直流偏磁下变压器振动机理与振动信号分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变压器作为一种电网建设所必需的电气设备其运行的安全可靠性历来是人们关注的焦点。随着我国特高压电网的建设,电压等级的不断提高,变压器容量的不断加大,其内部的电磁力也日益增大,自1989年3月13日发生严重的地磁风暴在北美严重影响了电力系统的正常运行以来,地磁感应电流导致的直流偏磁问题一直是研究的热点。关于变压器的振动机理前人也开展了许多的相关研究,但是考虑直流偏磁下变压器振动机理的变化方面的研究开展甚少。因此本文就这一方面开展了研究。利用理论上数学公式的推导,电磁场-结构力场之间的耦合场建模,研制变压器振动监测系统,搭建实验平台开展相关实验,通过盲源分离技术对采集的变压器振动数据进行分离这几种研究手段和方法开展了具体的工作。
     论文的主要创新性工作包括以下几点:
     ①考虑直流偏磁的影响,结合现有的变压器振动的相关理论,推导出了变压器铁心和绕组所受电磁力方程和位移方程。并以此为基础讨论了变压器铁心和绕组随直流偏磁量变化的规律。建立了考虑磁致伸缩影响的电磁场和结构力场的耦合场模型,通过此模型考察了发生直流偏磁时变压器内部磁通密度、机械应力分布、张力分布以及位移场分布的变化规律。
     ②进一步考察电力谐波对变压器振动的影响,并为此建立了基于混沌电路的电弧炉模型,该模型能够很好的模拟电网中实际电弧炉内电弧电压和电弧电流的非线性特性,尤其是模拟了其中的混沌特性。以建立的仿真电弧炉模型作为谐波源,通过仿真考察了变压器铁心和绕组振动变化的规律,通过模拟真实环境得到的变压器振动数据更有说服力。
     ③研制了变压器振动在线监测系统,这套在线监测系统采用了LabView作为开发平台,实现了通道信号实时显示、实时频谱显示、通道选择、触发选择、触发设置、数据存储等功能,特别是采用了新的数据存储方式,通过创建数据库来管理复杂监测任务。还实现了信号捕捉功能,使得瞬变信号不会消失,并且当变压器振动超过阈值时会自动记录波形。该在线监测系统不仅能完成本文的测量任务,还能作为一般的数字存储示波器使用。本文还搭建了实验平台,在此实验平台上完成本文所要要开展的各项工作,包括不同直流偏置量与变压器振动行为之间关系的研究,相同直流偏磁下不同负载和三相不平衡对变压器振动的影响研究等实验项目,填补了本课题方向上的研究空白。
     ④提出了采用基于FastICA的盲源分离技术考察直流偏磁与变压器振动之间关系的的研究方法。并根据分离出的信号特征分辨出了铁心和绕组的振动信号,通过此方法分别考察了铁心和绕组振动随直流偏置电流变化的规律,相比目前本课题相关方向的研究都是以变压器器身振动信号作为研究对象来说,更能揭示变压器振动的本质。
The operation safety and reliability of transformer which is a kind of the necessaryelectrical equipment in grid construction have always drawn people’s attention. With thedevelopment of ultra-high-voltage (UHV) power grid, the inside electromagnetic forceof transformer is growing with the unceasing enhancement of voltage level and theincreasing capacity of transformer. DC bias caused by geomagnectically induced currenthas been a research hot spot constantly since March13,1989when a severegeomagnetic storm in North American affected the normal operation of power systemseriously. Scholars have carried out a lot of related researches about the transformervibration mechanism. But, few research concerns the change of transformer vibrationmechanism under the DC bias affect. Thus, in this paper, researches have been carriedout in this aspect. Theoretic mathematical formula derivation, electromagnetic-structurecoupling field modeling, several research means and methods like developing thetransformer vibration monitoring system, building experiment platform to carry out therelated experiments, separating the transformer vibration data acquired fromexperiments through blind source separation technology were adopted in this paper.
     The main innovation work of this paper includes the following points:
     ①Considering the DC bias affect and combined with the existing transformervibration related theory, the electromagnetic force equations and displacement equationsof transformer coil and core have been deduced in this paper. Based on this, change ruleof coil and core following the DC bias value are discussed. Considering the influence ofmagnetostriction electromagnetic-structure, coupling field modeling is built. Based onthe model, inside magnetic flux density of transformer, mechanical stress distribution,tension distribution and displacement distribution change rule under the DC biasinfluence are investigated.
