Mn/Fe掺杂SnO_2半导体薄膜材料与光场的耦合规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数十年来,宽带隙半导体氧化物材料的制备、表征及应用己经成为诸多领域所共同关注的焦点。其中,二氧化锡(Sn02)及其过渡金属(TM)掺杂在光伏器件,气敏传感器,氧化物稀磁半导体,透明电极等方面己激起人们的研究兴趣。而光学表征是非常强大的非破坏性探测方法,我们可以利用它获得材料的能带结构、晶格振动、光学常数、光致发光及电子跃迁等重要信息并和材料的结晶质量、化学组分、杂质能级及缺陷等性质联系起来。然而很少有报道关于系统研究TM掺杂Sn02薄膜在宽光子能量区域内的光学特性,特别是介电函数和TM掺杂效应。因此,很有必要深入开展外加温度以及制备条件(如掺杂水平,衬底温度,氧气氛围等)对Sn02半导体氧化物薄膜材料光学特性调控规律的探讨,分析其在变温环境下的光学机理,为其在能源、自旋器件、光电器件等方面的应用提供科学依据。本文开展了如下几个方面的研究工作:
     1.研究Sn1-xMnxO2(0≤x≤0.15)薄膜/c蓝宝石衬底在远红外-紫外光子能量范围内的光学常数,红外活性声子模式和光致发光带。应用理论模型拟合实验的透射谱和反射谱。详细讨论Mn的掺杂对光学特性的影响。
     通过室温紫外-红外透射谱,远红外反射谱,和光致发光光谱对c轴蓝宝石衬底上脉冲激光沉积法生长的纳米晶薄膜Sn1-xMnxO2(0≤x≤0.15)的光学特性进行研究。X射线衍射分析表明该薄膜是四方金红石结构,且未发现任何Mn的化合物。其中只有5%的Mn掺杂样品结构有微小的斜方晶相出现。在高能量端和低能量区域分别采用Adachi和Lorentz多振子色散模型成功获得从0.025到6.5eV范围内的介电函数。发现基本吸收边随Mn成分的增加向低能量边移动。纯Sn02薄膜的折射率在Sn1-xMnxO2系统中是最低的。另一方面,当Mn组份增加时,低频Eu横向光学(TO)声子频率略有增加,然而,最高频Eu(TO)和A2u(TO)振动模式呈现了相反的变化趋势。薄膜的四个相应纵向光学(LO)声子频率对比Sn02单晶在减小,因为薄膜晶格常数的变化和晶体对称性的破坏。相比纯SnO2薄膜,掺杂Sn02薄膜的光致发光峰表现出显著的强度变化和蓝移趋势。此外,观察到约1.56eV处相关于Mn掺杂剂的一个新发光峰。可以得出结论,Mn掺入效应是不同光学响应的主要贡献,因为Mn离子替换Sn离子引起2p-3d的杂化并导致Sn1-xMnx02薄膜中的电子能带结构变化。
     2.研究c轴蓝宝石衬底上Sn1-xFexO2(0≤x≤0.2)半导体薄膜的微观结构,拉曼散射,透射谱,反射谱和光致发光特性。薄膜在远红外-紫外光子能量范围里的介电函数通过合理的光学色散模型拟合实验谱获得。详细讨论磁元素组分和温度效应对电子结构,声子模式,光学带隙,及激子跃迁特性的影响。
     采用脉冲激光沉积法在c轴蓝宝石衬底上制备Fe掺杂SnO2(Sn1-xFexO2,0≤x≤0.2)纳米晶薄膜。X射线衍射谱和拉曼散射分析表明了该薄膜是金红石结构并且当x=0.2时出现Fe203非纯相,揭示Fe离子的替代导致晶格结构的渐变。通过Lorentz多振子模型和Tauc-Lorentz模型分别得到低能量范围和高能量范围的介电函数。随着Fe组分的增大,最高频的TO频率向低能量端移动并描述为(608-178x)cm-1。从透射谱可观察到明显的激子跃迁特性,吸收边随Fe组分的增加而减小,这是因为Sn02和Fe203的共同作用。分别指认了三个电子跃迁,其中6A1g→4T2g跃迁认为是由于光学吸收的开端。获得掺杂20%Fe薄膜的光电跃迁随温度依赖规律。除纯薄膜外,光致发光峰随着Fe组分增加呈现强度的减小和红移的趋势。进一步澄清了其室温发光特性与其氧空位/缺陷以及磁性掺杂浓度有密切的关系。
     3.探讨氧压对Sno.95TM0.05O2(TM:Mn或Fe)薄膜的形貌、结晶度和化学价态的影响。通过红外反射,紫外-近红外透射和光致发光光谱测量,证明周围的氧对材料的电子能带结构和光学特性有至关重要的作用。对比研究Sno.95Mn0.05O2和Sno.95Fe0.05O2的光学性质,详细讨论相关于3d掺杂剂的氧空位贡献。
     在不同氧分压(10-4到1Pa)下制备以蓝宝石为衬底的过渡金属(TM:Mn或Fe)5%掺杂SnO2薄膜Sn0.95TM0.05O2)。X射线衍射谱,扫描电子显微镜和红外光谱分析表明了不同掺杂剂能影响薄膜的结晶性。X射线光电子能谱指明了氧压的变化没有改变Sn0.95TM0.05O2薄膜Sn4+价态。观察两者的透射光谱发现Sn0.95Fe0.05O2的肩型结构比Sn0.95Mn0.05O2的明显,这是由于Fe替代效应引起强烈的p-d杂化。在光子能量为0.47eV的位置,Sn0.95Mn0.05O2薄膜的折射率要大于Sn0.95Fe0.05O2的折射率。另外,两者的光致发光光谱都显示了两个主要的发光峰(1.9eV和2.2eV)。这可解释为:SnO2导带中的电子先到缺失态,接着和价带里的空穴复合发出光子。直接对比光致发光光谱和透射拟合结果,发现电子的跃迁能、光致发光光谱的峰位及强度,三者与氧分压都有依赖关系。这些相似的关系表明Mn和Fe的掺杂能诱导结晶性和电子能带结构发生不同的变化。所以不同氧分压和掺杂剂能影响材料的电子能带结构,进而导致Sn0.95TM0.05O2薄膜不同的光学响应行为。
     4.溶胶-凝胶法制备了氧化亚铜(Cu2O)薄膜,研究其拉曼晶格振动和透过率随温度的依赖关系。
     通过变温拉曼散射和透射光谱技术探讨用溶胶-凝胶法生长在石英衬底上Cu2O薄膜的异常低温行为。低温下Γ15-的两个LO模式变得更尖锐和增强。观察到五个明显的电子跃迁并进行了指认。我们发现在200K附近位于6.4eV处的最高阶电子跃迁展示一个最小的透过率。相应地,随温度的升高,拉曼声子强度变化率的改变显示出明显异常,暗示了在温度200K以下Cu2O薄膜存在以Frohlich相互作用为媒介的强电子-声子耦合。
For several decades, the preparation, characteristics and application of the wide band gap semiconductor oxide materials have attracted more and more attention in many fields. Among them, tin oxide and transition metal doping has have received increasing interest in photovoltaic devices, gas sensors, oxide dilute magnetic semiconductor, transparent electrodes. Optical characterization is a powerful non-destructive detection technology, through which we can obtain the optical constants, lattice vibration, energy band structure, photoluminescence, electronic transitions and other important information for the material. They are closely related to the chemical composition, crystalline quality, impurity level and defects of the material. Unfortunately, no more studies on the optical properties of transition metal (TM) doped SnO2films in a wider photon energy region, especially for optical functions and TM doping effects, have been systematically presented up to now. Therefore, it is necessary to explore the relationship of temperature and preparation conditions (such as the doping level, substrate temperature, oxygen atmosphere) on the optical properties for SnO2semiconductor oxide film material, then provide scientific basis for its application in the field of energy, spinelectronic and optoelectronic devices. The main works of this dissertation are listed as follows:
     1. The optical functions, infrared active phonon modes, and photoluminescence emission bands of Sn1-xMnxO2(0≤x≤0.15) films on c-plane sapphire substrates in the far-infrared-ultraviolet photon energy range have been studied. The theoretical models are applied to reproduce the experimental transmittance and reflectance spectra well. The effects from the Mn doping on the optical properties have been discussed in detail.
