二氧化钛/分子筛复合催化剂的合成及其光催化臭氧耦合降解乙醛性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生活水平的提高,人们对室内空气的质量要求也越来越高,空气净化的研究也逐渐成为人们所关注的热点。空气净化的方式有许多种,各有优缺点,例如:利用光催化降解有害气体,其优点是能耗低、操作简单、无二次污染;缺点是效率低、反应速度慢,且光催化剂易失活;臭氧氧化技术虽然氧化能力强,但臭氧本身也是污染物,会带来二次污染,且臭氧的氧化没有选择性,无法针对目标污染物进行选择性氧化,另外现有的臭氧氧化工艺比较复杂,初期投资及运行费用很高,操作工艺比较复杂。
     近期利用光催化臭氧协同作用降解有机污染物也取得了一定进展,但主要是局限在反应物浓度、臭氧浓度、空气温湿度及紫外灯强度对降解的影响,而对于催化剂的负载量、晶型、载体材料类型、载体的孔结构及孔径分布以及载体的过渡金属离子改性对光催化臭氧降解的影响以及机理研究甚少,而这些研究对于提高光催化臭氧耦合降解污染物的效率是非常具有实验指导意义。空气中污染物浓度低,流速快,污染物不易在催化剂表面被氧化。因此,提高催化剂对空气中有机污染物的吸附和富集可以促进反应快速进行。分子筛是良好的吸附材料,尤其适合对有机小分子污染物的吸附。因此本文主要研究二氧化钛负载量、晶型、分子筛材料类型、孔径分布、孔径尺寸以及利用过渡金属对分子筛改性后对光催化臭氧降解污染物的影响及机理。其结论分述如下:
     1.对负载二氧化钛的煤制活性炭与竹制活性炭的性能研究中发现,载体导电性会影响催化剂光催化性能,导电性能好的载体负载二氧化钛后的活性反而较差;另外载体的规整有序孔结构和孔径分布直接影响到臭氧氧化乙醛的效率;在光催化臭氧耦合体系中,臭氧在降解乙醛所起的作用较光催化更为明显,竹制活性炭为载体的催化剂对臭氧的利用率高,因此其光催化臭氧耦合对乙醛的降解效率更高。
     2.在TiO2/MCM-41复合催化剂中,负载的二氧化钛晶体颗粒的分布量和形态直接影响到催化剂的活性,在保证载体有较高比表面积的前提下,具有适量、分布均匀且晶相合适的二氧化钛晶体颗粒是提高光催化活性的关键;在MCM-41上负载的TiO2可以改善其表面憎水性,增强对乙醛分子的吸附性能,增大了臭氧与乙醛分子的接触时间和机率,提高了臭氧的利用率。
     3.臭氧浓度以及反应物与催化剂的接触时间将影响降解效率,臭氧浓度有利于降解效率的提高,气固两相的接触时间也会影响单位时间的降解量,如何在传质速率和表面反应速率之间找到平衡点,是提高单位时间降解量的关键。
     4.通过对三种不同载体对比发现,择形吸附与催化剂载体的孔径尺寸、反应物分子半径及形状有关;择形吸附能大大提高载体对目标反应物的选择性吸附量,从而提高反应物在催化剂上的浓度,使得催化(光催化、臭氧氧化,或者两者的耦合催化)反应速率大大提高。通过对载体的紫外线的吸收性能与催化剂活性关系的研究结果表明,竹制活性炭对紫外线强烈吸收使得TiO2/BC在光催化以及光催化臭氧耦合下活性均不高,MCM-41和H-ZSM-5对紫外线的不吸收使得TiO2/MCM-41和TiO2/H-ZSM-5在光催化以及光催化臭氧耦合下的活性较高。
     5.通过离子交换法得到了M-ZSM-5(M=Zn、Cu、Mn),并以此为载体合成了TiO2/M-ZSM-5系列催化剂。降解乙醛实验结果标明:在单一紫外灯照射下,M-ZSM-5均表现出一定的光催化活性,其活性顺序为: Cu-ZSM-5 >Zn-ZSM-5>Mn-ZSM-5。但在负载二氧化钛后,其光催化活性没有明显提高,TiO2/Zn-ZSM-5和TiO2/Cu-ZSM-5还出现下降。在单一臭氧条件下,M-ZSM-5和TiO2/M-ZSM-5均对乙醛有一定降解率,尤其以Mn-ZSM-5的活性最高,负载二氧化钛的M-ZSM-5的活性均比相应的M-ZSM-5低。在光催化臭氧耦合降解乙醛过程中,M-ZSM-5和TiO2/M-ZSM-5对乙醛的降解效率均比单一光催化或单一臭氧下高,其光催化臭氧耦合下的活性顺序为:TiO2/Mn-ZSM-5 >Mn-ZSM-5 >Cu-ZSM-5>TiO2/Cu-ZSM-5>Zn-ZSM-5>TiO2/Zn-ZSM-5。
     6.在M-ZSM-5中(M=Zn、Cu、Mn),乙醛分子易于Zn、Cu、Mn离子结合形成了相对的稳定态,难以迁移到二氧化钛表面发生光催化降解,因此M-ZSM-5在负载二氧化钛后的光催化活性没有得到明显改善,甚至还有降低。Mn-ZSM-5在臭氧存在下对乙醛的降解率相比Zn-ZSM-5和Cu-ZSM-5要高,这是由于Mn离子易促使臭氧分解产生活性氧原子,因此对臭氧的利用率最高,但M-ZSM-5在负载二氧化钛后,降解率均略有下降,这可能是如下两个原因:一是比表面积下降,二是负载的二氧化钛覆盖部分过渡金属离子,使反应活性位减少。在光催化臭氧耦合条件下,乙醛降解率提高的原因一方面是由于紫外灯和臭氧在催化剂上直接氧化乙醛,另一方面产生的光生电子通过与臭氧分子反应产生大量的活性氧原子增强了对乙醛的降解作用。
Nowadays, indoor air quality is paid more and more attention with improvement of our living standard. Indoor air purification also gradually becomes hot issue. However, there are so many kinds of air purification methods, which have advantages and disadvantages. Photocatalytic is a new technology for degradation of pollution gas. Its advantages are low energy consumption, simple