     ②In order to further study the influence of the electric power harmonic totransformer vibration, an AC arc furnace model based on chaos circuit is set up. Themodel can well simulate the nonlinear characteristics of practical electric arc voltageand arc current in grid. Especially, it simulates the characteristics of chaos. Using thesimulated electric arc furnace model as harmonic source, winding and core vibrationchange rule under harmonic affect is investigated through simulation. The vibration dataobtained by simulating real environment is more convincing.
     ③The transformer vibration on-line monitoring system is developed in this paper.LabView is selected as the development platform. The functions like Channel signalreal-time display, real-time spectrum display, channel selection, choice of trigger, triggersettings, and data storage, etc. are achieved in the system. Especially, a new data storagetechnology is applied. Complex monitoring tasks is managed through creating adatabase. The on-line monitoring system can not only accomplish the measurement taskin this paper, but can also be used as a general digital storage oscilloscope. Experimentplatform is built in this paper, on which the work carried out in this paper is completed,including the relation study between the different DC bias value and transformervibration behavior, the affect of different load and three-phase imbalance to transformervibration under the same DC bias, etc.. This work fills the blank of the direction of thistopic research.
     ④The research method of blind source separation technology based on FastICAis proposed in this paper to investigate the relationship between DC bias andtransformer vibration. According to the characteristics of isolated signal, coil and corevibration signals are identified. Winding and core vibration change rule under DC biasis investigated respectively. Compared with researches in the related subjects using thetransformer body vibration signal as research object, it well reveals the essence oftransformer vibration.
引文
[1] Price, P.R., Geomagnetically induced current effects on transformer's[J]. Ieee Transactions onPower Delivery,2002.17(4): p.1002-1008.
    [2]刘连光,刘春明,张冰,王泽忠,肖湘宁,韩立章,中国广东电网的几次强磁暴影响事件[J].地球物理学报,2008.51(4): p.976-981.
    [3]张建平潘星,500kV变压器异常噪声与振动的原因分析[J].浙江电力,2006.3(6): p.6-10.
    [4]蒯狄正,刘成民,万达,直流偏磁对变压器影响的研究[J].江苏电机工程,2004.23(3): p.1-5.
    [5]刘林玉谢学武,500kV主变压器异常声音分析[J].高电压技术,2005.31(4).
    [6]曾南超,高压直流输电在我国电网发展中的作用[J].高电压技术,2004(11): p.11-12.
    [7]袁清云,特高压直流输电技术现状及在我国的应用前景[J].电网技术,2005(14): p.1-3.
    [8]曾连生,直流输电接地极电流对电力变压器的影响[J].高电压技术,2005(04): p.57-58+81.
    [9]蒯狄正,万达,邹云,直流输电地中电流对电网设备影响的分析与处理[J].电力系统自动化,2005(02): p.81-82.
    [10] Albertso.Vd, J.M. Thorson, R.E. Clayton, S.C. Tripathy, SOLAR-INDUCED-CURRENTS INPOWER-SYSTEMS-CAUSE AND EFFECTS[J]. Ieee Transactions on Power Apparatusand Systems,1973. PA92(2): p.471-477.
    [11] Albertson, V.D., B. Bozoki, W.E. Feero, J.G. Kappenman, E.V. Larsen, D.E. Nordell, J.Ponder, F.S. Prabhakara, K. Thompson, R. Walling, GEOMAGNETIC DISTURBANCEEFFECTS ON POWER-SYSTEMS-A REPORT PREPARED BY THE IEEE TRANSMISSION AND DISTRIBUTION COMMITTEE WORKING GROUP ON GEOMA GNETICDISTURBANCES AND POWER-SYSTEM EFFECTS[J]. Ieee Transactions on PowerDelivery,1993.8(3): p.1206-1216.
    [12]刘连光,刘宗歧,张建华,地磁感应电流对我国电网影响的初步分析[J].中国电力,2004(11): p.14-18.
    [13]薛向党,郭晖,郑云祥,吉崇庆,尤一鸣,在地磁感应电流作用时分析和计算电力变压器特性的一种新方法──时域和频域法[J].电工技术学报,2000(02): p.1-5.
    [14] Liu, C.-M., L.-G. Liu, R. Pirjola, Geomagnetically Induced Currents in the High-VoltagePower Grid in China[J]. Ieee Transactions on Power Delivery,2009.24(4): p.2368-2374.