     Optical properties of Sn1-xMnxO2(x from0.0to0.15) nanocrystalline films grown on c-plane sapphire substrates have been investigated at room temperature by ultraviolet-infrared transmittance, far-infrared reflectance, and photoluminescence spectra. The X-ray diffraction analysis indicate that the films are of tetragonal rutile structure without any Mn compounds,except for5%Mn doping, in which the slight orthorhombic phase appears due to the presence of defects and strain. The dielectric functions are successfully determined from0.025to6.5eV using the Adachi and Lorentz multi-oscillator dispersion models in the high and low photon energy regions, respectively. The fundamental absorption edge is found to shift toward a lower energy side with increasing Mn composition. The refractive index of pure SnO2film is estimated to be the lowest among the Sn1-xMnxO2system. On the other hand, the low Eu transverse optical (TO) phonon frequencies slightly increase with the Mn composition. However, the highest(TO) and A2u(TO) vibration modes present an opposite change trend. Compared with SnO2single crystal, four corresponding longitudinal optical (LO) phonon frequencies decrease for the films owing to the variation of the lattice constants and destruction of the crystal symmetry. Photoluminescence spectra of doped SnO2films show the remarkable intensity changes and a blue-shift trend compared to pure SnO2film. Moreover, a novel emission peak of about1.56eV associated with the Mn dopant can be observed. It can be concluded that the Mn incorporation effects are the main contributions of different optical response, because the replacement of Sn with Mn ion can induce the2p-3d hybridization and result in the electronic band structure modification of the Sn1-xMnx02films.
     2. Microstructure, Raman scattering, transmittance, reflectance and PL emission measurements of Sn1-xFexO2(0≤x≤0.2) films on c-sapphire substrates have been investigated. The dielectric functions in the far-infrared-ultraviolet photon energy region are extracted by reproducing the experimental spectra with reasonable optical dispersion models. The magnetic composition and temperature effects on the electronic structure, phonon modes, optical band gap, and the excitonic transition features have been discussed in detail.
     Nanocrystalline iron-doped tin dioxide (Sn1-xFexO2) films with x from0to0.2were prepared on c-sapphire substrates by pulsed laser deposition. X-ray diffraction and Raman scattering analysis show that the films are of the rutile structure at low compositions and an impurity phase related to Fe2O3appears until the x is up to0.2, suggesting the general change of lattice structure due to the Fe ion substitution. The dielectric functions are successfully determined from0.0248to6.5eV using the Lorentz multi-oscillator and Tauc-Lorentz dispersion models in the low and high photon energy regions, respectively. With increasing Fe composition, the highest-frequency transverse optical phonons Eu shifts towards a lower energy side and can be well described by (608-178x) cm-1. From the transmittance spectra, the fundamental absorption edge is found to be decreased with the Fe composition due to the joint contributions from SnO2and Fe2O3. It can be observed that the doped films exhibit evident excitonic excitation features, which are strongly related to the Fe doping. Three electronic transitions can be uniquely assigned. Among them, the6A1g→4T2g transition contributes to the onset of optical absorption. The variation law between electronic transitions and temperature for the20%Fe doped film has been established. Moreover, the remarkable intensity reduction and a red-shift trend with the doping composition, except for the pure film, can be testified by the photoluminescence spectra. One can further find that the room temperature photoluminescence properties strongly depend on the oxygen vacancies, oxygen defects, and doping concentration.
     3. Comprehensive characterizations are performed to explore the morphology, crystallinity, and the chemical states of the TM (Mn or Fe) doped SnO2films with the compositions of5%(Sn0.95TM0.05O2) prepared under varied Po values. We demonstrate the crucial role of surrounding oxygen on electronic band structures and optical properties by means of infrared reflectance, ultraviolet-near-infrared transmittance, and photoluminescence spectra. The comparative study on the Sno.95Mn0.05O2and Sno.95Feo.05O2films will be presented and oxygen vacancy contribution associated with the3d dopants will be discussed in detail.
