注入式混合型有源电力滤波器的难点问题研究及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着大功率电力电子装置等非线性、时变性负荷在电网中的大规模应用,电网谐波污染和无功缺额越来越严重,与此同时,用户对电能质量要求却越来越高。因而,电压质量和谐波的问题变得越来越突出。研制出输配电谐波治理和大容量无功补偿装备,对无功、谐波实施有效、灵活的控制和补偿,进而改善电压质量、降低谐波含量已势在必行。无源滤波器作为传统的谐波治理手段,由于存在只能滤除特定次谐波和可能与电网发生串并联谐振等缺点,将逐步被新型装置所取代。混合型有源滤波器由于有效综合了有源滤波器和无源滤波器的各自优点,已成为谐波治理和无功补偿一体化系统的主要研究和发展方向。
     本论文围绕一种谐振注入式混合型有源电力滤波器(ITHAPF)工程应用中的难点,着重讨论了其直流侧电压控制、电流跟踪控制、以及综合设计等方面的问题,并在理论研究的基础上提出了基于ITHAPF的谐波分析与治理一体化系统实现方案,最终实现了ITHAPF的工程应用。
     ITHAPF中基波谐振支路的存在,决定了其直流侧电压很难通过对逆变器的基波有功电流的控制来维持平衡。一般采用的方法是用不可控整流电路来维持直流侧电压。然而在装置的实际运行当中,当装置接入点电压为非理想电压时,逆变侧的能量倒灌常常会引起直流侧电压的抬高甚至飙升,进而影响到系统的补偿性能,危及系统的安全运行。本文分析了电网电压跌落和电网背景谐波电压导致ITHAPF直流侧电压抬升的原因,在此基础上,提出了采用多重化主电路形式、合理选择注入支路参数、增加直流侧能量泄放回路及直流侧采用PWM可控整流电路等方法来稳定直流侧电压。所提方法为整个装置的高效、稳定、安全运行提供了必要的前提条件。
     针对ITHAPF的电流控制问题,本文分析了ITHAPF的结构特点,并建立起了对其进行谐波电流控制的模型,在此基础上提出一种基于递推积分的模糊自整定PI控制方法。其中,应用递推积分实现了对周期量的稳态无差控制,提高了控制的精确性;应用模糊算法进行比例和积分系数的在线调整,在确保控制精度的同时大大改善了PI控制算法的动态性能。为了减小系统延时对装置的稳定性及控制精度的影响,本文采用一种带预测补偿的选择性谐波检测方法。文章还对逆变器PWM控制信号的产生方法和逆变器的死区效应的补偿方法进行了介绍。
     ITHAPF主电路参数对其滤波性能具有较大的影响。本文在理论分析和实践经验的基础上,提出了一套适合于大功率谐波抑制和无功补偿的ITHAPF的结构和参数设计方法:对于单调谐滤波器的设计,在根据治理对象的实际情况确定好调谐次数的基础上,主要从容量、成本和品质因素这三个方面进行考虑;对于注入支路的设计,除了要考虑单调谐滤波器设计的几个因素之外,还应重点考察有源逆变器输出谐波电流注入电网的能力以及基波谐振支路的分压;对于输出滤波器的设计,主要从开关毛刺滤除能力、有效谐波输出能力和谐波的动态跟踪能力三个方面进行考虑;耦合变压器的设计原则是在确定容量之后,应更好地匹配有源部分的电压和电流,以便使功率开关器件的容量得到充分的利用;在逆变器直流侧电容的设计中,其电压取值需在保证滤波器的电流跟踪能力和有效降低成本两者之间折中取值。另外,为了减小逆变器直流侧电容电压的波动,电容必须有一定的容量要求。在此设计方法的基础上,本文提出了基于ITHAPF的谐波分析与治理一体化系统的实现方案,还完成了整个一体化系统软、硬件的调试,并在实地进行了投运,取得了良好的应用效果。
Because of large-scale applications of nonlinear and time-varying loads such as high-power power electronic equipments, the harmonic pollution and the lack of reactive power in power grid are getting worse. At the same time, the customers have more and more strict requirement to electric power quality. The problem of voltage quality and harmonic becomes more and more serious. Developing equipment with big capacity for suppressing harmonic and compensating reactive power efficiently and then improving voltage quality and decreasing harmonic content is going necessarily. Passive filter (PF) is a traditional harmonic suppressing device. However, because it can only suppress some specific-order harmonic currents and has the possibility of series parallel resonance with power grid impedance, it will be gradually replaced by new device. The hybride active power filter (HAPF) has the advantages of active power filter (APF) and PF both, so it becomes the main research and development direction of harmonic suppressing and reactive power compensating integrated system.