operation, no secondary pollution; disadvantages are low efficiency, low reaction rate, easily lost activity of catalyst. Ozone oxidation is another technology for removal of air pollution. However, ozone can bring about secondary pollution though it has strong oxidation ability, and ozonation is not selective, can not target selective oxidation of pollutants. At the same time, the operational processes of ozone oxidation for removal of pollution are complicated, and need high initial investment and operating costs. Recently the photo-degradation of organic pollutants with the assist of ozone has also made some progress, but mostly confined to the effect of the reactant concentration, ozone concentration, air temperature and humidity and UV light intensity on the degradation. Howvever, the researchs about the effect of the catalyst loading, catalyst crystal, support material, pore structure, pore size distribution of support and the support modified by transition metal ions on the degradation were few, as well as the mechanism of degradation. But these researchs were very important for improving the degradation efficiency. Low concentration of pollutants in the air flow rate quickly, and pollutants are not easily oxidized on the catalyst surface. Therefore, the increasing of adsorption and condensation of pollutants on catalysts could promote the degradation rate. Molecular sieves were good adsorption materials, especially suitable for the adsorption of small organic molecules. Therefore, this dissertation mainly focus on the effect of titanium dioxide load, titanium dioxide crystal, molecular sieve material type, pore size distribution, pore size and molecular sieve modified by transition metal ions on photocatalytic degradation of pollutants with the assist of ozone, as well as the degradation mechanism. The contents and conclusions are as follows: In comparison with the performance of activated carbon activated bamboo carbon with titianium dioxide loading, the following facts were found. First, the conductive property of support had effect on the photocatalysis of it. The better electrical conductivity of support is, the worse the photocatalytic activity of catalyst is. Second, the orderly pore structure and narrow distribution of pore was favorable to the increasing of ozone usage. Last, Ozone plays a more important role than photocatalysis under the condition of Uv-ozone. As to activated carbon and activated bamboo carbon, the acetaldehyde degradation on the latter is higher because of its ozone usage.