     Transition metal (TM:Mn or Fe) doped tin dioxide (SnO2) films with the compositions of5%(Sn0.95TM0.05O2) have been deposited on sapphire substrates by pulsed laser deposition under oxygen pressure (Po) varied from10-4to1Pa. The X-ray diffraction, scanning electron micros-copy, and infrared spectra analysis show that different TM dopants can affect the variations of crystallization and lattice distortion. Moreover, x-ray photoelectron spectroscopies indicate that the effective Po during the growth does not change the valence state of Sn4+in the Sno.95TM0.05O2films. The spectral behaviors of the films have been investigated in the photon energy range of0.47-6.5eV (2650-190nm). From transmittance spectra, the shoulder structures become more prominent for the Sno.95Fe0.05O2film than those for the Sno.95Mn0.05O2film due to the Fe repelling effect of much stronger p-d hybridization. The refractive index values for the Sn0.95Mno.05O2film are found to be larger than those for the Sn0.95Fe0.05O2film at the photon energy of0.47eV. The main peaks at about1.9and2.2eV in photoluminescence emission spectra for both Sn0.9sMno.o502and Sno.95Fe0.05O2films can be observed, and it could be explained by the fact that the electrons in the conduction band of SnO2relax to defect states and then radiatively recombine with the holes. From direct comparison of PL and transmittance results for the films, the electronic transition energies, the emission peaks' intensities and positions are shown to present the Po dependent behavior. The distinct trends indicate that the incorporation of Mn and Fe elements can provide a significant difference in the crystalline and electronic band structure. It can be concluded that the oxygen pressure and dopant contributions are responsible for the adjustment of electronic band structures and result in different optical response behaviors for the Sn0.95TM0.05O2films.
     4. Cuprous oxide (Cu2O) films have been prepared by sol-gel method. The Raman vibration and transmission as a function of temperature have been observed.
     Anomalous low temperature behaviors in CU2O film grown on quartz substrate have been investigated by temperature-dependent Raman and transmittance spectra. The longitudinal optical components of two Γ15-phonon modes become sharper and more intense at a low temperature. Five electron transitions can be observed and uniquely distinguished in the transmittance. It can be found that the highest-order electronic transition located at6.4eV exhibits a minimum transmittance near200K. Correspondingly, the variations from phonon intensity ratios reveal obvious anomalies with the decreasing temperature, indicating the existence of strong electron-phonon coupling mediated by Frohlich interaction in the CU2O films below the temperature of
引文
[1]C. J. Youn, T. S. Jeong, M. S. Han, J. W. Yang, K. Y. Lim, and H. W. Yu, J. Cryst. Growth 250,331-338 (2003).
    [2]郭洪辉,一维纳米ZnO及其复合材料的发光二极管,厦门大学博士论文,2009
    [3]Q. R. Zhao, Y. Gao, X. Bai, C. Z. Wu, and Y. Xie, Eur. J. Inorg. Chen.1643-1648 (2006).
    [4]贾铁昆,ZnO、SnO2及其掺杂纳米结构的合成、表征与性能研究,武汉理工大学,博士学位论文
    [5]李文武,若干信息功能氧化物薄膜材料的光电跃迁研究,华东师范大学,博士学位论文
    [6]X.J. Feng, Preparation and characterization of high quality SnO2 films[D]. Shandong University Doctoral Dissertation.2008.
    [7]I. Saadeddin, H.S. Hilal, B. Pecquena rd, J. Marcus, A. Mansouri, C. Labrugere, M.A. Subramanian, and G. Campet, Solid State Sci.,8,7-13(2006).
    [8]S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. Das Sarma, H. D. Drew, R. L. Greene and T. Venkatesan, Phys. Rev. Lett.,91,077205 (2003).
    [9]于志鹏,Sn02纳米孔的制备及其性能研究,黑龙江大学硕士学位论文
    [10]X. Chen, P. yao, D. Wang, and X. Wu, Chem. Eng. J.147,412-415(2009).
    [11]W. B. Jackson, R. L. Hoffman, and G. S. Herman, Appl. Phys. Lett.,87, 193503-193504 (2005).
    [12]H. Kim, R. C. Y. Auyeung, and A. Pique, Thin Solid Film 516,5052-5056 (2008).
    [13]A. Punnoose, J. Hays, A. Thurber, M. H. Engelhard, R. K. Kukkadapu,C. Wang, V. Shutthanandan, and S. Thevuthasan, Phys. Rev. B,72,054402 (2005).
    [14]H. Kimura, T. Fukumura, M. Kawasaki, K. Inaba, T. Hasegawa, and H. Koinuma, Appl. Phys. Lett.,80,94 (2002).
    [15]Y. H. Xiao, S. H. Ge, L. Xi, Y. L. Zuo, X. Y. Zhou, B. M. Zhang,; L. Zhang, C. X. Li, X. F. Han, and Z. C. Wen, Appl. Surf. Sci.,254,7459 (2008).
    [16]J. M. D. Coey, A.P. Douvalis, C.B. Fitzgerald and M. Venkatesan, Appl. Phys. Lett., 84,1332-6 (2004).
    [17]H. H. Nguyen, J. Magn. and Magn. Mater.,303,338-43 (2006).
    [18]方荣川,固体光谱学,中国科技大学出版社,2001年;徐梦岚,李鸿钧,中国电子商情(基础电子),2011年7月
    [19]张树霖,拉曼光谱学与低维纳米半导体,科学出版社,2008年
    [20]程光煦,拉曼布里渊散射(第二版),科学出版社,2008年
    [21]沈学础,半导体光谱与光学性质(第二版),科学出版社,2002年
    [22]M. Chandra Sekhar, P. Kondaiah, S. V. Jagadeesh Chandra, G Mohan Rao and S. Uthanna, Appl. Surf. Sci.258 (5),1789-1796 (2011).
    [23]R. S. Chao, R. K. Khanna and E. R. Lippincott, J. Raman Spectrosc.3 (2-3), 121-131 (1975).
    [24]杨德仁等著,半导体材料测试与分析,科学出版社,2010年
    [25]D. A. Clayton, D. M. Benoist, Y. Zhu, and S. Pan, ACS Nano 4,2363-2373(2010).
