自噬在涎腺腺样囊性癌化疗中的作用及其相关蛋白与临床预后的相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     1.分析应用自噬抑制剂对顺铂(cis-Dichlorodiamineplatinum,DDP)诱导涎腺腺样囊性癌细胞死亡和细胞凋亡的影响。
     2.分析应用转染技术沉默自噬基因抑制自噬对涎腺腺样囊性癌细胞死亡和细胞凋亡的影响。
     3.分析Bcl-2在DDP诱导涎腺腺样囊性癌细胞自噬和细胞凋亡中的变化。
     4.分析P53-AMPK-mTOR相关蛋白是否参与了DDP诱导的自噬反应。
     5.分析自噬抑制剂在DDP治疗ACC-M移植瘤中的作用。
     研究方法
     1.MTT实验及流式细胞仪分别检测应用自噬抑制剂或沉默自噬基因抑制自噬前后DDP诱导涎腺腺样囊性癌细胞死亡和细胞凋亡的变化。Western blot检测凋亡蛋白actived-caspase-3。
     2.电镜及荧光显微镜检测DDP诱导涎腺腺样囊性癌细胞自噬的变化。Western blot检测自噬标志蛋白LC3。
     3.Western blot检测Bcl-2及P53-AMPK-mTOR相关蛋白。
     4.构建ACC-M移植瘤,检测应用自噬抑制剂前后肿瘤体积及重量的变化,免疫组化检测实体瘤中自噬标志蛋白LC3的变化。
     研究结果
     1.3-MA增加DDP诱导涎腺腺样囊性癌细胞死亡,同时促进癌细胞凋亡。
     MTT结果显示DDP处理ACC-M细胞的24小时IC50为11.34±0.92ugμ/mL因此,在随后的实验中使用,采用浓度为10μg/mL DDP处理ACC-M24小时。与对照组相比,DDP疗组的ACC-M细胞活力下降了约61.02%;3-甲基腺嘌呤(3-methyladenine,3-MA)和DDP联合治疗组的细胞死亡率增加了约78.73%。3-MA组的细胞死亡率较对照组无明显差别。
     用流式细胞仪AnnexinV-FITC和碘化丙啶(PI)染色检测细胞凋亡;用Western blot检测actived-caspase-3.与DDP组相比,DDP和3-MA联合处理组的ACC-M细胞凋亡率显著增加,从19.08%增加到约29.72%。通过Western blot检测下游凋亡通路的capase-3的活性形式cis-Dichlorodiamineplatinum actived-caspase-3.与DDP组相比,3-MA和DDP联合治疗组中的actived-caspase-3增加了约36.36%。
     3-MA是一个众所周知的自噬抑制剂,它可抑制type I PI3K活性,而type IP13K是白噬体形成过程中必不可少的因子;DDP可诱导细胞自噬,这些在我们的实验中被再次证实。我们在电子显微镜下发现DDP诱导ACC-M细胞产生的自噬体。为了证实3-MA可抑制顺铂诱导ACC-M细胞自噬,我们用GFP-LC3质粒转染细胞并检测GFP分布。LC3是一种微管相关蛋白,是自噬体的重要组成部分。GFP-LC3质粒转染细胞己成为一个检测自噬体有效的手段。在对照组中,观察到ACC-M细胞胞浆中散在点状荧光,而DDP处理的细胞表现出点状荧光增加,且表达点状荧光的细胞数明显增加。点状荧光增加表明自噬细胞的存在。研究发现DDP和3-MA联合治疗组与顺铂组相比,表达点状荧光细胞减少了约64.29%。
     LC3-Ⅰ转换成LC3-Ⅱ的程度与细胞自噬的水平正相关,Western blot检测LC3-II, LC3-II带密度代表自噬水平。顺铂治疗诱导ACC-M细胞LC3-Ⅱ表达,但3-MA使其表达减少约52.83%。除了LC3用作自噬的检测外,p62/SQSTM1蛋白作为LC3和泛素化底物之间的连接,也被用于自噬的检测。Western blot检测发现DDP和3-MA联合治疗组与顺铂治疗组相比,p62的蛋白水平增加了约36.51%。
     总体而言,顺铂(DDP)治疗诱导了ACC-M细胞自噬,但3-MA抑制了细胞自噬和增强了DDP诱导ACC-M的细胞死亡,增加了caspase途径的细胞凋亡。
     2.Beclin-1siRNA促进涎腺腺样囊性癌的细胞凋亡,增加癌细胞死亡。
     Beclin-1是白噬过程中的一个关键的起始蛋白质。为了更直接的观察抑制自噬的对涎腺腺样囊性癌细胞的影响,我们使用Beclin-1siRNA降低内源性beclin-1的表达。转染后24小时,Western blot检测到干扰后ACC-M细胞中内源性Beclin-1与对照组相比,减少了约56.60%。
     此外,采用流式细胞仪AnnexinV-PE和7AAD的染色检测细胞凋亡率和Western blot检测actived-caspase-3。与DDP组相比,DDP和Beclin-1siRNA联合组ACC-M细胞的凋亡率显著增加:从18.78%增加到30.41%。此外,与DDP组相比,DDP和Beclin-1siRNA联合组actived-caspase-3增加了35.19%。
     在我们的实验中证实了DDP诱导细胞自噬和Beclin-1siRNA抑制自噬。我们观察到,与DDP组相比,DDP与Beclin-1siRNA联合组中ACC-M自噬细胞减少了约80.32%。DDP组ACC-M细胞中LC3-Ⅱ明显增加,但与DDP组相比,DDP和Beclin-1siRNA联合组LC3-Ⅱ减少了约61.11%。相应地,与DDP治疗相比,DDP和Beclin-1siRNA联合组的p62蛋白表达增加了约100%。
     总体而言,顺铂(DDP)诱导了ACC-M细胞自噬,Beclinl siRNA抑制细胞自噬和增强了DDP诱导ACC-M细胞死亡,提高了caspase途径细胞凋亡。
     3.Bcl-2蛋白可能是细胞凋亡和自噬之间的联系蛋白;P53-AMPK-mTOR信号通路可能参与了DDP诱导的自噬反应。
     以上结果发现DDP诱导的细胞凋亡和自噬之间可能有串扰,因此我们检测了Bcl-2的表达。通过Western blot分析,我们发现DDP可提高ACC-M细胞中Bcl-2的表达,而Beclin-1siRNA可使增加的Bcl-2减少。因此,在我们的实验中Bcl-2蛋白可能是自噬和凋亡途径之间的联系蛋白。
     此外,我们探索了DDP诱导自噬的基本机制。通过Western blot法,我们发现在ACC-M细胞中DDP处理组肿瘤抑制基因P53和AMP激活的蛋白激酶(AMPK)磷酸化增加,哺乳动物雷帕霉素靶蛋白(mTOR)磷酸化显著下降。
     4.DDP和3-MA联合对ACC-M移植瘤的抗癌作用。
     为了进一步验证自噬在体内涎腺腺样囊性癌细胞的作用,我们构建了ACC-M裸鼠移植瘤。结果显示各分组之间荷瘤鼠体重无显著差异。与顺铂组及空白对照组相比,顺铂和3-MA联合组的肿瘤生长被显著抑制。与空白对照相比,3-MA组的肿瘤生长没有明显变化。30天时,与DDP组相比较,顺铂和3-MA联合组的小鼠肿瘤体积和肿瘤重量分别显著减少了53.64%和59.75%。免疫组织化学分析结果示DDP组移植瘤组织中LC3的表达明显高于其他三组。这些结果表明DDP和3-MA联合能够抑制涎腺腺样囊性癌细胞自噬及其移植瘤的生长。
     结论
     1.3-MA增加DDP诱导涎腺腺样囊性癌细胞死亡,同时促进癌细胞凋亡。
     2.Beclin-1siRNA促进涎腺腺样囊性癌的细胞凋亡,增加癌细胞死亡。
     3.Bcl-2蛋白可能是细胞凋亡和自噬之间的联系蛋白;P53-AMPK-mTOR信号可能参与了DDP诱导的自噬反应。
     4.DDP和3-MA联合对ACC-M移植瘤的抗癌作用。
     自噬是细胞内源性途径,它在细胞应激和营养缺乏状态下可维持能量平衡和高分子合成,促进细胞存活。内质网应激是在细胞应激和营养缺乏状态下生理功能的中断导致未折叠蛋白的积累和诱导未折叠蛋白应答的过程。内质网应激和自噬均与人类癌症有关。我们研究了自噬相关蛋白(LC3和Beclin1)和内质网应激相关蛋白(GRP78)在头颈部涎腺腺样囊性癌组织中的表达。79例头颈部腺样囊性癌组织(?)组织标本制成组织微阵列芯片用于免疫组化。LC3的表达与淋巴结转移(P=0.016)及TNM分期(P=.021)显着相关。Beclin1的表达组织增长模式(P=0.002),组织学分级(P<.001)及survivial (P<.001)显着相关。GRP78的表达组织增长模式(P=0.019),组织学分级(P=0.019)及survivial (P=0.001)显着相关。LC3的表达与Beclin1的表达(P<0.001)呈正相关;LC3和Beclin1的表达与GRP78的表达呈正相关(P=0.035)(P=0.008)。我们研究了在腺样囊性癌中LC3, Beclin1和GRP78的表达及其与临床病理因素和总生存期的关系。这些结果表明,LC3, Beclin1和GRP78可能在腺样囊性癌肿瘤发生发展中扮演一个重要的角色,且Beclin1和GRP78能成为判断涎腺腺样囊性癌患者预后标志。
Objective
