized response matrix[J]. Nuclear Instruments and Methods in PhysicsResearch A. 2004, 516(1):172-183.
    [18] D.J.Lawrence, W.C.Feldman, B.L.Barraclough. Thorium abundances on the lunar surface[J]. Journal of Geophysical Research, 2000, 105(8):20307-20331.
    [19] Donald D.Burgess. An automated background estimation procedure for gamma ray spectra[J]. Nuclear Instruments and Methods in Physics Research. 1983, 216 (1):205-218.
    [20] Miroslav Morhac, Jan Kliman, Vladislav MatouSek, et al. Background elimination methods for multidimensional coincidence gammma-ray spectra[J]. Nuclear Instruments and Methods in Physics Research A. 1997, 401:113-132.
    [21]舒双宝,常进,蔡明生.月球伽玛射线谱仪的研制及其性能[J].天文学报. 2006, 47(2):218-213
    [22] T.Ma, J.Changa, N.Zhang. Gamma-ray detector on board lunar mission Chang’E-1 [J]. Advances in Space Research. 2008, 42(2):347-349.
    [23]段再煜,陈建华,张桂新.基于Matlab平台上γ能谱光滑处理[J].核动力工程. 2007, 28(3):125-127.
    [24]黄洪全,方方,龚迪琛. GMM模型在核能谱平滑滤波中的应用[J].核技术. 2010, 05:375-379
    [25]黄洪全.基于小波和聚类分析的核信号模拟方法研究[D].成都:成都理工大学核技术与自动化学院. 2009
    [26]顾民,葛良全.基于匹配滤波的伽玛仪器谱数据平滑技术[J].核电子学与探测技术.2009, 29(5):978-980
    [27]顾民.天然伽玛能谱数据处理关键技术的研究[D].成都:成都理工大学核技术与自动化学院. 2008
    [28]尹旺明,刘宏章,汤彬.基于SNIP算法扣除γ能谱本底的探讨及应用[J].东华理工大学学报. 2009, 32(3):245-248.
    [29] Zhu M.H, Liu L.G, You Z. Heuristic approach for peak regions estimation in gamma-ray spectra measured by a NaI detector[J]. Chinese Phys C, 2009, 33: 205-209.
    [30]张庆贤.手提式X荧光解谱技术研究及实现[D].成都:成都理工大学核技术与自动化学院. 2006
    [31]张庆贤.航空伽玛能谱特征和仪器谱解析方法研究[D].成都:成都理工大学核技术与自动化学院. 2010
    [32]杜鑫.多道γ射线能谱数据本底扣除方法研究及软件开发[D].北京:中国地质大学. 2009
    [33]陈亮,魏义祥,屈建石.便携式γ谱仪中的核素识别算法[J].清华大学学报. 2009, 05: 17-20.
    [34]徐田,房宗良,曹剑锋.微商寻峰法在NaIγ谱分析中的运用研究[C].桂林.全国第六届核仪器及其应用学术会议论文集. 2007.
    [35]李惕碚,吴枚.高能天文中成像和解谱的直接方法[J].天体物理学报. 1993, 03:215 -224.
    [36]艾宪芸,魏义祥,肖无云.直接解调法在碲锌镉探测器γ谱分析中的应用[J].清华大学学报. 2006, 06:521-824.
    [37]杨佳,葛良全,熊盛青.基于奇异值分解方法的嫦娥一号γ射线谱仪谱线定性分析[J].原子能科学技术. 2010, 44(3):348-353
    [38]杨佳,葛良全,熊盛青. NASVD方法在CE1 GRS谱线分析中的应用研究[J].核电子学与探测技术. 2010, 30(1):145-150.
    [39]杨佳.月球伽玛能谱数据处理试验研究[D].成都:成都理工大学核技术与自动化学院. 2010.
    [40]李鲲鹏,赵学军.探测封装浓缩铀属性的γ无损分析方法[J].核化学与放射化学. 2002, 04:214-217.
    [41]方方,侯新生,马英杰.低能γ射线谱测量岩性技术的初步研究[J].核技术. 2004, 05:396-400.
    [42]方方.野外地面伽玛射线全谱测量研究[D].成都:成都理工大学核技术与自动化学院. 2001.