    [26]L. Li, C. K. Tsung, Z. Yang, G. D. Stucky, L. D. Sun, J. F. Wang, and C. H. Yan, Adv. Mater.20,903-908 (2008).
    [27]A. B. Djurisic, Y. Chan, and E. H. Li, Mater. Sci. Eng. R 38,237 (2002).
    [28]Z. G. Hu, M. B. M. Rinzan, S. G. Matsik, A. G. U. Perera, G.V. Winckel, A. Stintz, and S. J. Krishna, J. Appl. Phys.,97,093529 (2005).
    [29]O. S. Heaven, Optical Properties of Thin Solid Films; Dover:NewYork, Chapter 4, p 69. (1991)
    [30]W. W. Li, Z. G. Hu, J. D. Wu, J. Sun, M. Zhu, Z. Q. Zhu, and J. H. Chu, J. Phys. Chem.C,113,18347(2009).
    [31]C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, J. Appl. Phys.,83,3323 (1998).
    [32]S. Adachi, Phys. Rev. B 38,12345 (1988).
    [33]T. W. Kim, D. U. Lee, D. C. Choo, J. H. Kim, H. J. Kim, J. H. Jeong, M. Jung, J. H. Bahang, H. L. Park, Y. S. Yoon, and J. Y. Kim, J. Phys. Chem. Solids,63,881 (2002).
    [34]S. Adachi, Phys. Rev. B 35,7454 (1987).
    [35]G. E. Jellison, Jr. and F. A. Modine, Appl. Phys. Lett.69,2137 (1996).
    [36]G. E. Jellison, Jr. and F. A. Modine, Appl. Phys. Lett.69,371 (1996).
    [37]P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom and J. L. Musfeldt, Appl. Phys. Lett.,96,131907 (2010).
    [38]J. J. Zhang, J. W. Zhai, X. J. Chou, J. Shao, X. Lu, and X. Yao, Acta Mater.57,4491 (2009).
    [39]W. G. Spitzer, R. C. Miller, D. A. Kleinman, and L. E. Ho warth, Phys. Rev.126, 1710(1962).
    [1]R. K. Selvan, I. Perelshtein, N. Perkas, and A. Gedanken, J. Phys. Chem. C,112, 1825-1830(2008).
    [2]S. Goldsmith, E. Cetinorgu, and R. L. Boxman, Thin Solid Films 517,5146 (2009).
    [3]A. Dieguez, A. Romano-Rodriguez, J. R. Morante, U. Weimar, M. Schweizer Berberich, and W. Gopel, Sens. Actuators B,31,1 (1996).
    [4]A. Punnoose, J. Hays, A. Thurber, M. H. Engelhard, R. K. Kukkadapu, C. Wang, V. Shutthanandan, and S. Thevuthasan, Phys. Rev. B,72,054402 (2005).
    [5]H. Kimura, T. Fukumura, M. Kawasaki, K. Inaba, T. Hasegawa, and H. Koinuma, Appl. Phys. Lett.,80,94 (2002).
    [6]Y. H. Xiao, S. H. Ge, L. Xi, Y. L. Zuo, X. Y. Zhou, B. M. Zhang, L. Zhang, C. X. Li, X. F. Han, and Z. C. Wen, Appl. Surf. Sci.,254,7459 (2008).
    [7]T. Hirata, K. Ishioka, M. Kitajima, and H. Doi, Phys. Rev. B,1996,53,8442 (1996).
    [8]C. K. Ghosh, S. Malkhand, M. K. Mitra, and K. K. Chattopadhyay, J. Phys. D:Appl. Phys.,41,245113 (2008).
    [9]X. Mathew, J. P. Enriquez, C. Mejiia-Garcia, G. Contreras-Puente, M. A. Cortes Jacome, J. A. Toledo-Antonio, J. Hays, and A. Punnoose, J. Appl. Phys.,100,073907 (2006).
    [10]K. Srinivas, M. Vithal, B. Sreedhar, M. M. Raja, and P. V. Reddy, J. Phys. Chem. C, 113,3543-3552(2009).
    [11]S. H. Luo, P. K. Chu, W. L. Liu, M. Zhang, and C. L. Lin, Appl. Phys. Lett.,88, 183112(2006).
    [12]J. Q. Hu, Y. Bando, Q. L. Liu, and D. Golberg, AdV. Funct. Mater.,13,493 (2003).
    [13]X. T. Zhou, F. Heigl, M. W. Murphy, T. K. Sham, T. Regier, I. Coulthard, and R. I. R. Blyth, Appl. Phys. Lett.,89,213109 (2006).
    [14]J. Jeong, S. P. Choi, C. I. Chang, D. C. Shin, J. S. Park, B. T. Lee, Y. J. Park, and H. J. Song, Solid State Commun.,127,595 (2003).
    [15]Z. Z. Yuan, D. S. Li, M. H. Wang, P. L. Chen, D. R. Gong, P. H. Cheng, and D. R. Yang, Appl. Phys. Lett.,92,121908 (2008).
    [16]S. J. Rani, S. C. Roy, N. Karar, and M. C. Bhatnagar, Solid State Commun.,141, 214 (2007).
    [17]Z. G. Hu, W. W. Li, J. D. Wu, J. Sun, Q. W. Shu, X. X. Zhong, Z. Q. Zhu, and J. H. Chu, Appl. Phys. Lett.,93,181910 (2008).
    [18]K. Gao, W. Zhang, J. Sun, N. Xu, Z. F. Ying, Q. Li, J. Gan, and J. D. Wu, J. Phys. Chem.C,113,19139(2009).
    [19]C. V. Komen, A. Thurber, K. M. Reddy, J. Hay, and A. Punnoose, J. Appl. Phys. 103,07D141 (2008).
    [20]K. Gopinadhan, S. C. Kashyap, D. K. Pandya, and S. Chaudhary, J. Appl. Phys.,102, 113513(2007).
    [21]J. Hays, A. Punnoose, R. Baldner, M. H. Engelhard, J. Peloquin, and K. M. Reddy, Phys. Rev. B,72,075203 (2005).
    [22]S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. Das Sarma, H. D. Drew, R. L. Greene, and T. Venkatesan, Phys. Rev. Lett.,91,077205 (2003).