     In the investigation of photo-degradation acetaldehyde on TiO2/MCM-41 composite catalysts assisted by ozone, it was found that distribution and crystal phase of TiO2 loading affected photocatalysis activity of catalysts. High photocatalysis activity of catalyst should be the result of high specific surface area, large amount of TiO2 loading and suitable phase of TiO2 loading. It also was found that TiO2 loading could enhance hydrophobic property of MCM-41, which was favorable to the adsorption of acetaldehyde on catalysts. The adsorption increment of acetaldehyde on catalyst could increase the contact time and probability between ozone with acetaldehyde molecular, which lead to the increasing of ozone usage.
     The degradation efficiency of acetaldehyde was also influenced by the concentration of ozone and the contact time between reactants with catalysts. The gas-solid contact time also affected the rate of degradation capacity. Then, the key to increasing the rate of degradation capacity is how to find out balance between the rates of mass transfer with the rate of surface reaction. Selective adsorption was relative to pore size of molecular sieve and the radius and shape of reactant molecular through the comparison of three molecular sieves. The selective adsorption can enhance remarkably adsorption amount of target reactant on support, leading to the increasing of reactant concentration on catalyst, which can increase the degradation rate of acetaldehyde under UV lamp, ozone or UV-ozone. The absorbance of support to ultra-violet can also affect the photocatalytic activity of catalysts. The activity of TiO2/BC was low under the condition of UV lamp or UV-ozone because of the strong adsorption of activated bamboo carbon to ultra-violet, on the contrary, the activity of TiO2/MCM-41 and TiO2/H-ZSM-5 was higher because of the weak adsorption of MCM-41 or H-ZSM-5 to ultra-violet M-ZSM-5 (M=Zn、Cu、Mn)were prepared by ion-exchange method. TiO2/M-ZSM-5 serials of catalysts were synthesized by impregnation method. The conclusions could be drawn in the investigation of the degradation of acetaldehyde on M-ZSM-5 or TiO2/M-ZSM-5 as follows: M-ZSM-5 have shown a certain degree of photocatalytic activity under the condition of UV lamp. The activity of the order: Cu-ZSM-5>Zn-ZSM-5>Mn-ZSM-5. But the photocatalytic activity of TiO2/M-ZSM-5 has not greatly improved, and some actually declined. All M-ZSM-5 and TiO2/M-ZSM-5 catalysts have activity to degrade a certain amount of acetaldehyde under the condition of ozone, especially Mn-ZSM-5 own the highest activity. But the degradation efficiency decreased slightly on TiO2/M-ZSM-5 catalysts. All the sample of acetaldehyde degradation efficiency was higher under the condition UV-ozone than those under UV or ozone. The activity of the order under the condition of Uv-ozone: TiO2/Mn-ZSM-5>Mn-ZSM-5>Cu-ZSM-5 >TiO2/Cu-ZSM-5>Zn-ZSM-5>TiO2/Zn-ZSM-5. Acetaldehyde molecules interact easily with Zn, Cu, Mn ion to form a stable state in M-ZSM-5 (M= Zn, Cu, Mn), making it difficult to transfer to the surface of titanium dioxide to be photodegraded. Therefore the photocatalytic activities of M-ZSM-5 with titianium dioxide loading are not improved compare to M-ZSM-5, TiO2/Zn-ZSM-5 and TiO2/Cu-ZSM-5 also declined. Mn-ZSM-5 own the highest activity than the other catalysts under the condition of ozone because Mn ions can catalyze ozone to produce maximum amount of reactive oxygen atoms among the three transition metal ion, which make it has the maximum utilization of ozone. However, the acetaldehyde degradation declined after loading titianium dioxide due to the decreasing of specific surface area, and then also may be due to titanium dioxide loading, which would cover the part of the transition metal ions leading to the decline of reaction active sites. The increasing of acetaldehyde conversion under the condition Uv-ozone may be contributed by following factors. First, The UV light or ozone can degrade the acetaldehyde on catalysts directly. Second, the reaction between photo-generated electron and ozone can produce large amount reactive oxygen atoms to decompose acetaldehyde. Therefore, the photodegradation efficiency of acetaldehyde increased greatly with the assistance of ozone, although the photocatalytic activity of M-ZSM-5 or TiO2/M-ZSM-5 is low.