    [43]方方,候新生,马英杰.γ射线低能谱测量在地质调查中的初步应用[J].物探与化探. 2002, 04:279-282
    [44] Lannunziata, Michael F. Radioactivity:introduction and history[M]. Amsterdam, Netherlands: Elsevier BV. 2007.
    [45] E.M.罗杰斯.物理学中的方法,性质和哲学:原子和原子核[M].科学出版社.北京.1986
    [46]卢希庭.原子核物理[M].原子能出版社.北京. 1981
    [47]庞巨丰.γ能谱数据分析[M].山西科学技术出版社.西安. 1993.
    [48]成都地质学院三系.放射性测量方法[M].原子能出版社.北京. 1978.
    [49]于群.原子核物理实验方法[M].人教育出版社.北京. 1961.
    [50]吴知非.原子核物理学[M].高等教育出版社.北京. 1983.
    [51]宁平治.原子核物理基础:核子与核[M].高等教育出版社.北京. 2003
    [52]辛福成,辛良,李忠大.伽玛能谱测量比值参数的地质学意义及其在寻找隐伏金矿床上的应用[J].地质与资源. 2007, 04:306-310
    [53]欧阳自远.月球科学概论[M].中国宇航出版社.北京. 2005
    [54]徐宏坤,方方,倪师军.绕月探测中伽玛能谱分析初步进展[J].核电子学与探测技术. 2010, 30(10):1378-1381
    [55] J.P.Davis. Iron and titanium on the Moon from orbital gamma-ray spectrometry with implications for crustal evolutionary models[J]. J.Geophys.Res. 1980, 85(B6):3209-3224.
    [56] A.E.Metzger. Composition of the Moon as determined from orbit gamma ray spectroscopy[C]. Remote Geochemical Analysis: Elemental and Mineralogical Composition. Cambridge Univ. Press. 1993
    [57] W.C.Feldman, B.L.Barraclough, S.Maurice, et al. Major compositional units of the Moon: Lunar Prospector thermal and fast neutrons[J]. Science. 1998, 281: 1489-1493.
    [58] R.C.Elphic, D.J.Lawrence, W.C.Feldman, et al. Lunar Fe and Ti abundances: comparison of Luanr Prospector and Clementine data[J]. Science. 1998, 281: 1493-1496.
    [59] W.C.Feldman, D.J.Lawrence, R.C.Elphic, et al. Polar hydrogen deposits on the Moon[J]. J.Geophys.Res. 2000, 105:4175-4195.
    [60] W.C.Feldman, D.J.Lawrence, R.C.Elphic, et al. The chemical information content of lunar thermal and epithermal neutrons[J]. J.Geophys.Res. 2000, 105: 20347 -20363.
    [61] W.C.Feldman, S.Maurice, A.B.Binder. Fluxes of fast and epithermal neutrons from lunar prospector: Evidence for water ice at the lunar poles[J]. Science. 1998, 281:1496-1500.
    [62] A.E.Metzger, J.I.Trombka, L.E.Peterson, et al. Lunar surface radioactivity: Preliminary results of the Apollo 15 and Apollo 16 gamma-ray spectrometer experiments[J]. Science. 1973, 179:800-803.
    [63] A.E.Metzger, R.E.Parker. The distribution of titanium on the lunar surface[J]. Earth Planet Sci Lett. 1979, 45:155-171.
    [64] R.Michel. Long-lived radionuclides as tracers in terrestrial and extra terrestrial matter[J]. Rradiochimica Acta. 1999, 87:47-73.
    [65] A.B.Binder. Lunar Prospector:overview[J]. Science. 1998, 281:1475-1476.
    [66] R.C.Elphic, D.J.Lawrence, W.C.Feldman, et al. The Lunar Prospector neutron spectrometer constraints on TiO2[J]. J.Geophys.Res. 2002, 107(E4)
    [67] J.P.Davis, M.J.Bielefeld. Inelastic neutron scatter iron concentrations of the Moon from orbital gamma ray data[J]. J.Geophys.Res. 1981, 86:11919.
    [68] J.P.Davis, P.D.Spudis. Petrologic province maps of the lunar highlands derived from orbital geochemical data[C]. Proc Lunar Planet Sci Conf.16th.J.Geophys Res. 1985, 90:61-74.