    [23]K. C. Mishra, K. H. Johnson, and P. C. Schmidt, Phys. Rev. B,51,13972 (1995).
    [24]X. L. Wang, Z. X. Dai, and Z. Zeng, J. Phys.:Condens. Matter,20,045214 (2008).
    [25]Y. R. Park, and K. J. Kim, J. Appl. Phys.,94,6401 (2003).
    [26]S. Singh, and M. S. Ramachandra Rao, Phys. Rev. B,80,045210 (2009).
    [27]K. Samanta, S. Dussan, R. S. Katiyar, and P. Bhattacharya, Appl. Phys. Lett.,90, 261903 (2007).
    [28]R. S. Katiyar, P. Dawson, M. M. Hargreave, and G. R. Wilkinson, J. Phys. C:Solid State Phys.,4,2421 (1971).
    [29]Z. G. Hu, A. B. Weerasekara, N. Dietz, A. G. U. Perera, M. Strassburg, M. H. Kane, A. Asghar, and I. T. Ferguson, Phys. Rev. B,75,205320 (2007).
    [30]H. Zhang, Y. L. Liu, K. Zhu, G. G. Siu, Y. H. Xiong, and C. S. Xiong, Phys.: Condens. Matter,10,11121 (1998).
    [31]B. L. Yu, L. J. Guo, Z. T. Yang, C. S. Zhu, C. S.; F. X. Gan, G. L. Zhang, G. Q. Tang, X. C. Wu, and W. Chen, W. J. Phys. Lett. A,251,67 (1999).
    [32]H. S. Kim, L. Bi, G. F. Dionne, and C. A. Ross, Phys. Rev. B,77,214436 (2008).
    [33]K. J. Kim, and Y. R. Park, Appl. Phys. Lett.,81,1420 (2002).
    [34]X. Xiang, X. T. Zu, L. M. Wan, V. Shutthanadan, P. Nachimuthu, and Y. Zhang, J. Phys. D:Appl. Phys.,41,225102 (2008).
    [35]S. Brivekku, N. Chiodini, F. Meinardi, A. Lauria, and A. Paleari, Appl. Phys. Lett., 89,153126(2006).
    [36]J. Q. Hu, X. L. Ma, N. G. Shang, Z. Y. Xie, N. B. Wong, C. S. Lee, and S. T. Lee, J. Phys. Chem. B,106,3823 (2002).
    [37]J. Wu, K. Yu, L. J. Li, J. W. Xu, D. J. Shang, Y. Xu, and Z. Q. Zhu, J. Phys. D:Appl. Phys.,41,185302(2008).
    [38]W. C. Zhou, R. B. Liu, Q. Wan, Q. L. Zhang, A. L. Pan, L. Guo, and B. S. Zou, J. Phys. Chem. C,113,1719 (2009).
    [39]H. T. Chen, X. L. Wu, S. J. Xiong, W. C. Zhang, and J. Zhu, Appl. Phys. A,97,365 (2009).
    [40]J. M. Luttinger, and W. Kohn, Phys. Rev.,97,869 (1955).
    [1]Y. Matsumoto, M. Murakami, T. Shono, H. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara and H. Koinuma, Science,291,854-856 (2001).
    [2]S. J. Liu, C. Y. Liu, J. Y. Juang and H. W. Fang, J. Appl. Phys.,105,013928 (2009).
    [3]X. L. Wang, Z. X. Dai and Z. Zeng, J. Phys.:Condens. Matter,20,045214 (2008).
    [4]L. Zhang, S. H. Ge, Y. L. Zuo, B. M. Zhang and L. Xi, J. Phys. Chem. C,114, 7541-7547 (2010).
    [5]A. G. Pereira, A. O. Porto, G. G. Silva, G. M. de Lima, H. G. L. Siebald and J. L. Neto, Phys. Chem. Chem. Phys.,4,4528-4532 (2002).
    [6]S. B. Ogale, R. J. Choudhary, J. P. Buban, S. E. Lofland, S. R. Shinde, S. N. Kale, V. N. Kulkarni, J. Higgins, C. Lanci, J. R. Simpson, N. D. Browning, S. Das Sarma, H. D. Drew, R. L. Greene and T. Venkatesan, Phys. Rev. Lett.,91,077205 (2003).
    [7]C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira and U. S. Sias, Phys. Rev. B:Condens. Matter Mater. Phys.,74,115307 (2006).
    [8]H. S. Kim, L. Bi, G. F. Dionne and C. A. Ross, Phys. Rev. B:Condens. Matter Mater. Phys.,77,214436 (2008).
    [9]K. Srinivas, M. Vithal, B. Sreedhar, M. M. Raja and P. V. Reddy, J. Phys. Chem. C, 113,3543-3552(2009).
    [10]S. J. Rani, S. C. Roy, N. Karar and M. C. Bhatnagar, Solid State Commun.,141, 214-218 (2007).
    [11]S. J. Hu, S. S. Yan, X. X. Yao, Y. X. Chen, G. L. Liu and L. M. Mei, Phys. Rev. B: Condens. Matter Mater. Phys.,75,094412 (2007).
    [12]C. Ke, Z. Yang, W. Zhu, J. S. Pan and S. Karamat, J. Appl. Phys.,107,013515 (2010).
    [13]Y. R. Park and K. J. Kim, J. Appl. Phys.,94,6401-6404 (2003).
    [14]F. Javier Yusta, Michael L. Hitchman and Sarkis H. Shamlian, J. Mater. Chem.,7, 1421-1427 (1997).
    [15]R. S. Katiyar, P. Dawson, M. M. Hargreave and G. R. Wilkinson, J. Phys. C:Solid State Phys.,4,2421-2431 (1971).
    [16]X. Mathew, J. P. Enriquez, C. Meji'a-Garci'a, G. Contreras-Puente, M. A. Cortes-Jacome, J. A. Toledo-Antonio, J. Hays and A. Punnoose, J. Appl. Phys.,100, 073907 (2006).
    [17]X. Xiang, X. T. Zu, L. M. Wan, V. Shutthanadan, P. Nachimuthu and Y. Zhang, J. Phys. D:Appl. Phys.,41,225102 (2008).