     Focusing on some difficulties in the project application of injection type hybrid active power filter (ITHAPF), some factors of ITHAPF were emphatically discussed, such as DC voltage control, current tracking control, and comprehensive design. Base on theoretical research, the realization scheme of harmonic suppressing and reactive power compensating integrated system was presented, and the project application of ITHAPF was carried out.
     The existence of fundamental series resonance circuit (FSRC) in ITHAPF decides that its DC-voltage can hardly be sustained by controlling the active current of the converter. The common way is using uncontrollable rectifier. However, when Point of Common Coupling (PCC) voltage is not ideal, the energy from AC side will raise the DC-voltage up and then impact the performance and security of the system. This thesis analyzed the reasons of rising of the DC voltage. Based on this, four methods were proposed for solving the DC over-voltage problem including selecting different configurations of APF, optimizing the injection circuit , adding energy releasing circuit and adopting controllable PWM rectifier in DC side. The methods proposed provided precondition for high efficiency, stability and security of whole system.
     Aiming at the current control of ITHAPF, this thesis analyzed the configuration characteristic of ITHAPF and established its harmonics current control model. Based on this, a new current control algorithm was proposed. Thereinto, recursive integral proportional integral (RIPI) was adopted in this algorithm to eliminate steady error, and precision of controller was improved; fuzzy arithmetic was used to adjust the coefficients of RIPI online for improving the dynamic performance of PI control. A selective harmonic current detection method including time-delay phase angle compensation is proposed for decreasing the influence of system time delay on the stability and control procession of the system. Generation of PWM signal of inverter and compensation of dead-time effect were presented also in this thesis.
     The main circuit parameters of ITHAPF have a great affect on its performance. Based on theoretical analysis and practical experience, a set of design methods of configuration and parameters for high-power ITHAPF was proposed. In the design of single tuned passive filter, capacity, cost and quality factor should be considered chiefly after tuned frequency was determined according to harmonic current resources. In the design of injection ciruit, the ability of active part harmonic current injection and the voltage which FSRC undertakes should be considered mainly beside the factors proposed in passive filter design. For the design of output filters, suppression of switching harmonic, the abilities of harmonic current output and dynamic tracking should be considered first. The design principle of coupling transformer is that after its capacity was determined, current and voltage of active part should be matched better so as to the capacity of power switching device could be used fully. In the design of DC capacitance, its voltage should have a moderate value considering current tracking ability and cost of active filter. In addition, for diminishing the DC voltage fluctuation, DC capacitance should have adequate capacity. Based on the design principles mentioned above, the realization scheme of an integrated system based on ITHAPF for harmonic current analysis and suppression was proposed in this thesis. Debugging of the integrated system including software and hardware has been finished successfully. The system has been put into use in one substation and application result is very good.
引文
[1] 吴竞昌,孙树勤,宋文南,等.电力系统谐波.北京:水利电力出版社,1988
    [2] 赵旺初.对有关公用电网谐波允许值的几点体会.水利电力标准与量,1994年第 3 期.