    [69] R.C.Elphic, D.J.Lawrence, W.C.Feldman, et al. Lunar rare earth element distribution and ramifications for FeO and TiO2:Lunar Prospector neutron spectrometer observations[J]. J.Geophysics.Rres. 2000, 105:20333-20345.
    [70] I Genetay, S Maurice, W.C.Feldman, et al. Elemental content from 0 to 500 keV neutrons: Lunar Prospector results[J]. Planet Space Sci, 2003, 51:271-280.
    [71] W.C.Feldman, S Maurice, D.J.Lawrence, et al. Evidence for water ice near the lunar poles[J]. J Geophys Res. 2001, 106(E10):23231-23251.
    [72] J.J.Gillis, B.L.Jolliff, D.J.Lawrence, et al. The Compton-Belkovich region of the Moon: Remotely sensed observations and lunar sample association[C]. Proc Lunar Planet Sci Conf. 2002, XXXIII:1967(CDROM).
    [73] J.J.Gillis, R.L.Korotev, B.L.Jolliff. Lunar surface geochemistry:Global concentrations of Th,K,and FeO as derived from Lunar Prospector and Clementine data[J]. Geochim Cosmochim Acta. 2004, 68(18):3791-3805.
    [74] W.C.Feldman, K.Ahola, B.L.Barraclough. Gamma-ray,neutron,and alpha-particle spectrometers for the Lunar Prospector mission[J]. J.Geophys.Res. 2004, 109
    [75] L.A.Haskin, J.J.Gillis, R.L.Korotev. The materials of the lunar Procellarum KREEP Terrane:a synthesis of data from geomorphological mapping, remote sensing,and sample analyses[J]. J.Geophys.Res. 2000, 105:20403-20415.
    [76] P.G.Lucey, G.J.Taylor, E.Malaret. Abundance and distribution of iron on the Moon[J]. Science. 1995, 268(5214):1150-1153.
    [77] J.R.Johnson, W.C.Feldman, D.J.Lawrence. Lunar Prospector epithermal neutrons from impact craters and landing sites:Implications for surface maturity and hydrogen distribution[J]. J.Geophys.Res. 2002, 107(E2)
    [78] T.H.Prettyman, R.C.Elphic, W.C.Feldman. Elemental composition of the lunar surface:analysis of gamma ray spectroscopy data from Lunar Prospector[J]. Geophysical Research Abstracts. 2005, 7:10067.
    [79] L.A.Haskin. The Imbrium impact event and the thorium distribution at the lunar highlands surface[J]. J.Geophys.Res. 1998, 103(E1):1679-1689.
    [80] J.R.Johnson, S.M.Larson, R.B.Singer. Remote sensing of potential lunar resources,1.Near-side compositional properties[J]. J.Geophys.Res. 1991, 96 (E3):18861-18882.
    [81] D.G.Sands, D.Laeter, J.R.Rosman. Measurements of neutron capture effects on Cd, Sm and Gd in lunar samples with implications for the neutron energy spectrum[J]. Earth Planet Sci Lett. 2001, 186:335-346.
    [82] T.H.Prettyman, J.J.Hagerty, R.C.Elphic, et al. Analysis of low-altitude Lunar Prospector gamma ray spectra[J]. Lunar and Planetary Science, 2007,XXXⅢ:2214.
    [83] T.H.Prettyman, W.C.Feldman, D.J.Lawrence. Distribution of iron and titanium on the lunar surface from Lunar Prospector gamma ray spectra[J]. Lunar and Planetary Science. 2001, XXXⅡ:2122.
    [84] T.V.Johnson, R.S.Saunders, D.L.Matson, et al. A TiO2 abundance map for the northern maria[C]. Proceedings of Lunar Sci Conf 8. 1977, 1029-1036.
    [85] R.L.Korotev. Concentrations of radioactive elements in lunar materials[J]. J. Geophys.Res. 1998, 103(E1):1691-1701.
    [86] P.H.Warren.“New”lunar meteorites:Implications for composition of the global lunar surface,lunar crust, and the bulk Moon[J]. Meteorit Planet Sci. 2005, 40:477-506.