    [15]董志刚,变压器的噪声(3)[J].变压器,1995(12): p.36-40.
    [16]余尤好陈宝志,大型电力变压器的噪声分析与控制[J].变压器,2007(06): p.23-26+44.
    [17]顾晓安,沈荣瀛,徐基泰,大型电力变压器振动和噪声控制方法研究[J].噪声与振动控制,2001(05): p.7-11.
    [18] Garcia, B., J.C. Burgos, A.M. Alonso, Transformer tank vibration modeling as a method ofdetecting winding deformations-Part I: Theoretical foundation[J]. Ieee Transactions onPower Delivery,2006.21(1): p.157-163.
    [19] Garcia, B., J.C. Burgos, A.M. Alonso, Transformer tank vibration modeling as a method ofdetecting winding deformations-Part II: Experimental verification[J]. Ieee Transactions onPower Delivery,2006.21(1): p.164-169.
    [20]李冰胡国清,降低变压器噪声的措施初探[J].变压器,2004.8: p.40-42.
    [21]王和忠,季小龙,朱如勇,范茂水,电力变压器噪声污染分析及对策[J].能源与环境,2008.2(2): p.88-90.
    [22] Borucki, S., Diagnosis of Technical Condition of Power Transformers Based on the Analysisof Vibroacoustic Signals Measured in Transient Operating Conditions[J]. Ieee Transactions onPower Delivery,2012.27(2): p.670-676.
    [23] Borucki, S., A. Cichon, T. Boczar, Application of Continuous Wavelet Transform to Analysisof the Vibration Signals Measurement with Modified Vibroacoustic Method[J]. PrzegladElektrotechniczny,2012.88(11B): p.199-202.
    [24] Kitagawa, W., Y. Ishihara, T. Todaka, A. Nakasaka, Analysis of Structural Deformation andVibration of a Transformer Core by Using Magnetic Property of Magnetostriction[J].Electrical Engineering in Japan,2010.172(1): p.19-26.
    [25] Kubiak, W. P. Witczak, Vibration analysis of small power transformer[J]. Compel-theInternational Journal for Computation and Mathematics in Electrical and ElectronicEngineering,2010.29(4): p.1116-1124.
    [26] Baguley, C.A., U.K. Madawala, B. Carsten, The Impact of Vibration Due to Magnetostrictionon the Core Losses of Ferrite Toroidals Under DC Bias[J]. Ieee Transactions on Magnetics,2011.47(8): p.2022-2028.
    [27]王志敏,顾文业,顾晓安,沈荣瀛,大型电力变压器铁心电磁振动数学模型[J].变压器,2004.41(6): p.1-6.
    [28] Li, Q., X. Wang, L. Zhang, J. Lou, L. Zou, Modelling methodology for transformer corevibrations based on the magnetostrictive properties[J]. IET Electric Power Applications,2012.6(9): p.604.
    [29] He, J.L., Z.Q. Yu, R. Zeng, B. Zhang, Vibration and Audible Noise Characteristics of ACTransformer Caused by HVDC System Under Monopole Operation[J]. Ieee Transactions onPower Delivery,2012.27(4): p.1835-1842.
    [30] Li, Q.M., T. Zhao, L. Zhang, J. Lou, Mechanical Fault Diagnostics of Onload Tap ChangerWithin Power Transformers Based on Hidden Markov Model[J]. Ieee Transactions on PowerDelivery,2012.27(2): p.596-601.
    [31] Shao, Y.Y., H. Guan, Z.J. Jin, Z.S. Rao, The Fault Detection of Transformer Windings'Deformation Based on Vibration Frequency Response Analysis[M].2012InternationalConference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, ed. H.Z.Huang, M.J. Zuo, and Y. Liu2012, New York: Ieee.713-718.
    [32] Ji, S.C., L.Y. Zhu, Y.M. Li, Study on transformer tank vibration characteristics in the field andits application[J]. Przeglad Elektrotechniczny,2011.87(2): p.205-211.
    [33]郭满生,梅桂华,刘东升,刘艳村,程志光,张喜乐,直流偏磁条件下电力变压器铁心B-H曲线及非对称励磁电流[J].电工技术学报,2009(05).
    [34]李晓萍,文习山,樊亚东,张宇,蓝磊,陈慈萱,直流入侵三相三柱变压器励磁电流及谐波计算[J].高电压技术,2006(05).