     1. To analyze the effect of autophagy inhibitors during DDP-induced cell death and apoptosis of salivary adenoid cystic carcinoma.
     2. To analyze the effect of silence autophagy gene during DDP-induced cell death and apoptosis of salivary adenoid cystic carcinoma.
     3. To detect the change of bcl-2during DDP-induced cell autophagy and apoptosis of salivary adenoid cystic carcinoma.
     4. To analyze whether the P53-AMPK-mTOR related protein is involved in DDP-induced autophagy reaction or not.
     5. To analyze anticancer effect of DDP and autophagy inhibitor combination against ACC-M xenografts.
     Methods
     1. MTT and flow cytometry were used to detect DDP-induced death and apoptosis of adenoid cystic carcinoma after using autophagy autophagy inhibitors or silence autophagy gene. Western blot was used to analyze apoptosis protein changes.
     2. Electron microscopy and fluorescence microscopy to detect DDP-induced autophagy changes in adenoid cystic carcinoma.
     3. Western blot was used to detect Bcl-2and P53-AMPK-mTOR protein.
     4. To build ACC-M xenografts and then detect the volume and weight changes, immunohistochemical analysis was used to detected tumor autophagy change.
     Results
     1. DDP-induced salivary adenoid cystic carcinoma cell death by enhancing apoptosis was augmented by3-MA treatment. The IC50of ACC-M cell was11.34±0.92μg/mL for24h DDP treatment, which was examined via MTT assay. Therefore, we used10μg/mL DDP in ACC-M for24h in the subsequent experiment. By DDP treatment, viability of ACC-M decreased to 61.02%and using both3-MA and DDP increased cell death to78.73%. There was no significantly different cell death by treatment of3-MA alone in ACC-M cell.
     In addition, apoptosis was examined by FCM and immunoblotting of actived-caspase-3. We used AnnexinV-FITC and propidium iodide (PI) staining assay to observe the apoptotic cell death. Compared with the DDP group, the apoptosis rate of the ACC-M cells that were treated with DDP and3-MA significantly increased from19.08%to29.72%. Furthermore, actived-caspase-3was examined by immunoblotting, which is active form of capase-3in downstream apoptosis pathway. DDP with addition of3-MA made actived-caspase-3increased36.36%compared with DDP group.
     DDP induces autophagy and3-MA is a well known autophagy inhibitor that inhibits the activity of type I PI3K (a kinase that is essential for vesicle nucleation, the first phase of autophagosome formation), which were confirmed in our experiment. Electron microscopic analysis of DDP-induced ACC-M cells indicated autophagosome. To determine whether3-MA inhibition combined with DDP induces autophagy in ACC-M cells, we transfected the cells with GFP-LC3plasmid and detected the distribution of GFP. LC3is a microtubule-associated protein that is a critical component of the autophagosome. The use of the GFP-tagged LC3plasmid has become an effective marker for the autophagosome. Diffuse cytoplasmic localization of GFP-LC3was observed in untreated ACC-M cells, whereas DDP-treated cells showed increased punctate fluorescence. Increases in punctate fluorescence indicated the presence of autophagic cells. We observed combination (DDP plus3-MA group) reduced about64.29%compared with DDP group.
     The change of LC3protein was also observed by immunoblotting. Since the extent of conversion of LC3-Ⅰ to LC3-Ⅱ is correlated to the level of autophagy, LC3-Ⅰ and LC3-Ⅱ were detected by western blot, and the autophagic level was demonstrated LC3-Ⅱ band density. LC3-Ⅱ was induced by DDP treatment in ACC-M cells, but3-MA reduced them about52.83%. In addition to LC3, p62/SQSTM1as a marker is also used by immunoblotting. The p62protein serves as a link between LC3and ubiquitinated substrates. P62becomes incorporated into the completed autophagosome and is degraded in autolysosomes. Correspondingly, the level of p62protein increased about36.51%with DDP added3-MA, compared with DDP treatment.