    [18]W. C. Zhou, R. B. Liu, Q. Wan, Q. L. Zhang, A. L. Pan, L. Guo and B. S. Zou, J. Phys. Chem. C,113,1719-1726 (2009).
    [19]A. Singhal, S. N. Achary, J. Manjanna, O. D. Jayakumar, R. M. Kadam and A. K. Tyagi, J. Phys. Chem. C,113,3600-3606 (2009).
    [20]H.Deng and J.M.Hossenlopp, J. Phys. Chem. B,109,66-73 (2005).
    [21]J. Sakuma, K. Nomura, C. Barrero, and M. Takeda, Thin Solid Films,515,8653-55 (2007).
    [22]M. B. Sahana, C. Sudakar, G. Setzler, A. Dixit, J. S. Thakur, G. Lawes, R. Naik, V. M. Naik and P. P. Vaishnava, Appl. Phys. Lett.,93,231909 (2008).
    [23]K. N. Yu, Y. H. Xiong, Y. L. Liu and C. H. Xiong, Phys. Rev. B:Condens. Matter, 55,2666-2671 (1997).
    [24]S. Das, S. Kar and S. Chaudhuri, J. Appl. Phys.,99,114303 (2006).
    [25]D. Bersani, P. P. Lottici and A. Montenero, J. Raman Spectrosc.,30,335-360 (1999).
    [26]A. A. Tahir, K. G. Upul Wijayantha, S. Saremi-Yarahmadi, M. Mazhar and V. McKee, Chem. Mater.,21,3763-3772 (2009).
    [27]Z. G. Hu, A. B. Weerasekara, N. Dietz, A. G. U. Perera, M. Strassburg, M. H. Kane, A. Asghar and I. T. Ferguson, Phys. Rev. B:Condens. Matter Mater. Phys.,75,205320 (2007).
    [28]P. G. Harrison, N. C. Lloyd, W. Daniell, C. Bailey and W. Azelee, Chem. Mater.,11, 896-909 (1999).
    [29]H. Zhang, Y. L. Liu, K. Zhu, G. G. Siu, Y. H. Xiong and C. S. Xiong, J. Phys.: Condens. Matter,10,11121-11127 (1998).
    [30]S. Onari, T. Arai and K. Kudo, Phys. Rev. B:Solid State,16,1717-1721 (1977).
    [31]Z. G. Hu, M. Strassburg, A. Weerasekara, N. Dietz, A. G. U. Pereraa, M. H. Kane, A. Asghar and I. T. Ferguson, Appl. Phys. Lett.,88,061914 (2006).
    [32]W. Limmer, M. Glunk, S. Mascheck, A. Koeder, D. Klarer, W. Schoch, K. Thonke, R. Sauer and A. Waag, Phys. Rev. B:Condens. Matter,66,205209 (2002).
    [33]B. L. Yu, L. J. Guo, Z. T. Yang, C. S. Zhu, F. X. Gan, G. L. Zhang, G. Q. Tang, X. C. Wu and W. J. Chen, Phys. Lett. A,251,67-72 (1999).
    [34]S. Singh and M. S. Ramachandra Rao, Phys. Rev. B:Condens. Matter Mater. Phys., 80,045210(2009).
    [35]K. Nagaveni, M. S. Hegde and G. Madras, J. Phys. Chem. B,108,20204-20212 (2004).
    [36]K. C. Mishra, K. H. Johnson and P. C. Schmidt, Phys. Rev. B:Condens. Matter,51, 13972-13976(1995).
    [37]Ph. Barbarat, S. F. Matar and G. Le Blevennec, J. Mater. Chem.,7,2547-2550 (1997).
    [38]F. Yubero, V. M. Jime'nez and A. R. Gonza' lez-Elipe, Surf. Sci.,400,116-126 (1998).
    [39]A. I. Galuza, A. B. Beznosov and V. V. Eremenko, Low Temp. Phys.,24,726-729 (1998).
    [40]X. S. Xu, T. V. Brinzari, S. Lee, Y. H. Chu, L. W. Martin, A. Kumar, S. McGill, R. C. Rai, R. Ramesh, V. Gopalan, S. W. Cheong and S. W. Musfeldt, Phys. Rev. B: Condens. Matter Mater. Phys.,79,134425 (2009).
    [41]W. W. Li, J. J. Zhu, J. D. Wu, J. Sun, M. Zhu, Z. G. Hu and J. H. Chu, ACS Appl. Mater. Interfaces,2,2325-2332 (2010).
    [42]S. A. Lourenco, I. F. L. Dias, J. L. Duarte, E. Laureto, E. A. Meneses, J. R. Leite and I. Mazzaro, J. Appl. Phys.,89,6159-6164 (2001).
    [43]Q. X. Guo, M. Nishio and H. Ogawa, Phys. Rev. B:Condens. Matter,64,113105 (2001).
    [44]G. B. Scott, D. E. Lacklison and J. L. Page, Phys. Rev. B:Solid State,10,971-986 (1974).
    [45]W. L. Yu, W. W. Li, J. D. Wu, J. Sun, J. J. Zhu, M. Zhu, Z. G. Hu and J. H. Chu, J. Phys. Chem. C,114,8593-8600 (2010).
    [46]J. Robertson, K. Xiong and S. J. Clark, Thin Solid Films,496,1-7 (2006).
    [47]J. X. Zhou, M. S. Zhang, J. M. Hong and Z. Yin, Solid State Commun.,138, 242-246 (2006).
    [48]Z. Z. Yuan, D. S. Li, M. H. Wang, P. L. Chen, D. R. Gong, P. H. Cheng and D. R. Yang, Appl. Phys. Lett.,92,121908 (2008).
    [49]R. K. Selvan, I. Perelshtein, N. Perkas and A. Gedanken, J. Phys. Chem. C,112, 1825-1830(2008).
    [1]J. H. He, T. H. Wu, C. L. Hsin, K. M. Li, L. J. Chen, Y. L. Chueh, L. J. Chou, and Z. L.Wang, Small 2,116(2007).
    [2]J. Q. Hu, Y. S. Bando, Q. L. Liu, and D. Golberg, Adv. Funct. Mater.13,493 (2003).