引文
1.梁宝生.田仁生,总挥发性有机物(TVOC)室内空气质量评价标准的制订.重庆环境科学, 2003. 25(5): p. 1-3.
    2.王俊.张景义.陈双基,室内空气中总挥发性有机物(TVOC)的污染.环境科学与技术, 2004. 27(1): p. 34-35.
    3.李辰.梁冰.师彦平.李菊白.欧庆瑜.,室内空气中挥发性有机化合物污染及检测方法.分析测试技术与仪器, 2005. 11(1): p. 40-44.
    4.李俊华.陈建军.郝吉明.,控制大气污染化工技术的研究进展.化工进展, 2005. 24(7): p. 703-709.
    5.冯春杨.赵君科.,电晕法处理挥发性有机化合物技术研究现状.四川环境, 2003. 22(2): p. 2-5.
    6.王桂芳.徐东群.唐志刚.韩克勤.张爱军.董小艳.,空气净化产品对挥发性有机污染物净化效果评价方法的研究.环境与健康杂志, 2005. 22(2): p. 135-138.
    7. Ekberg, L.E., Volatile organic compounds in office buildings.Atmospheric Environment 1994. 28(22): p. 3571-3575.
    8. Daisey, J.M., Hodgson, A.T., Fisk, W.J., Mendell, M.J., Ten Brinke, J., Volatile organic compounds in twelve California office buildings: Classes, concentrations and sources. Atmospheric Environment 1994. 28(22): p. 3557-3562.
    9. Kongtip, P., Thongsuk, W., Yoosook, W., Chantanakul, S. , Health effects of metropolitan traffic-related air pollutants on street vendors Atmospheric Environment, 2006. 40(37): p. 7138-7145.
    10. Celebi, U.B., Vardar, N. , Investigation of VOC emissions from indoor and outdoor painting processes in shipyards Atmospheric Environment, 2008. 42(22): p. 5685-5695
    11. Jones, A.P., Indoor air quality and health Atmospheric Environment, 1999. 33(28): p. 4535-4564.
    12.付琳琳.邵敏.刘源.刘莹.陆思华.汤大钢.,机动车VOCs排放特征和排放因子的隧道测试研究.环境科学学报, 2005. 07(7): p. 879-885.
    13. US.EPA, Sick building syndrome(SBS).Indoor Air Facts No.4(revised). W.D. US Environmental Protection Agency, Editor. 1991.
    14. Spengler.J.D. Indoor air quality issues in buildings. Proceedings of the Tenth Annual AIOH Conference. 1991. Bendigo.
    15. US.EPA., Unfinished business: a comparative assessment of environmental problems. 1987, Envrionmental Protection Agency: Washington. DC.
    16. Seitz.T.A. NIOSH indoor air quality investigations:1971 through 1988.The practitioner's approach to indoor ari quality investigations. in Proceedings of the Indoor Air Quality International Symposium. 1993. Farifax. VA. USA.: American Industrial Hygiene Association.
    17. WHO, Indoor air quality: organic pollutants. 1989, World Health Organization: Copenhagen.
    18.马仁民,国外非工业建筑室内空气品质研究动态.暖通空调, 1999. 29(2): p. 38-41.
    19. Kolokotroni, M., Aronis, A., Summer cooling with night ventilation for office build ings inmoderate climates. Engergy and Buildings, 1998. 27(3): p. 231-237.
    20.王昭俊.易伶俐.高甫生.,哈尔滨地区办公建筑夜间机械通风能耗及室内热环境分析.暖通空调, 2009. 39(1): p. 43-48.
    21.王玲.王丽洁.马士宾.,建筑设计中对自然通风的探讨.工业建筑, 2009. 39(9): p. 55-57.