    [87] D.J.Lawrence, S.Maurice, W.C.Feldman. Gamma-ray measurements from Lunar Prospector: Time series data reduction for the Gamma-ray Spectrometer[J]. J.Geophys.Res. 2004, 109,E07S05
    [88] A.A.Berezhnoy, N.Hasebe, M.Kobayashi, et al. A three end-member model for petrologic analysis of lunar prospector gamma-ray spectrometer data[J]. Planet Space Sci. 2005, 53(11):1097-1108.
    [89] L.Jolliff B, M.A.Wieczorek, C.K.Shearer, C.R.Neal. New Views of the Moon[M]. Mineralogical Society of America. NewYork. 2006:172-208.
    [90] O.Forni, B.Diez, O.Gasnault, et al. Preliminary observations of the SELENE gamma ray spectrometer[J]. European Planetary Science Congress. 2008, 3:229.
    [91] C.d'Uston, N.Hasebe. Global mapping of the elemental composition of the Moon surface with SELENE GRS[J]. European Planetary Science Congress. 2007, 2:A-00486
    [92] N.Yamashita, et al. Precise observation of uranium,thorium,and potassium on the moon by SELENE GRS[J]. Lunar Planet.Sci. 2009, 40:1855.
    [93] Xu HongKun, Fang Fang, Ni Shijun. Gamma-Ray Spectrum Analysis of Chang'E-1 for Lunar Detection[J].Journal of Engineering for Gas Turbines and Power of ASME.2011, 133(5)(In publish)
    [94] N.Hasebe, E.Shibamura, T.Miyachi, et al. First results of high performance Ge gamma-ray spectrometer onboard lunar orbiter SELENE(KAGUYA)[J]. J. Phys. Soc. Japan, 2009, 78(Suppl.A):18-25.
    [95]冉启文.小波分析方法及其应用[M].哈尔滨工业大学出版社.哈尔滨. 1999
    [96]徐长发,李国宽.实用小波方法[M].华中科技大学出版社.武汉. 2004
    [97] Donald B.Percival, Andrew T.Walden.程正兴译.时间序列分析的小波方法[M].机械工业出版社.北京. 2006
    [98] Albert Boggess, Francis J.Narcowich.芮国胜,康健译.小波与傅里叶分析基础[M].电子工业出版社.北京. 2005
    [99] Ingrid Daubechies.李建平,杨万年译.小波十讲[M].国防工业出版社,北京. 2004
    [100]程正兴.小波分析算法与应用[M].西安交通大学出版社.西安. 1998
    [101]姜三平.基于小波变换的图像降噪[M].国防工业出版社.北京. 2009
    [102] MALLAT.S.等.信号处理的小波导引:第3版[M].机械工业出版社.北京. 2010
    [103]徐宏坤,方方,崔均亮.基于LabVIEW的能谱分析系统设计[J].核技术,2009, 32(01):66-69
    [104]杨祎罡,王汝赡,李元景.利用小波滤波方法对γ能谱进行处理[J].核技术, 2002, (04):241-246
    [105]李建平.小波分析与信号处理—理论应用及软件实现[M].重庆出版社.重庆. 1997
    [106]陈锡辉,张银鸿. LABVIEW 8.20程序设计从入门到精通[M].清华大学出版社.北京. 2007
    [107] Jon Conway, Steve watts.软件工程方法在LABVIEWTM中的应用[M].清华大学出版社.北京. 2006.
    [108]杨乐平,李海涛,杨勇等. LABVIEW高级程序设计[M].清华大学出版社.北京. 2003.
    [109]徐宏坤.基于LabVIEW远程监测平台的研究[D].成都:成都理工大学核技术与自动化学院. 2008.
    [110]付家才. LABVIEW工程实践技术[M].化学工业出版社.北京. 2010.
    [111] D.J.Lawrence. Global Elemental Maps of the Moon: The Lunar Prospector Gamma Ray Spectrometer[J]. Science. 1998, 1484:1484-1489
    [112] Johannes Bruckner. Determination of planetary surfaces elemental composition by gamma and neutron spectroscopy[D]. De Toulouse University. 2009
    [113] http://healpix.jpl.nasa.gov/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700