    [3] 张一中,宁元中,宋永华,朱光永. 电力谐波.成都:成都科技大学出版社,1992
    [4] 夏道止,沈赞埙.高压直流输电系统的谐波分析及滤波.北京:水利电力出版社,1994
    [5] 林海雪,孙树勤.电力网中的谐波.北京:中国电力出版社,1998
    [6] 阿里拉加 J, 布莱德勒 D A,伯德格尔 P S.电力系统谐波.唐统一译. 徐州:中国矿业大学出版社,1991
    [7] 阿里拉加 J, 布莱德勒 D A,伯德格尔 P S.电力系统谐波.容健纲,张文亮译.武汉:华中理工大学出版社,1994
    [8] 苏文成,金子康.无功补偿与电力电子技术.北京:机械工业出版社,1989.
    [9] 《中国电力百科全书》编辑委员会. 中国电力百科全书(第二版)——电力系统卷. 北京:中国电力出版社,2000
    [10] 王兆安,杨君,刘进军.谐波抑制和无功功率补偿.北京:机械工业出版社,1998
    [11] 汤钰鹏,徐建军.高次谐波产生的原因、危害及其抑制措施.电气传动自动化,2000,22(1):3-6
    [12] 田葳,荐志清.有色加工企业谐波的产生与治理.东北电力技术,1999(7):48-51
    [13] 水利电力部.电力系统谐波管理暂行规定(SD126-84).北京:水利电力出版社,1984
    [14] 中国国家标准 GB/T14549-93:电能质量公用电网谐波.北京:中国标准出版社,1994
    [15] Bhim Singh, Kamal Al-Haddad, Ambrish Chandra.A review of active filters for power quality improvement.IEEE Trans.on I.E.,1999,46(5):1-12
    [16] Kataoka T, Fuse Y, Nakajima D,Nishikata S.A three-phase voltage-type PWM rectifier with the function of an active power filter.Power Electronics and Variable Speed Drives,2000
    [17] P.Humberto, Z.C.Albenes. A simple control strategy for shunt power line conditioner with inductive energy storage . Proc . IEEE IECON, 1993 :1093~1098
    [18] Ribeiro R L A, Profumo F, Jacobina C B, Griva G, Da Silva E R C, Lima A M N, Penneta G. Two fault tolerant control strategies for shunt active power filter systems. IECON 02 Volume 1, 5-8 Nov. 2002 Page(s):792 - 797 vol.1
    [19] Taotao Jin, Xiaofan Chen, Smedley K M. A new one-cycle controlled FACTS element with the function of STATCOM and active power filter. IECON 03 Volume 3, 2-6 Nov.2003 Page(s):2634 - 2638 Vol.3
    [20] 王玉凯译.用于交流电力系统谐波补偿的电流源有源滤波器的新颖控制.国外电气自动化,1992,3:8~13
    [21] 张代润,李开禄.电压逆变器式有源滤波器分析.电工技术,1998(2):4~10
    [22] M.Rastogi, N.Mohan, A.A.Edris.Hybrid-active filtering of harmonic currents in power systems.IEEE Trans.P.D.,1995,10(10):1994~2000
    [23] 胡铭.有源滤波技术及应用.电力系统自动化,1999(3)
    [24] 叶忠明.几种混合有源电力滤波器分析.电工电能新技术, 1998,17(2):23~28
    [25] P.T.Cheng, S.Bhattacharya, D.M.Divan. Hybrid solutions for improving passive filter performance in high power applications . Proc . IEEE APEC,1996:911~917
    [26] Jou H L, Wu J C, Wu K D. Parallel operation of passive power filter and hybrid power filter for harmonic suppression. IEE Proceedings Volume 148, Issue 1, Jan. 2001 Page(s):8 – 14
    [27] H.-L.Jou, J.-C.Wu, K.-D.Wu. Paralled operation of passive power filter and hybrid power filter for harmonic suppression. IEE Proc-Gener, Transom Distrib, Vol.148, No.1, 2001.1:8~14
    [28] Wei-Fu Su, Cin E. Lin, Ching-Lien Huang. Hybrid filter application for power quality improvement. Electric Power Systems Research:165~171
    [29] Kuang Li, Guochun Xiao, Jinjun Liu, Zhaoan Wang. Comparison of four control methods to active power filters applied in accelerator power supplies 2004 IEEE 35th Annual Volume 1, 20-25 June 2004 Page(s):794 - 799 Vol.1
    [30] 范瑞祥,罗安,章兢,等.谐振注入式有源滤波器的输出滤波器研究.中国电机工程学报,2006,26(5):95-100.