    22.黄美荣.周海骏.李新贵.张炜.,高性能气体分离聚苯胺膜.现代化工, 2003. 23(1): p. 16-19.
    23.杜宏伟.孔瑛.商洪涛., PI/TiO2纳米复合膜的气体分离性能.高分子材料科学与工程, 2004. 20(4): p. 111-114.
    24. Shanbhag, P.V., Guha, A.K., Sirkar, K.K., Membrane-based integrated absorption - Oxidation reactor for destroying VOCs in air. 30, 1996. 12(3435-3440).
    25. Petropoulos, J.H., Plasticization effects on the gas permeability and permselectivity of polymer membranes. Journal of Membrane Science., 1992. 75(1-2): p. 47-59.
    26. Inui, K., Okumura, H., Miyata, T., Uragami, T., Permeation and separation of benzene/cyclohexane mixtures through cross-linked poly(alkyl methacrylate) membranes. Journal of Membrane Science, 1997. 132(2): p. 193-202.
    27. Uragami, T., Yamada, H., Miyata, T., Removal of dilute volatile organic compounds in water through graft copolymer membranes consisting of poly(alkylmethacrylate) and poly(dimethylsiloxane) by pervaporation and their membrane morphology. . Journal of Membrane Science, 2001. 187(1-2): p. 255-269.
    28. Gales, L., Mendes, A., Costa, C., Removal of acetone, ethyl acetate and ethanol vapors from air using a hollow fiber PDMS membrane module. Journal of Membrane Science., 2002. 197(1-2): p. 211-222.
    29. Stenzel, M.H., Sen, Gupta, U., Treatment of contaminated groundwaters with granular activated carbon and air stripping. Journal of the Air Pollution Control Association., 1985. 35(12): p. 1304-1309.
    30. Bansode, R.R., Losso, J.N., Marshall, W.E., Rao, R.M., Portier, R.J. , Adsorption ofvolatile organic compounds by pecan shell- and almond shell-based granular activated carbons. Bioresource Technology., 2003. 90(2): p. 175-184.
    31. Gales.L, M.A., Costa.C., Recovery of acetone, ethyl acetate and ethanol by thermal pressure swing adsorption. . Chemical Engineering Science., 2003. 58(23-24): p. 5279-5289.
    32. Toles, C.A., Marshall, W.E., Johns, M.M., Granular activated carbons from nutshells for the uptake of metals and organic compounds. Carbon, 1997. 35(9): p. 1407-1414.
    33.戴飞.汤广发.李念平.涂卫中.莫仕虎.严志宇.,颗粒活性炭过滤器的室内空气净化效果.过滤与分离, 1999. 3: p. 22-24.
    34.黄正宏.康飞宇.梁开明.,氧化处理ACF对VOCs的吸附及其等温线的拟合.清华大学学报., 2002. 10: p. 1289-1292.
    35.李守信.金平.张文智.,采用活性炭纤维吸附装置回收VOCs的优点分析.化工环保., 2004. 24: p. 274-276.
    36.袁学远.陶冶.刘培英.,直流电晕放电降解甲苯的特性研究.环境污染治理技术与设备, 2006. 7(8): p. 120-123.
    37. Tetsuji, O., Tadashi, T., Kei, Y. , Nonthermal plasma processing for dilute VOCs decomposition IEEE Transactions on Industry Applications, 2002. 38(3): p. 873-878.
    38.宁晓宇.陈红.耿静.李昌建.,低温等离子体-催化协同空气净化技术研究进展.科技导报, 2009. 27(6): p. 97-101.
    39. Atsushi, O., Noboru S, Kazushi Y, Koichi M, Satoshi K, Toshiaki Y., Effect of Water Vapor on Benzene Decomposition Using a Nonthermal-Discharge Plasma Reactor. Plasma Chemistry and Plasma Processing, 2000. 20(4): p. 453-467.
    40.肖羽堂.马程.,光催化净化空气研究进展.现代化工, 2007. 27(6): p. 15-18.