     Overall, DDP treatment induced autophagy in ACC-M cells, but addition of3-MA inhibited autophagy and enhanced DDP-induced ACC-M cell death by enhancing the caspase-mediated apoptosis pathway.
     2. DDP-induced cell death by increasing apoptosis in salivary adenoid cystic carcinoma cell was enhanced by beclin-1siRNA.
     Beclin-1is a critical initial protein in the process of autophagy. To observe the influence of autophagy more directly, we used beclin-1siRNA to decrease endogenous beclin-1expression. By immunoblotting, endogenous beclin-1was reduced by56.60%in ACC-M cells, compared with the control, at24h after transfection with beclin-1siRNA or the universal control siRNA.
     In addition, apoptosis was examined by FCM and immunoblotting of actived-caspase-3. We used AnnexinV-PE and7AAD staining to observe the apoptotic cell death. Compared with the DDP group, the apoptosis rate of the ACC-M cells that were treated with DDP and beclin-1siRNA significantly increased from18.78%to30.41%. Furthermore, DDP with addition of beclin-1siRNA made actived-caspase-3increased35.19%compared with DDP group.
     DDP induces autophagy and beclin-1siRNA inhibits autophagy, which were confirmed in our experiment. We observed the autophagic cells of combination (DDP plus beclin-1siRNA group) reduced about80.32%compared with DDP group. Similarly, LC3-Ⅱ was induced by DDP treatment in ACC-M cells, but beclin-1siRNA reduced them about61.11%. Correspondingly, the level of p62protein increased about100%with DDP added beclin-1siRNA, compared with DDP treatment.
     Overall, DDP treatment induced autophagy in ACC-M cells, but addition of beclin1siRNA inhibited autophagy and enhanced DDP-induced ACC-M cell death by enhancing the caspase-mediated apoptosis pathway.
     3. Bcl-2may be a link between apoptosis and autophagy and P53-AMPK-mTOR may participate in DDP-induced autophagy response.
     Since it is strongly suggested that there is crosstalk between DDP-induced apoptosis and autophagy, we checked expression of the bcl-2which is reportedly implicated in both apoptosis and autophagy. By immunoblot analysis, we found that DDP increased the expression of in ACC-M cells. Use of beclin-1siRNA combination reduced the increase of bcl-2. Therefore, bcl-2may be a link between autophagy and the apoptosis pathways in our experiment.
     In addition, it is necessary to examine the underlying mechanism of DDP-induced autophagy. By immunoblotting, we found that with DDP treatment, expression and phosphorylation of tumour suppressor p53and AMP-activated protein kinase (AMPK) increased significantly and the mammalian target of rapamycin (mTOR), a gatekeeper of autophagy decreased also decreased in ACC-M cells.
     4. Anticancer effect of DDP and3-MA combination against ACC-M xenografts
     To further verify the effects of autophagy in vivo, ACC-M xenografts in nude mice were established. There were no differences in body weight between groups. Tumor growth was significantly inhibited by DDP combined with3-MA compared with the the control, DDP treatment. There is no significant influence on tumor growth treated with3-MA. On day30, compared with the DDP group, tumor volume and tumor weight of combination group mice were significantly reduced by53.64%and59.75%. The result of immunohistochemical analysis showed that expression of LC3significantly induced in combination therapy compared with DDP group. These results indicated that DDP,3-MA combination could inhibit autophagy and the growth of xenografts.
     Conclusion
     1. DDP-induced salivary adenoid cystic carcinoma cell death by enhancing apoptosis was augmented by3-MA treatment.
     2. DDP-induced cell death by increasing apoptosis in salivary adenoid cystic carcinoma cell was enhanced by beclin-1siRNA.
     3. Bcl-2may be a link between apoptosis and autophagy and P53-AMPK-mTOR may participate in DDP-induced autophagy response.
     4. Anticancer effect of DDP and3-MA combination against ACC-M xenografts.
     Autophagy is the endogenous cellular pathway which facilitates cellular survival via maintaining energy homeostasis and macromolecular synthesis during cellular stress and nutrient deprivation. Endoplasmic reticulum(ER) stress is the process that disruption of these physiological functions leads to accumulation of unfolded proteins and induces the unfolded protein response (UPR). ER stress and autophagy are involved in human cancer. We investigated the expression of autophagic proteins (LC3and beclin1) and ER stress-related protein (GRP78) in head and neck adenoid cystic carcinoma tissue. Tissue samples from79cases of head and neck adenoid cystic carcinoma tissue were utilized for immunohistochemistry. LC3expression was significantly correlated with lymph node involvement (P=.016) and TNM (P=.021). Beclin1expression was significantly correlated with histological growth pattern (P=.002), histological grade (P<.001) and longer survivial (P<.001). GRP78expression was significantly correlated with histological growth pattern (P=.019), histological grade (P=.019) and longer survivial (P=.001). LC3expression was positively correlated with beclin1expression (P<.001); LC3and beclin1expression was positively correlated with GRP78expression respectively (P=.035)(P=.008). Our study showed that the expression of LC3, beclin1and GRP78in adenoid cystic carcinoma and its relation with clinicopathologic factors and overall survival. These results suggest that LC3, beclin1and GRP78may play an important role in tumorigenesis of adenoid cystic carcinoma and beclin1and GRP78may serve as new prognostic indicators for outcome of the patients with adenoid cystic carcinoma.
引文
[1]Bhayani MK, Yener M, El-Naggar A, et al. Prognosis and risk factors for early-stage adenoid cystic carcinoma of the major salivary glands. Cancer 2012, 118:2872-8.
    [2]Adachi M, Mitsudo K, Yamamoto N, et al. Chemoradiotherapy for maxillary sinus adenoid cystic carcinoma using superselective intra-arterial infusion via a superficial temporal artery. Head Neck 2011.
    [3]Ghosal N, Mais K, Shenjere P, et al. Phase II study of cisplatin and imatinib in advanced salivary adenoid cystic carcinoma. Br J Oral Maxillofac Surg 2011, 49:510-5.
    [4]Yamada T, Mouri H, Izumi K, et al. [Combined chemotherapy with cisplatin plus vinorelbine showed efficacy in a case of metastatic primary cutaneous adenoid cystic carcinoma]. Gan To Kagaku Ryoho 2010,37:1545-8.