    [3]C. V. Komen, A. Thurber, K. M. Reddy, J. Hay, and A. Punnoose, J. Appl. Phys.103, 07D141 (2008).
    [4]C. B. Fitzgerald, M. Venkatesan, L. S. Dorneles, R. Gunning, P. Stamenov, J. M. D. Coey, P. A. Stampe, R. J. Kennedy, E. C. Moreira, and U. S. Sias, Phys. Rev. B 74, 115307(2006).
    [5]X. L. Wang, Z. X. Dai, and Z. Zeng, J. Phys.:Condens. Matter 20,045214 (2008).
    [6]M. Gaidi, A. Hajjaji, R. Smirani, B. Bessais, and M. A. El Khakani, J. Appl. Phys. 108,063537 (2010).
    [7]F. Trani, M. Causa,D. Ninno, G. Cantele, and V. Barone, Phys. Rev. B 77,245410 (2008).
    [8]A. Kar, M. A. Stroscio, M. Dutta, J. Kumari, and M. Meyyappan, Semicond. Sci. Technol.25,024012 (2010).
    [9]L. Zhang, S. H. Ge, Y. L. Zuo, B. M. Zhang, and L. Xi, J. Phys. Chem. C 114,7541 (2010).
    [10]W. L. Yu, K. Jiang, J. D. Wu, J. Gan, M. Zhu, Z. G. Hu, and J. H. Chu, Phys. Chem. Chem. Phys.13,6211 (2011).
    [11]W. C. Zhou, R. B. Liu, Q. Wan, Q. L. Zhang, A. L. Pan, L. Guo, and B. S. Zou, J. Phys. Chem. C 113,1719 (2009).
    [12]B. J. Jin, S. H. Bae, S. Y. Lee, and S. Im, Mater. Sci. Eng. B 71,301 (2000).
    [13]A. Thurber, K. M. Reddy, and A. Punnoose, J. Appl. Phys.105,07E706 (2009).
    [14]S. J. Rani, S. C. Roy, N. Karar, and M. C. Bhatnagar, Solid State Commun.141,214 (2007).
    [15]C. B. Fitzgerald, M. Venkatesan, A. P. Douvalis, S. Huber, J. M. D. Coey, and T. Bakas, J. Appl. Phys.95,7390 (2004).
    [16]L. B. Duan, G. H. Rao, J. Yu, Y. C. Wang, G. Y. Liu, and J. K. Liang, J. Appl. Phys. 101,063917(2007).
    [17]L. Yan, J. S. Pan, and C. K. Ong, Mater. Sci. Eng. B 128,34 (2006).
    [18]L. S. Wei, J. H. Li, and X. F. Tang, Catal. Lett.127,107 (2009).
    [19]C. Ko"rber, J. Suffner, and A. Klein, J. Phys. D:Appl. Phys.43,055301 (2010).
    [20]A. Kolmakov, S. Potluri, A. Barinov, T. O. Mentes, L. Gregoratti, M. A. Nin~o, A. Locatelli, and M. Kiskinova, ACS Nano 2,1993 (2008).
    [21]S. Bazargan, N. F. Heinig, D. Pradhan, and K. T. Leung, Cryst. Growth Des.11,247 (2011).
    [22]T. Yamashita and P. Hayes, Appl. Surf. Sci.254,2441 (2008).
    [23]A. P. Grosvenor, B. A. Kobe, M. C. Biesinger, and N. S. Mclntyre, Surf. Interface Anal.36,1564 (2004).
    [24]T. Hirata, K. Ishioka, M. Kitajima, and H. Doi, Phys. Rev. B 53,8442 (1996).
    [25]H. Zhang, Y. L. Liu, K. Zhu, G. G. Siu, Y. H. Xiong, and C. S. Xiong, J. Phys.: Condens. Matter 10,11121 (1998).
    [26]W. L. Yu, W. W. Li, J. D. Wu, J. Sun, J. J. Zhu, M. Zhu, Z. G. Hu, and J. H. Chu, J. Phys. Chem. C 114,8593 (2010).
    [27]S. Singh and M. S. Ramachandra Rao, Phys. Rev. B 80,045210 (2009).
    [28]A. I. Rykov, K. Nomura, J. Sakuma, C. Barrero, Y. Yoda, and T. Mitsui, Phys. Rev. B 77,014302 (2008).
    [29]A. Rolda'n, M. Boronat, A. Corma, and F. Illas, J. Phys. Chem. C 114,6511 (2010).
    [30]A. B. Djurisic, Y. Chan, and E. H. Li, Mater. Sci. Eng. R.38,237 (2002).
    [31]G. E. Jellison and F. A. Modine, Appl. Phys. Lett.69,371 (1996); 69,2137 (1996).
    [32]W. W. Li, J. J. Zhu, J. D. Wu, J. Gan, M. Zhu, Z. G. Hu, and J. H. Chu, Appl. Phys. Lett.97,121102 (2010).
    [33]C. Ke, Z. Yang, W. Zhu, J. S. Pan, and S. Karamat, J. Appl. Phys.107,013515 (2010).
    [34]P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, and J. L. Musfeldt, Appl. Phys. Lett.96,131907 (2010).
    [35]L. Y. Liang, Z. M. Liu, H. T. Cao, Y. Y. Shi, X. L. Sun, Z. Yu, A. H. Chen, H. Z. Zhang, and Y. Q. Fang, ACS Appl. Mater. Interfaces 2,1565 (2010).
    [36]H. T. Chen, X. L. Wu, S. J. Xiong, W. C. Zhang, and J. Zhu, Appl. Phys. A 97,365 (2009).
    [37]Z. Z. Yuan, D. S. Li, M. H. Wang, P. L. Chen, D. R. Gong, P. H. Cheng, and D. R. Yang, Appl. Phys. Lett.92,121908 (2008).
    [38]S. Das, S. Kar, and S. Chaudhuri, J. Appl. Phys.99,114303 (2006).
    [39]K.Nagaveni,M. S. Hegde, andG.Madras, J. Phys. Chem. B 108,20204 (2004).
    [40]J. X. Zhou, M. S. Zhang, J. M. Hong, and Z. Yin, Solid State Commun.138,242 (2006).