    41. Einaga, H., Futamura, S., Catalytic oxidation of benzene with ozone over Mn ion-exchanged zeolites. Catalysis Communications 2007. 8(3): p. 557-560.
    42. Paul, C., Lao P Y, David F Ollis., Formaldehyde Removal from Air via Rotating Adsorbent Combined with a Photo- catalyst Reactor:Kinetic Modeling. Journal of Catalysis, 2006. 237(1): p. 29-37.
    43.姚爱萍.肖娟.强锐.,紫外线协同空气净化机进行手术室空气消毒效果的观察.陕西医学杂志, 2003. 32(2): p. 160.
    44.卢蕴瑜.杨丽华.,紫外线灯与医用空气消毒净化机对NICU空气消毒效果的比较.广东医学, 2006. 27(11): p. 1770-1771.
    45.王琨.吕春梅.李宏伟.陈战利.,通风、过氧乙酸和臭氧氧化降低室内空气微生物.环境工程, 2004. 22(5): p. 85-88.
    46. Matsuoka, M., Ju, W.-S., Chen, H.-J., Sakatani, Y., Anpo, M. , Photochemical properties of Ag ion clusters included within ZSM-5 zeolites prepared by an ion-exchange method Research on Chemical Intermediates 2003. 29(5): p. 477-483.
    47.吴甫成.姚成胜.郭建平.许春晓.,岳麓山空气负离子及空气质量变化研究.环境科学学报, 2006. 26(10): p. 1737-1744.
    48. Wu, C.C., Lee, G.W.M., Oxidation of volatile organic compounds by negative air ions Atmospheric Environment, 2004. 38(37): p. 6287-6295.
    49.李杰.刘林茂.王海军.葛威力.钟殿强.赵保中.周笑梦.刘大力.王磊.,电晕线加热情况负电晕放电特性研究.东北师大学报(自然科学版), 1996(2): p. 53-57.
    50.王海军.刘林茂.李杰.王毅.赵霞.赵宝忠.阎锡杰.田太川.姜成果.,负电晕放电过程中臭氧的测定.东北师大学报(自然科学版), 1996(1): p. 48-52.
    51.金应龙.齐万彪., HE系列空气负离子发生器对氡及其子体的净化作用.辐射防护, 1997. 17(3): p. 221-224.
    52.张甜甜.李建军.岑英华.孙国萍.,生物净化废气技术的进展.微生物学通报, 2005. 34(3): p. 587-590.
    53.李云路.李建军.孙国萍.,生物滴滤池中废气有机物的生物降解.微生物学通报, 2005. 32(2): p. 119-123.
    54.季学李.羌宁.何坚.,生物滴滤器净化甲苯废气研究.上海环境科学, 2000. 19(8): p. 369-372.
    55.殷峻.方士.陈英旭.,生物滤塔处理低浓度H2S和NH3混合气体.中国给水排水, 2003. 19(13): p. 114-116.
    56.陶雪琴.卢桂宁.周康群.刘晖.党志.,大气化学污染的植物净化研究进展.生态环境, 2007. 16(5): p. 1546-4550.
    57. Baduru, K.K., Trapp, S., Burken, J.G. , Direct measurement of VOC diffusivities in tree tissues: Impacts on tree-based phytoremediation and plant contamination Environmental Science and Technology 2008. 42(4): p. 1268-1275.
    58. Seco, R., Pe?uelas, J., Filella, I. , Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sinks, and concentrations Atmospheric Environment, 2007. 41(12): p. 2477-2499.
    59.曹晓光.闰凌君.,利用植物净化汽车排放污染物的探索研究.中南林业科技大学学报, 2007. 27(2): p. 133-136.
    60. Palmisano, G., Augugliaro, V., Pagliaro, M., Palmisano, L., Photocatalysis: A promising route for 21st century organic chemistry. Chemical Communications 2007(33): p. 3425-3437.
    61. Cheng, P., Gu, M., Jin, Y., Recent progress in titania photocatalyst operating under visible light Progress in Chemistry 2005. 17(1): p. 8-14.