    [5]Mizushima N, Klionsky DJ. Protein turnover via autophagy:implications for metabolism. Annu Rev Nutr 2007,27:19-40.
    [6]Chen N, Debnath J. Autophagy and tumorigenesis. FEBS Lett 2010,584:1427-35.
    [7]Zhou S, Zhao L, Kuang M, et al. Autophagy in tumorigenesis and cancer therapy: Dr. Jekyll or Mr. Hyde? Cancer Lett 2012,323:115-27.
    [8]Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42.
    [9]Amaravadi RK, Yu D, Lum JJ, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007, 117:326-36.
    [10]Maclean KH, Dorsey FC, Cleveland JL, et al. Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. J Clin Invest 2008,118:79-88.
    [11]Ito H, Daido S, Kanzawa T, et al. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 2005, 26:1401-10.
    [12]Lomonaco SL, Finniss S, Xiang C, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 2009,125:717-22.
    [13]Shingu T, Fujiwara K, Bogler O, et al. Stage-specific effect of inhibition of autophagy on chemotherapy-induced cytotoxicity. Autophagy 2009,5:537-9.
    [14]Wirawan E, Vanden Berghe T, Lippens S, et al. Autophagy:for better or for worse. Cell Res 2012,22:43-61.
    [15]Zeng R, He J, Peng J, et al. The time-dependent autophagy protects against apoptosis with possible involvement of Sirtl protein in multiple myeloma under nutrient depletion. Ann Hematol 2012,91:407-17.
    [16]Morais RD, Thome RG, Lemos FS, et al. Autophagy and apoptosis interplay during follicular atresia in fish ovary:a morphological and immunocytochemical study. Cell Tissue Res 2012.
    [17]Zhou J, Hu SE, Tan SH, et al. Andrographolide sensitizes cisplatin-induced apoptosis via suppression of autophagosome-lysosome fusion in human cancer cells. Autophagy 2012,8.
    [18]Zeng R, He J, Peng J, et al. The time-dependent autophagy protects against apoptosis with possible involvement of Sirtl protein in multiple myeloma under nutrient depletion. Ann Hematol 2011.
    [19]Kondo Y, Kanzawa T, Sawaya R, et al. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005,5:726-34.
    [20]Vazquez-Martin A, Oliveras-Ferraros C, Menendez JA. Autophagy facilitates the development of breast cancer resistance to the anti-HER2 monoclonal antibody trastuzumab. PLoS One 2009,4:e6251.
    [21]Abedin MJ, Wang D, McDonnell MA, et al. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 2007,14:500-10.
    [22]Shanmugam M, McBrayer SK, Qian J, et al. Targeting glucose consumption and autophagy in myeloma with the novel nucleoside analogue 8-aminoadenosine. J Biol Chem 2009,284:26816-30.
    [23]Kim RH, Coates JM, Bowles TL, et al. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res 2009,69:700-8.
    [24]Carew JS, Medina EC, Esquivel JA,2nd, et al. Autophagy inhibition enhances vorinostat-induced apoptosis via ubiquitinated protein accumulation. J Cell Mol Med 2010,14:2448-59.
    [25]Apel A, Herr I, Schwarz H, et al. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 2008,68:1485-94.
    [26]Degtyarev M, De Maziere A, Orr C, et al. Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol 2008,183:101-16.
    [27]Danial NN, Korsmeyer SJ. Cell death:critical control points. Cell 2004, 116:205-19.
    [28]Levine B, Klionsky DJ. Development by self-digestion:molecular mechanisms and biological functions of autophagy. Dev Cell 2004,6:463-77.
    [29]Eisenberg-Lerner A, Bialik S, Simon HU, et al. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ 2009, 16:966-75.
    [30]Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007,12:9-22.
    [31]Arico S, Petiot A, Bauvy C, et al. The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 2001,276:35243-6.
    [32]Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009,9:563-75.
    [33]Ellisen LW. Growth control under stress:mTOR regulation through the REDD1-TSC pathway. Cell Cycle 2005,4:1500-02.
    [34]He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009,43:67-93.
    [35]Tasdemir E, Maiuri MC, Galluzzi L, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 2008,10:676-87.
    [36]Sui X, Jin L, Huang X, et al. p53 signaling and autophagy in cancer:a revolutionary strategy could be developed for cancer treatment. Autophagy 2011, 7:565-71.
    [37]Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 2004, 303:1010-4.
    [38]Feng Z, Zhang H, Levine AJ, et al. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci U S A 2005,102:8204-9.
    [39]Jing K, Song KS, Shin S, et al. Docosahexaenoic acid induces autophagy through p53/AMPK/mTOR signaling and promotes apoptosis in human cancer cells harboring wild-type p53. Autophagy 2011,7.
    [40]Feng Z, Hu W, de Stanchina E, et al. The regulation of AMPK betal, TSC2, and PTEN expression by p53:stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res 2007, 67:3043-53.
    [I]N. Chen, J. Debnath. Autophagy and tumorigenesis, FEBS Lett.584 (7) (2010) 1427-1435.
    [2]N. Mizushima, D. J. Klionsky. Protein turnover via autophagy:implications for metabolism, Annu Rev Nutr.27 (2007) 19-40.
    [3]J. Wu, Y. Dang, W. Su, et al. Molecular cloning and characterization of rat LC3A and LC3B--two novel markers of autophagosome, Biochem Biophys Res Commun. 339 (1) (2006) 437-442.
    [4]X. H. Liang, S. Jackson, M. Seaman, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1, Nature.402 (6762) (1999) 672-676.
    [5]B. X. Li, C. Y. Li, R. Q. Peng, et al. The expression of beclin 1 is associated with favorable prognosis in stage IIIB colon cancers, Autophagy.5 (3) (2009) 303-306.
    [6]Y. Shen, D. D. Li, L. L. Wang, et al. Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancer, Autophagy.4 (8) (2008) 1067-1068.
    [7]C. Miracco, G. Cevenini, A. Franchi, et al. Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions, Hum Pathol.41 (4) (2010) 503-512.
    [8]E. Sivridis, M. I. Koukourakis, S. E. Mendrinos, et al. Beclin-1 and LC3A expression in cutaneous malignant melanomas:a biphasic survival pattern for beclin-1, Melanoma Res.21 (3) (2011) 188-195.
    [9]J. Wu, R. J. Kaufman. From acute ER stress to physiological roles of the Unfolded Protein Response, Cell Death Differ.13 (3) (2006) 374-384.
    [10]D. Ron, P. Walter. Signal integration in the endoplasmic reticulum unfolded protein response, Nat Rev Mol Cell Biol.8 (7) (2007) 519-529.