    [35]李晓萍,文习山,蓝磊,张宇,樊亚东,刘宗喜,郭磊,单相变压器直流偏磁试验与仿真[J].中国电机工程学报,2007(09).
    [36]李泓志,崔翔,卢铁兵,程志光,刘东升,焦翠坪,变压器直流偏磁的电路-磁路模型[J].中国电机工程学报,2009(27).
    [37]李慧奇,崔翔,候永亮,李琳,卢铁兵,直流偏磁下变压器励磁电流的实验研究及计算[J].华北电力大学学报,2007(04).
    [38]赵小军,李琳,程志光,鲁君伟,焦翠坪,应用谐波平衡有限元法的变压器直流偏磁现象分析[J].中国电机工程学报,2010(21).
    [39]赵小军,李琳,程志光,鲁君伟,卢铁兵,刘兰荣,范亚娜,基于直流偏磁实验的叠片铁心磁化特性分析[J].电工技术学报,2011(01).
    [40]曹林,何金良,张波,直流偏磁状态下电力变压器铁心动态磁滞损耗模型及验证[J].中国电机工程学报,2008(24).
    [41]陈青恒,马宏彬,何金良,直流偏磁引起的500kV电力变压器振动和噪声的现场测量与分析[J].高压电器,2009(03).
    [42] Yao, Y.Y., C.S. Koh, G.Z. Ni, D.X. Xie,3-D nonlinear transient eddy current calculation ofonline power transformer under DC bias[J]. Ieee Transactions on Magnetics,2005.41(5): p.1840-1843.
    [43]赵志刚,刘福贵,张俊杰,刘兰荣,范亚娜,程志光,颜威利,直流偏磁条件下变压器励磁电流的实验与分析[J].电工技术学报,2010(04).
    [44]赵志刚,刘福贵,程志光,颜威利,刘兰荣,张俊杰,范亚娜, HVDC中直流偏磁电力变压器叠片铁心损耗及磁通分布[J].高电压技术,2010(09).
    [45] Adly, A. I. Mayergoyz, Experimental testing of the average Preisach model of hysteresis[J].Magnetics, IEEE Transactions on,1992.28(5): p.2268-2270.
    [46] Restorff, J., H. Savage, A. Clark, M. Wun‐Fogle, Preisach modeling of hysteresis inTerfenol[J]. Journal of Applied Physics,1990.67(9): p.5016-5018.
    [47] Smith, R., Hysteresis modeling in magnetostrictive materials via Preisach operators,1997,DTIC Document.
    [48] Natale, C., F. Velardi, C. Visone. Modelling and compensation of hysteresis formagnetostrictive actuators. in Advanced Intelligent Mechatronics,2001. Proceedings.2001IEEE/ASME International Conference on.2001. IEEE.
    [49] Brokate, M., Some mathematical properties of the Preisach model for hysteresis[J]. Magnetics,IEEE Transactions on,1989.25(4): p.2922-2924.
    [50] Preisach, F., über die magnetische Nachwirkung[J]. Zeitschrift für physik,1935.94(5-6): p.277-302.
    [51] Mayergoyz, I.D., Mathematical models of hysteresis and their applications[M]2003:Academic Press.
    [52] Smith, R.C. Modeling techniques for magnetostrictive actuators. in Smart Structures andMaterials'97.1997. International Society for Optics and Photonics.
    [53] Calkins, F.T., R.C. Smith, A.B. Flatau, Energy-based hysteresis model for magnetostrictivetransducers[J]. Magnetics, IEEE Transactions on,2000.36(2): p.429-439.
    [54] Dapino, M.J., R.C. Smith, A.B. Flatau, Structural magnetic strain model for magnetostrictivetransducers[J]. Magnetics, IEEE Transactions on,2000.36(3): p.545-556.
    [55]曹淑瑛,王博文,闫荣格,黄文美,翁玲,超磁致伸缩致动器的磁滞非线性动态模型[J].中国电机工程学报,2003.23(11): p.145-149.
    [56] Huang, W., B. Wang, S. Cao, Y. Sun, L. Weng, H. Chen, Dynamic strain model with eddycurrent effects for giant magnetostrictive transducer[J]. Magnetics, IEEE Transactions on,2007.43(4): p.1381-1384.
    [57] Jiles, D.C., J. Thoelke, M. Devine, Numerical determination of hysteresis parameters for themodeling of magnetic properties using the theory of ferromagnetic hysteresis[J]. Magnetics,IEEE Transactions on,1992.28(1): p.27-35.