    [41]K. C. Mishra, K. H. Johnson, and P. C. Schmidt, Phys. Rev. B 51,13972 (1995).
    [42]Ph. Barbarat, S. F. Matar, and G. Le. Blevennec, J. Mater. Chem.7,2547 (1997).
    [43]F. Yubero, V. M. Jime'nez, and A. R. Gonza'lez-Elipe, Surf. Sci.400,116 (1998).
    [44]S. J. Hu, S. S. Yan, X. X. Yao, Y. X. Chen, G. L. Liu, and L. M. Mei, Phys. Rev. B 75,094412 (2007).
    [45]X. Mathew, J. P. Enriquez, C. Meji'a-Garci'a, G. Contreras-Puente, M. A. Cortes-Jacome, J. A. Toledo Antonio, J. Hays, and A. Punnoose, J. Appl. Phys.100, 073907 (2006).
    [1]R. Hassanien, S. A. F. Al-Said, L. Siller, R. Little, N. G.Wright, A. Houlton, and B. R. Horrocks, Nanotechnology,23,075601 (2012).
    [2]K. Suzuki, N. Tanaka, A. Ando, and H. Takagi, J. Am. Ceram. Soc.,94,2379 (2011).
    [3]K. Das, S. N. Sharma, M. Kumar, and S. K. De, J. Appl. Phys.,107,024316 (2010).
    [4]W. Y. Zhao, W. Y. Fu, H. B. Yang, C. J. Tian, M. H. Li, Y. X. Li, L. N. Zhang, Y. M. Sui, X. M. Zhou, H. Chen, and G. T. Zou, Cryst. Eng. Comm.,13,2871 (2011).
    [5]X. D. Xiao, L. Miao, G. Xu, L. M. Lu, Z. M. Su, N. Wang, and S. Tanemura, Appl. Surf. Sci.2011,257,10729 (2011).
    [6]M. Ivanda, D. Waasmaier, A. Endriss, J. Inhringer, A. Kirfel, and W. Kiefer, J. Raman Spectrosc.,28,487 (1997).
    [7]R. Mittal, S. L. Chaplot, S. K. Mishra,and P. P. Bose, Phys. Rev. B,75,174303 (2007).
    [8]Y. S. Lee, M. T. Winkler, S. C. Siah, R. Brandt, and T. Buonassisi, Appl. Phys. Lett., 98,192115(2011).
    [9]K.-P. Bohnen, R. Heid, L. Pintschovius, A. Soon, and C. Stampfl, Phys. Rev. B,80, 134304 (2009).
    [10]M. Tiano, M. Dapiaggi, and G. Artioli, J. Appl. Crystallogr.,36,1461 (2003).
    [11]M. J. Han, K. Jiang, J. Z. Zhang, Y. W. Li, Z. G. Hu, and J. H. Chu, Appl. Phys. Lett.,99,131104(2011).
    [12]Y. L. Liu, Y. C. Liu, R. Mu, H. Yang, C. L. Shao, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. W. Fan, Semicond. Sci. Technol.,20,44 (2005).
    [13]K. R. Balasubramaniam, V. M. Kao, J. Ravichandran, P. B. Rossen, W. Siemons, and J. W. Ager III, Thin Solid Films,520,3914 (2012).
    [14]F.M. Li, R.Waddingham,W. I.Milne, A. J. Flewitt, S. Speakman, J. Dutson, S. Wakeham, and M. Thwaites, Thin Solid Films,520,1278 (2011).
    [15]D. Powell, A. Compaan, J. R. Macdonald, R. A. Forman, Phys. Rev. B 1975,12,20.
    [16]H. Solache-Carranco, G. Juarez-Diaz, A. Esparza-Garcia, M. Briseno-Garcia, M. Galvan-Arellano, J. Martinez-Juarez, G. Romero-Paredes, and R. Pena-Sierra, J. Lumin., 129,1483 (2009).
    [17]N. A. Mohemmed Shanid, M. Abdul Khadar, and V. G. Sathe, J. Raman Spectrosc., 42,1769(2011).
    [18]A. Sanson, Solid State Commun.,151,1452 (2011).
    [19]P. Y. Yu, and Y. R. Shen, Phys. Rev. Lett.,32,373 (1974).
    [20]Y. Petroff, P. Y. Yu, and Y. R. Shen, Phys. Rev. B,12,2488 (1975).
    [21]A. Z. Genack, H. Z. Cummins, M. A. Washington, and A. Compaan, Phys. Rev. B, 12,2478 (1975).
    [22]M. JSrger, T. Fleck, C. Klingshirn, and R. von Baltz, Phys. Rev. B,71,235210 (2005).
    [23]M. Dapiaggi, W. Tiano, G. Artioli, A. Sanson, and P. Fornasini, Nucl. Instr. Meth. in Phys. Res. B,200,231 (2003).
    [24]S. Eisermann, A. Kronenberger, A. Laufer, J. Bieber, G. Haas, S. Lautenschlager, G. Homm, P. J. Klar, and B. K. Meyer, Phys. Status Solidi A,209,531 (2012).
    [25]H. Shimada, and T. Masumi, J. Phys. Soc. Jpn.,58,1717 (1989).
    [26]W. Y. Ching, Y.-N. Xu, and K. W. Wong, Phys. Rev. B,40,7684 (1989).
    [27]H. Amekura, N. Umeda, Y. Takeda, and N. Kishimoto, Appl. Phys. Lett.,89, 223120(2006).
    [28]A. Nath, and A. Khare, J. Appl. Phys.,110,043111 (2011).
    [29]S. Jana, and P. K. Biswas, Mat. Lett.,32,263 (1997).
    [30]A. Oliver, J. C. Cheang-Wong, J. Roiz, J. M. Hern'andez, L. Rodriguez-Fernandez, and A. Crespos, Nucl. Instr. Meth. in Phys. Res. B,175-177,495 (2001).
    [31]Y.-J. Kim, J. P. Hill, H. Yamaguchi, T. Gog, and D. Casa, Phys. Rev. B,81,195202 (2010).
    [32]F. Haidu, M. Fronk, O. D. Gordan, C. Scarlat, G. Salvan, and D. R. T. Zahn, Phys. Rev. B,84,195203(2011).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700