    [11]A. S. Lee. The glucose-regulated proteins:stress induction and clinical applications, Trends Biochem Sci.26 (8) (2001) 504-510.
    [12]L. M. Hendershot. The ER function BiP is a master regulator of ER function, Mt Sinai J Med.71 (5) (2004) 289-297.
    [13]Z. Yu, H. Luo, W. Fu, et al. The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis:suppression of oxidative stress and stabilization of calcium homeostasis, Exp Neurol.155 (2) (1999) 302-314.
    [14]S. Luo, C. Mao, B. Lee, et al. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development, Mol Cell Biol.26 (15) (2006) 5688-5697.
    [15]J. Li, A. S. Lee. Stress induction of GRP78/BiP and its role in cancer, Curr Mol Med.6(1) (2006) 45-54.
    [16]D. Dong, M. Ni, J. Li, et al. Critical role of the stress chaperone GRP78/BiP in tumor proliferation, survival, and tumor angiogenesis in transgene-induced mammary tumor development, Cancer Res.68 (2) (2008) 498-505.
    [17]M. Ogata, S. Hino, A. Saito, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress, Mol Cell Biol.26 (24) (2006) 9220-9231.
    [18]T. Yorimitsu, U. Nair, Z. Yang, et al. Endoplasmic reticulum stress triggers autophagy, J Biol Chem.281 (40) (2006) 30299-30304.
    [19]P. A. Szanto, M. A. Luna, M. E. Tortoledo, et al. Histologic grading of adenoid cystic carcinoma of the salivary glands, Cancer.54 (6) (1984) 1062-1069.
    [20]K. M. Kim, T. K. Yu, H. H. Chu, et al. Expression of ER stress and autophagy-related molecules in human non-small cell lung cancer and premalignant lesions, Int J Cancer. (2011)
    [21]E. Lee, P. Nichols, D. Spicer, et al. GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer, Cancer Res.66 (16) (2006) 7849-7853.
    [22]S. Fujii, S. Mitsunaga, M. Yamazaki, et al. Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome, Cancer Sci.99 (9) (2008) 1813-1819.
    [23]C. Miracco, E. Cosci, G. Oliveri, et al. Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours, Int J Oncol.30 (2) (2007) 429-436.
    [24]X. Huang, H. M. Bai, L. Chen, et al. Reduced expression of LC3B-Ⅱ and Beclin 1 in glioblastoma multiforme indicates a down-regulated autophagic capacity that relates to the progression of astrocytic tumors, J Clin Neurosci.17 (12) (2010) 1515-1519.
    [25]K. Y. Won, G. Y. Kim, Y. W. Kim, et al. Clinicopathologic correlation of beclin-1 and bcl-2 expression in human breast cancer, Hum Pathol.41 (1) (2010) 107-112.
    [26]A. Yoshioka, H. Miyata, Y. Doki, et al. LC3, an autophagosome marker, is highly expressed in gastrointestinal cancers, Int J Oncol.33 (3) (2008) 461-468.
    [27]C. H. Ahn, E. G. Jeong, J. W. Lee, et al. Expression of beclin-1, an autophagy-related protein, in gastric and colorectal cancers, APMIS.115 (12) (2007) 1344-1349.
    [28]S. Meschini, M. Condello, P. Lista, et al. Autophagy:Molecular mechanisms and their implications for anticancer therapies, Curr Cancer Drug Targets.11 (3) (2011) 357-379.
    [29]R. K. Amaravadi, J. Lippincott-Schwartz, X. M. Yin, et al. Principles and current strategies for targeting autophagy for cancer treatment, Clin Cancer Res.17 (4) (2011) 654-666.
    [30]D. Glick, S. Barth, K. F. Macleod. Autophagy:cellular and molecular mechanisms, J Pathol.221 (1) (2010) 3-12.
    [31]R. Kang, H. J. Zeh, M. T. Lotze, et al. The Beclin 1 network regulates autophagy and apoptosis, Cell Death Differ.18 (4) (2011) 571-580.
    [32]R. Su, Z. Li, H. Li, et al. Grp78 promotes the invasion of hepatocellular carcinoma, BMC Cancer.10 (2010) 20.
    [33]H. C. Zheng, H. Takahashi, X. H. Li, et al. Overexpression of GRP78 and GRP94 are markers for aggressive behavior and poor prognosis in gastric carcinomas, Hum Pathol.39 (7) (2008) 1042-1049.
    [34]S. Daneshmand, M. L. Quek, E. Lin, et al. Glucose-regulated protein GRP78 is up-regulated in prostate cancer and correlates with recurrence and survival, Hum Pathol.38 (10) (2007) 1547-1552.
    [35]W. Fu, X. Wu, J. Li, et al. Upregulation of GRP78 in renal cell carcinoma and its significance, Urology.75 (3) (2010) 603-607.
    [36]R. Langer, M. Feith, J. R. Siewert, et al. Expression and clinical significance of glucose regulated proteins GRP78 (BiP) and GRP94 (GP96) in human adenocarcinomas of the esophagus, BMC Cancer.8 (2008) 70.
    [37]H. Uramoto, K. Sugio, T. Oyama, et al. Expression of endoplasmic reticulum molecular chaperone Grp78 in human lung cancer and its clinical significance, Lung Cancer.49 (1) (2005) 55-62.
    [38]W. M. Hsu, F. J. Hsieh, Y. M. Jeng, et al. GRP78 expression correlates with histologic differentiation and favorable prognosis in neuroblastic tumors, Int J Cancer. 113 (6) (2005) 920-927.
    [39]J. Jaso, R. Malhotra. Adenoid cystic carcinoma, Arch Pathol Lab Med.135 (4) (2011)511-515.
    [40]T. Ishida, T. Nishino, T. Oka, et al. Adenoid cystic carcinoma of the tracheobronchial tree:clinicopathology and immunohistochemistry, J Surg Oncol.41 (1)(1989)52-59.
    [41]D. Bell, D. Roberts, M. Kies, et al. Cell type-dependent biomarker expression in adenoid cystic carcinoma: biologic and therapeutic implications, Cancer.116 (24) (2010)5749-5756.
    [42]S. Bernales, K. L. McDonald, P. Walter. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response, PLoS Biol.4(12) (2006) e423.
    [43]J. Li, M. Ni, B. Lee, et al. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells, Cell Death Differ.15 (9) (2008) 1460-1471.
    [44]K. B. Kruse, J. L. Brodsky, A. A. McCracken. Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways:one for soluble Z variant of human alpha-1 proteinase inhibitor (AlPiZ) and another for aggregates of AlPiZ, Mol Biol Cell.17 (1) (2006) 203-212.