    [31] 唐欣,罗安,涂春鸣.新型注入式混合有源滤波器的研究.电工技术学报,2004,19 (11):50-55,60.
    [32] 王宾,潘贞存,徐文远.配电系统电压跌落幅值估算分析.中国电机工程学报,2005,25(13):29-34.
    [33] 唐卓尧,任震.并联型混合滤波器及其滤波特性分析.中国电机工程学报,2000,20 (5):25-29.
    [34] 范瑞祥,罗安,李欣然.并联混合型有源电力滤波器的系统参数设计及应用研究.中国电机工程学报,2006,26(2):106-111.
    [35] 杨进,杨向宇,余辉.基于逆变器多重化的串联混合型有源滤波器的仿真研究.电工技术学报,2004,19(10):23-26.
    [36] Akagi H,Tsukamoto Y,Nabae A.Analysis and design of an active power filter using quad-series voltage source PWM converter. IEEE Transactions on Industry Applications,1990,26 (1):93-98.
    [37] 徐万方, 罗安, 王丽娜, 涂春鸣. 采用智能控制器的混合型有源电力滤波系统[J]. 电力系统自动化, 2003, 27(10):49-52.
    [38] Mattavelli P, Marafao F P.Repetitive-based control for selective harmonic compensation in active power filters. IEEE Transactions on Industrial Electronics,2004,51(5):1018- 1024.
    [39] 王莉娜,姜勇,罗安. 有源滤波器参考电流无延时的生成方法. 电力电子技术, 2001, 35(4):42-44.
    [40] 王兆安,黄俊.电力电子变流技术(第四版).北京:机械工业出版社,2000
    [41] 谭甜源.配电网有源滤波技术的研究和工程应用:[硕士学位论文].长沙:中南大学,2004
    [42] 佟为明,陈向阳,瞿国富,等.特定消谐式谐波抑制技术中过渡过程的分析.电工技术学报,1998,13(3):18~22
    [43] 陈国呈.电压型 PWM 逆变器的波形失真及其补偿方法.冶金自动化,1990,14(3):11~14
    [44] JEONG S G,PARK M H.The analysis and compensation of dead-time effect in PWM invert.IEEE Trans on Industrial Electronics.1991,38(2):108~114
    [45] 刘明基,姚郁,王子才,等.逆变器死区时间对永磁同步电动机系统的影响.微特电机,2001,3:12~15
    [46] 刘陵顺,尚安利,顾文锦.SPWM 逆变器死区效应的研究.电机与控制学报,2001,5(4):237~241
    [47] EVANS P D.PWM 逆变器输出波形中的谐波畸变.国外电气自动化, 1988,(4):25~31
    [48] 程曙,徐国卿,许哲雄.SPWM 逆变器死区效应分析.电力系统及其自动化学报,2002,14(2):39~42
    [49] Alfred R.M,Homas A.L.On-line dead-time compensation technique noveldead time compensation.IEEE TRANS. Power Election,1999,14(4):683~689
    [50] 余功军,钟彦儒,杨耕.一种 IGBT 变频器死区时间的补偿策略.电力电子技术,1997,4:7~9
    [51] 张崇巍,张兴.PWM 整流器及其控制.北京:机械工业出版社,2003.10
    [52] 陈国呈.新型电力电子变流技术.北京:中国电力出版社,2004.9
    [53] 涂春鸣,罗安. 无源滤波器的多目标优化设计. 中国电机工程学报,2002,22(3):17-21.
    [54] 刘和平,王维俊,江渝,邓力.TMS320LF240X DSP C 语言开发应用.北京:北京航空航天大学,2003.1
    [55] 徐维广 , 邹江锋 .智能功率模块 IGBT-IPM 在逆变器中的应用 .电气应用,2005,24(4):74-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700