    [58] Sablik, M., A model for asymmetry in magnetic property behavior under tensile andcompressive stress in steel[J]. Magnetics, IEEE Transactions on,1997.33(5): p.3958-3960.
    [59] Smith, R.C., M.J. Dapino, S. Seelecke, Free energy model for hysteresis in magnetostrictivetransducers[J]. Journal of Applied Physics,2003.93(1): p.458-466.
    [60] Nealis, J.M. R.C. Smith, Robust control of a magnetostrictive actuator[J]. Smart Structuresand Materials2003,2003.5049: p.221-232.
    [61]田春汪鸿振,超磁致伸缩执行器的自由能磁滞模型的优化算法研究[J].中国机械工程,2005.16(1): p.24-27.
    [62] Makaveev, D., L. Dupré, M. De Wulf, J. Melkebeek, Modeling of quasistatic magnetichysteresis with feed-forward neural networks[J]. Journal of Applied Physics,2001.89(11): p.6737-6739.
    [63] Makaveev, D., L. Dupré, J. Melkebeek, Neural-network-based approach to dynamic hysteresisfor circular and elliptical magnetization in electrical steel sheet[J]. Magnetics, IEEETransactions on,2002.38(5): p.3189-3191.
    [64] Ver, I.L., D.W. Andersen, M.M. Myles, A.M. Teplitzky, Field study of sound radiation bypower transformers[J]. Power Apparatus and Systems, IEEE Transactions on,1981(7): p.3513-3524.
    [65]王贺萍,史志鸿,赵虹,田二胜,陈本周,秦三营,110kV矿热炉供电系统高低压无功补偿分析[J].电力系统保护与控制ISTIC EI,2011.39(15).
    [66]王玲,康健,邹宏亮,崔大伟,李晨光,实时电能质量监测系统的构建及应用[J].电力系统保护与控制,2011.39(002): p.108-111.
    [67]王明渝,周延静,赵俊晖,邓威,网络化的电能质量综合监测系统的研究[J].电力系统保护与控制,2010(001): p.87-91.
    [68] Alonso, M.A.P. M.P. Donsion, An improved time domain arc furnace model for harmonicanalysis[J]. Power Delivery, IEEE Transactions on,2004.19(1): p.367-373.
    [69] Acha, E., A. Semlyen, N. Rajakovic, A harmonic domain computational package for nonlinearproblems and its application to electric arcs[J]. Power Delivery, IEEE Transactions on,1990.5(3): p.1390-1397.
    [70]吕晓东刘小河,电弧炉电极调节器对电网电压波动影响的仿真研究[J].中国电机工程学报,2006.26(7).
    [71] King, P.E., T.L. Ochs, A.D. Hartman, Chaotic responses in electric arc furnaces[J]. Journal ofapplied physics,1994.76(4): p.2059-2065.
    [72] O'Neill-Carrillo, E., G. Heydt, E. Kostelich, S. Venkata, A. Sundaram, Nonlinear deterministicmodeling of highly varying loads[J]. Power Delivery, IEEE Transactions on,1999.14(2): p.537-542.
    [73]宁元中,梁颖,吴昊,电弧炉的混合仿真模型[J].四川大学学报(工程科学版),2005.37(1): p.85.
    [74]卢元元薛丽萍,蔡氏电路实验研究[J].电气电子教学学报,2003.25(3): p.67-69.
    [75]王育飞,潘艳霞,姜建国,基于MATLAB的交流电弧炉随机模型与仿真[J]. HighVoltage Engineering,2008.34(5).
    [76]顾建军,李凯,郑永征,交流电弧炉系统建模与仿真研究[J].冶金动力,2010(002): p.1-3.
    [77] Xiong, W. G. Zhao, Analysis of transformer core vibration characteristics using hilbert-huangtransformation[J]. Diangong Jishu Xuebao(Transactions of China Electrotechnical Society),2006.21(8): p.9-13.
    [78] Li, Q., X. Wang, L. Zhang, J. Lou, L. Zou, Modelling methodology for transformer corevibrations based on the magnetostrictive properties[J]. IET electric power applications,2012.6(9): p.604-610.
    [79] Hyvarinen, A., J. Karhunen, E. Oja,独立成分分析,2007,北京:电子工业出版社.
    [80] Haykin, S., Unsupervised adaptive filtering vol2: blind covolution[J].2000.
    [81]史习智,盲信号处理:理论与实践[M]2008:上海交通大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700