    [1]Menendez JA, Vellon L, Oliveras-Ferraros C, Cufi S, Vazquez-Martin A: mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency:a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle 2011,10:3658-77.
    [2]Zhou J, Hu SE, Tan SH, Cao R, Chen Y, Xia D, Zhu X, Yang XF, Ong CN, Shen HM:Andrographolide sensitizes cisplatin-induced apoptosis via suppression of autophagosome-lysosome fusion in human cancer cells. Autophagy 2012,8.
    [3]Lozy F, Karantza V: Autophagy and cancer cell metabolism. Semin Cell Dev Biol 2012.
    [4]Lee JA, Gao FB:Regulation of Abeta pathology by beclin 1:a protective role for autophagy? J Clin Invest 2008,118:2015-8.
    [5]Martyniszyn L, Szulc L, Boratynska A, Niemialtowski MG:Beclin 1 is involved in regulation of apoptosis and autophagy during replication of ectromelia virus in permissive L929 cells. Arch Immunol Ther Exp (Warsz) 2011,59:463-71.
    [6]Lian J, Wu X, He F, Karnak D, Tang W, Meng Y, Xiang D, Ji M, Lawrence TS, Xu L:A natural BH3 mimetic induces autophagy in apoptosis-resistant prostate cancer via modulating Bcl-2-Beclinl interaction at endoplasmic reticulum. Cell Death Differ 2011,18:60-71.
    [7]Sinha S, Levine B:The autophagy effector Beclin 1:a novel BH3-only protein. Oncogene 2008,27 Suppl 1:S 137-48.
    [8]Erlich S, Mizrachy L, Segev O, Lindenboim L, Zmira O, Adi-Harel S, Hirsch JA, Stein R, Pinkas-Kramarski R:Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy 2007,3:561-8.
    [9]Zhu Y, Zhao L, Liu L, Gao P, Tian W, Wang X, Jin H, Xu H, Chen Q:Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell 2010,1:468-77.
    [10]Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, Agostinis P, Vanden Berghe T, Lippens S, Vandenabeele P:Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis 2010,1:e18.
    [11]Mathew R, Kongara S, Beaudoin B, Karp CM, Bray K, Degenhardt K, Chen G, Jin S, White E:Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev 2007,21:1367-81.
    [12]Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL:Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 2011,25:1510-27.
    [13]Maddocks OD, Vousden KH:Metabolic regulation by p53. J Mol Med (Berl) 2011,89:237-45.
    [14]Zheng Q, Su H, Ranek MJ, Wang X: Autophagy and p62 in cardiac proteinopathy. Circ Res 2011,109:296-308.
    [15]Tanabe F, Yone K, Kawabata N, Sakakima H, Matsuda F, Ishidou Y, Maeda S, Abematsu M, Komiya S, Setoguchi T: Accumulation of p62 in degenerated spinal cord under chronic mechanical compression:Functional analysis of p62 and autophagy in hypoxic neuronal cells. Autophagy 2011,7.
    [16]Li X, Nishida T, Noguchi A, Zheng Y, Takahashi H, Yang X, Masuda S, Takano Y:Decreased nuclear expression and increased cytoplasmic expression of ING5 may be linked to tumorigenesis and progression in human head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 2010,136:1573-83.
    [17]Espert L, Varbanov M, Robert-Hebmann V, Sagnier S, Robbins I, Sanchez F, Lafont V, Biard-Piechaczyk M:Differential role of autophagy in CD4 T cells and macrophages during X4 and R5 HIV-1 infection. PLoS One 2009,4:e5787.
    [18]Irie J, Reck B, Wu Y, Wicker LS, Howlett S, Rainbow D, Feingold E, Ridgway WM:Genome-wide microarray expression analysis of CD4+ T Cells from nonobese diabetic congenic mice identifies Cd55 (Dafl) and Acadl as candidate genes for type 1 diabetes. J Immunol 2008,180:1071-9.
    [19]Hildeman D, Janssen E:IFN-gamma and self-absorbed CD4+ T cells:a regulatory double negative. Nat Immunol 2008,9:1210-2.
    [20]Nishihara M, Ogura H, Ueda N, Tsuruoka M, Kitabayashi C, Tsuji F, Aono H, Ishihara K, Huseby E, Betz UA, Murakami M, Hirano T: IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state. Int Immunol 2007,19:695-702.
    [21]Ohta S, Bukowski-Wills JC, Sanchez-Pulido L, Alves Fde L, Wood L, Chen ZA, Platani M, Fischer L, Hudson DF, Ponting CP, Fukagawa T, Earnshaw WC, Rappsilber J:The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 2010,142:810-21.
    [22]Yuan K, Huang C, Fox J, Laturnus D, Carlson E, Zhang B, Yin Q, Gao H, Wu M: Autophagy plays an essential role in the clearance of Pseudomonas aeruginosa by alveolar macrophages. J Cell Sci 2012.
    [23]Won KY, Kim GY, Lim SJ, Kim YW:Decreased Beclin-1 expression is correlated with the growth of the primary tumor in patients with squamous cell carcinoma and adenocarcinoma of the lung. Hum Pathol 2012,43:62-8.
    [24]Vessoni AT, Muotri AR, Okamoto OK:Autophagy in Stem Cell Maintenance and Differentiation. Stem Cells Dev 2012.
    [25]Fan QW, Weiss WA:Inhibition of PI3K-Akt-mTOR signaling in glioblastoma by mTORC1/2 inhibitors. Methods Mol Biol 2012,821:349-59.
    [26]Zhao C, Yasumura D, Li X, Matthes M, Lloyd M, Nielsen G, Ahern K, Snyder M, Bok D, Dunaief JL, LaVail MM, Vollrath D:mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice. J Clin Invest 2011,121:369-83.
    [27]Yang S, Xiao X, Meng X, Leslie KK:A mechanism for synergy with combined mTOR and PI3 kinase inhibitors. PLoS One 2011,6:e26343.
    [28]Tato I, Bartrons R, Ventura F, Rosa JL:Amino acids activate mammalian target of rapamycin complex 2 (mTORC2) via PI3K/Akt signaling. J Biol Chem 2011, 286:6128-42.
    [29]Zhao Y, Xiong X, Sun Y: DEPTOR, an mTOR inhibitor, is a physiological substrate of SCF(betaTrCP) E3 ubiquitin ligase and regulates survival and autophagy. Mol Cell 2011,44:304-16.
    [30]Yecies JL, Manning BD:mTOR links oncogenic signaling to tumor cell metabolism. J Mol Med (Berl) 2011,89:221-8.
    [31]Sarbassov dos D, Bulgakova O, Bersimbaev RI, Shaiken T: Isolation of the mTOR complexes by affinity purification. Methods Mol Biol 2012,821:59-74.
    [32]Moscat J, Diaz-Meco MT:Feedback on fat:p62-mTORC1-autophagy connections. Cell 2011,147:724-7.
    [33]Kim J, Guan KL: Regulation of the autophagy initiating kinase ULK1 by nutrients:Roles of mTORC1 and AMPK. Cell Cycle 2011,10.
    [34]Kapoor V, Zaharieva MM, Das SN, Berger MR:Erufosine simultaneously induces apoptosis and autophagy by modulating the Akt-mTOR signaling pathway in oral squamous cell carcinoma. Cancer Lett 2011.
    [35]Misirkic M, Janjetovic K, Vucicevic L, Tovilovic G, Ristic B, Vilimanovich U, Harhaji-Trajkovic L, Sumarac-Dumanovic M, Micic D, Bumbasirevic V, Trajkovic V: Inhibition of AMPK-dependent autophagy enhances in vitro antiglioma effect of simvastatin. Pharmacol Res 2012,65:111-9.
    [36]Yu SH, Kao YT, Wu JY, Huang SH, Huang ST, Lee CM, Cheng KT, Lin CM: Inhibition of AMPK-associated autophagy enhances caffeic acid phenethyl ester-induced cell death in C6 glioma cells. Planta Med 2011,77:907-14.
    [37]Vingtdeux V, Chandakkar P, Zhao H, d'Abramo C, Davies P, Marambaud P: Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-beta peptide degradation. FASEB J 2011,25:219-31.
    [38]Vakana E, Altman JK, Platanias LC:Targeting AMPK in the treatment of malignancies. J Cell Biochem 2011.
    [39]Mao K, Klionsky DJ:AMPK activates autophagy by phosphorylating ULK1. Circ Res 2011,108:787-8.
    [40]Lee KH, Hsu EC, Guh JH, Yang HC, Wang D, Kulp SK, Shapiro CL, Chen CS: Targeting energy metabolic and oncogenic signaling pathways in triple-negative breast cancer by a novel adenosine monophosphate-activated protein kinase (AMPK) activator. J Biol Chem 2011,286:39247-58.
    [41]Arsov I, Adebayo A, Kucerova-Levisohn M, Haye J, MacNeil M, Papavasiliou FN, Yue Z, Ortiz BD:A role for autophagic protein beclin 1 early in lymphocyte development. J Immunol 2011,186:2201-9.
    [42]Yang C, Han LO:Knockdown of Beclin 1 inhibits vitamin K3induced autophagy, but promotes apoptosis of human hepatoma SMMC-7721 cells. Mol Med Report 2010,3:801-7.
    [43]Vazquez CL, Colombo MI:Beclin 1 modulates the anti-apoptotic activity of Bcl-2:insights from a pathogen infection system. Autophagy 2010,6:177-8.
    [44]Tian S, Lin J, Jun Zhou J, Wang X, Li Y, Ren X, Yu W, Zhong W, Xiao J, Sheng F, Chen Y, Jin C, Li S, Zheng Z, Xia B:Beclin 1-independent autophagy induced by a Bcl-XL/Bcl-2 targeting compound, Z18. Autophagy 2010,6:1032-41.
    [45]Ren Y, Mu L, Ding X, Zheng W: Decreased expression of Beclin 1 in eutopic endometrium of women with adenomyosis. Arch Gynecol Obstet 2010,282:401-6.
    [46]Negri T, Tarantino E, Orsenigo M, Reid JF, Gariboldi M, Zambetti M, Pierotti MA, Pilotti S:Chromosome band 17q21 in breast cancer:significant association between beclin 1 loss and HER2/NEU amplification. Genes Chromosomes Cancer 2010,49:901-9.
    [47]Maiuri MC, Criollo A, Kroemer G:Crosstalk between apoptosis and autophagy within the Beclin 1 interactome. EMBO J 2010,29:515-6.
    [48]Huang JJ, Li HR, Huang Y, Jiang WQ, Xu RH, Huang HQ, Lv Y, Xia ZJ, Zhu XF, Lin TY, Li ZM:Beclin 1 expression:a predictor of prognosis in patients with extranodal natural killer T-cell lymphoma, nasal type. Autophagy 2010,6:777-83.
    [49]Gannage M, Ramer PC, Munz C:Targeting Beclin 1 for viral subversion of macroautophagy. Autophagy 2010,6:166-7.
    [50]Djavaheri-Mergny M, Maiuri MC, Kroemer G:Cross talk between apoptosis and autophagy by caspase-mediated cleavage of Beclin 1. Oncogene 2010,29:1717-9.
    [51]Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, Galluzzi L, Joza N, Vitale I, Morselli E, Tailler M, Castedo M, Maiuri MC, Molgo J, Szabadkai G, Lavandero S, Kroemer G:The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 2009,16:1006-17.
    [52]Zalckvar E, Berissi H, Eisenstein M, Kimchi A:Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 2009,5:720-2.
    [53]Sun Q, Fan W, Zhong Q:Regulation of Beclin 1 in autophagy. Autophagy 2009, 5:713-6.
    [54]He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May HI, Hill JA, Virgin HW, Gilpin C, Xiao G, Bassel-Duby R, Scherer PE, Levine B:Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 2012,481:511-5.
    [55]Tanner EA, Blute TA, Brachmann CB, McCall K:Bcl-2 proteins and autophagy regulate mitochondrial dynamics during programmed cell death in the Drosophila ovary. Development 2011,138:327-38.
    [56]Priyadarshi A, Roy A, Kim KS, Kim EE, Hwang KY: Structural insights into mouse anti-apoptotic Bcl-xl reveal affinity for Beclin 1 and gossypol. Biochem Biophys Res Commun 2010,394:515-21.
    [57]Li X, Fan Z: The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1 alpha and Bcl-2 and activating the beclin l/hVps34 complex. Cancer Res 2010,70:5942-52.
    [58]Chen D, Gao F, Li B, Wang H, Xu Y, Zhu C, Wang G:Parkin mono-ubiquitinates Bcl-2 and regulates autophagy. J Biol Chem 2010,285:38214-23.
    [59]Yo YT, Shieh GS, Hsu KF, Wu CL, Shiau AL:Licorice and licochalcone-A induce autophagy in LNCaP prostate cancer cells by suppression of Bcl-2 expression and the mTOR pathway. J Agric Food Chem 2009,57:8266-73.
    [60]Swoboda E, Strzadala L:[BNIP3 as an atypical representative of the Bcl-2 protein family. Part 1:BNIP3, a regulator of non-apoptotic programmed cell death]. Postepy Hig Med Dosw (Online) 2009,63:409-17.
    [61]Rangiani A, Motahhary P: Evaluation of bax and bcl-2 expression in odontogenic keratocysts and orthokeratinized odontogenic cysts:A comparison of two cysts. Oral Oncol 2009,45:e41-4.
    [62]Isaka Y, Suzuki C, Abe T, Okumi M, Ichimaru N, Imamura R, Kakuta Y, Matsui I, Takabatake Y, Rakugi H, Shimizu S, Takahara S:Bcl-2 protects tubular epithelial cells from ischemia/reperfusion injury by dual mechanisms. Transplant Proc 2009, 41:52-4.
    [63]Abida WM, Gu W: p53-Dependent and p53-independent activation of autophagy by ARF. Cancer Res 2008,68:352-7.
    [64]Martinez A, Brethauer U, Borlando J, Spencer ML, Rojas IG:Epithelial expression of p53, mdm-2 and p21 in normal lip and actinic cheilitis. Oral Oncol 2008,44:878-83.
    [65]Morselli E, Tasdemir E, Maiuri MC, Galluzzi L, Kepp O, Criollo A, Vicencio JM, Soussi T, Kroemer G:Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 2008,7:3056-61.
    [66]Velez JM, Miriyala S, Nithipongvanitch R, Noel T, Plabplueng CD, Oberley T, Jungsuwadee P, Van Remmen H, Vore M, St Clair DK:p53 Regulates oxidative stress-mediated retrograde signaling:a novel mechanism for chemotherapy-induced cardiac injury. PLoS One 2011,6:e18005.
    [67]Budanov AV:Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal 2011,15:1679-90.
    [68]Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T, Ryan KM:DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 2006,126:121-34.
    [69]Fan S, Qi M, Yu Y, Li L, Yao G, Tashiro SI, Onodera S, Ikejima T: P53 activation plays a crucial role in silibinin induced ROS generation via PUMA and JNK. Free Radic Res 2012.
    [70]Li J, Hou N, Faried A, Tsutsumi S, Takeuchi T, Kuwano H:Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol 2009,16:761-71.
    [71]Jaber N, Dou Z, Chen JS, Catanzaro J, Jiang YP, Ballou LM, Selinger E, Ouyang X, Lin RZ, Zhang J, Zong WX:Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci U S A 2012.
    [72]Wu YC, Wu WK, Li Y, Yu L, Li ZJ, Wong CC, Li HT, Sung JJ, Cho CH: Inhibition of macroautophagy by bafilomycin Al lowers proliferation and induces apoptosis in colon cancer cells. Biochem Biophys Res Commun 2009,382:451-6.
    [73]Moussay E, Kaoma T, Baginska J, Muller A, Van Moer K, Nicot N, Nazarov PV, Vallar L, Chouaib S, Berchem G, Janji B:The acquisition of resistance to TNFalpha in breast cancer cells is associated with constitutive activation of autophagy as revealed by a transcriptome analysis using a custom microarray. Autophagy 2011, 7:760-70.
    [74]Notte A, Leclere L, Michiels C: Autophagy as a mediator of chemotherapy-induced cell death in cancer. Biochem Pharmacol 2011,82:427-34.
    [75]Li H, Wang P, Yu J, Zhang L:Cleaving Beclin 1 to suppress autophagy in chemotherapy-induced apoptosis. Autophagy 2011,7.
    [76]Ko YH, Lin Z, Flomenberg N, Pestell RG, Howell A, Sotgia F, Lisanti MP, Martinez-Outschoorn UE:Glutamine fuels a vicious cycle of autophagy in the tumor stroma and oxidative mitochondrial metabolism in epithelial cancer cells: Implications for preventing chemotherapy resistance. Cancer Biol Ther 2011,12.
    [77]Ross PJ, Teoh EM, A'Hern R P, Rhys-Evans PH, Harrington KJ, Nutting CM, Gore ME:Epirubicin, cisplatin and protracted venous infusion 5-Fluorouracil chemotherapy for advanced salivary adenoid cystic carcinoma. Clin Oncol (R Coll Radiol) 2009,21:311-4.
    [78]Felip E, Rojo F, Reck M, Heller A, Klughammer B, Sala G, Cedres S, Peralta S, Maacke H, Foernzler D, Parera M, Mocks J, Saura C, Gatzemeier U, Baselga J:A phase Ⅱ pharmacodynamic study of erlotinib in patients with advanced non-small cell lung cancer previously treated with platinum-based chemotherapy. Clin Cancer Res 2008,14:3867-74.
    [79]Maycotte P, Aryal S, Cummings CT, Thorburn J, Morgan MJ, Thorburn A: Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy 2012,8.
    [80]Gatzemeier U, Hossfeld DK, Neuhauss R, Reck M, Achterrath W, Lenaz L: Combination chemotherapy with carboplatin, etoposide, and vincristine as first-line treatment in small-cell lung cancer. J Clin Oncol 1992,10:818-23.
    [81]Ma XH, Piao S, Wang D, McAfee QW, Nathanson KL, Lum JJ, Li LZ, Amaravadi RK:Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin Cancer Res 2011, 17:3478-89.
    [82]Finstuen K, Mangelsdorff AD:Executive competencies in healthcare administration: preceptors of the Army-Baylor University Graduate Program. The Journal of health administration education 2006,23:199-215.
    [83]Gartel AL:Mechanisms of apoptosis induced by anticancer compounds in melanoma cells. Curr Top Med Chem 2012,12:50-2.
    [84]Alonso MM, Jiang H, Gomez-Manzano C, Fueyo J:Targeting brain tumor stem cells with oncolytic adenoviruses. Methods Mol Biol 2012,797:111-25.
    [85]Zhuang W, Li B, Long L, Chen L, Huang Q, Liang Z:Induction of autophagy promotes differentiation of glioma-initiating cells and their radiosensitivity. Int J Cancer 2011.
    [86]Zheng Y, Gardner SE, Clarke MC:Cell death, damage-associated molecular patterns, and sterile inflammation in cardiovascular disease. Arterioscler Thromb Vase Biol 2011,31:2781-6.
    [87]Yin X, Cao L, Peng Y, Tan Y, Xie M, Kang R, Livesey KM, Tang D:A critical role for UVRAG in apoptosis. Autophagy 2011,7.
    [88]Rausch V, Liu L, Apel A, Rettig T, Gladkich J, Labsch S, Kallifatidis G, Kaczorowski A, Groth A, Gross W, Gebhard MM, Schemmer P, Werner J, Salnikov AV, Zentgraf H, Buchler MW, Herr I:Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J Pathol 2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700