    62. Honda, K., Dawn of the evolution of photoelectrochemistry. Journal of Photochemistry and Photobiology A: Chemistry 2004. 166(1-3): p. 63-68.
    63. Zhuang, H.-F., Lin, C.-J., Lai, Y.-K., Sun, L., Li, J. , Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity Environmental Science and Technology 2007. 41(13): p. 4735-4740.
    64. Kormali, P., Troupis, A., Triantis, T., Hiskia, A., Papaconstantinou, E., Photocatalysis by polyoxometallates and TiO2: A comparative study. Catalysis Today, 2007. 124(3-4): p. 149-155.
    65. Hufschmidt, D., Liu, L., Selzer, V., Bahnemann, D. , Photocatalytic water treatment: Fundamental knowledge required for its practical application Water Science and Technology, 2004. 49(4): p. 135-140.
    66. Robert, D., Dongui, B., Weber, J.-V. , Heterogeneous photocatalytic degradation of 3-nitroacetophenone in TiO2 aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry 2003. 156(1-3): p. 195-200.
    67. Coronado, J.M., Soria, J., ESR study of the initial stages of the photocatalytic oxidation of toluene over TiO2 powders. Catalysis Today 2007. 123(1-4): p. 37-41.
    68. Xu, Y., Lv, K., Xiong, Z., Leng, W., Du, W., Liu, D., Xue, X. , Rate enhancement and rate inhibition of phenol degradation over irradiated anatase and rutile TiO2 on the addition of NaF: New insight into the mechanism Journal of Physical Chemistry C, 2007. 111(51): p. 19024-19032.
    69. Augugliaro, V., D'Alba, F., Rizzuti, L., Schiavello, M., Sclafani, A. , Conversion of solar energy to chemical energy by photoassisted processes-II. Influence of the iron content on the activity of doped titanium dioxide catalysts for ammonia photoproduction International Journal of Hydrogen Energy 1982. 7(11): p. 851-855.
    70. Augugliaro, V., Lauricella, A., Rizzuti, L., Schiavello, M., Sclafani, A., Conversion of solar energy to chemical energy by photoassisted processes-I. Preliminary results on ammonia production over doped titanium dioxide catalysts in a fluidized bed reactor International Journal of Hydrogen Energy, 1982. 7(11): p. 845-849.
    71. M'Ramadj, O., Li, D., Wang, X., Zhang, B., Lu, G., Role of acidity of catalysts on methane combustion over Pd/ZSM-5 Catalysis Communications 2007. 8(6): p. 880-884
    72.彭峰.任艳群., TiO2光催化降解气相有机物的研究进展.化工进展, 2003. 22(1): p. 39-42.
    73. Chatterjee, D., Dasgupta, S. , Visible light induced photocatalytic degradation of
    organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2005. 6(2-3): p. 186-205.
    74.杨瑞.张寅平.王新珂.赵荣义.金招芬.,纳米光催化空气滤网处理空气中微量甲苯效果的实验研究.暖通空调, 2003. 33(5): p. 28-31.
    75.汪万强.简丽.刘聚明.魏永红.,张.,适用于室内空气净化的规整光催化剂的制备及性能.精细化工, 2007. 24(9): p. 848-851.
    76. Bouzaza, A., Laplanche, A., Photocatalytic degradation of toluene in the gas phase: Comparative study of some TiO2 supports. Journal of Photochemistry and Photobiology A: Chemistry 2002. 150(1-3): p. 207-212.
    77.杨儒.李敏.张敬畅.曹维良.胡天斗.张静.,锐钛矿型纳米TiO2粉体的精细结构及其光催化降解苯酚的活性.催化学报, 2003. 24(8): p. 629-634.
    78.彭峰.任艳群., TiO_2-SnO_2复合纳米膜的制备及其光催化降解甲苯的活性.催化学报, 2003. 24(4): p. 243-247.
    79.辛柏福.王鹏.历荣.郝国栋.刘佳., Fe3+-TiO2/SiO2负载型光催化剂降解气相中甲苯研究.黑龙江大学自然科学学报, 2005. 22(3): p. 305-308.
    80.赵德明.史惠祥.汪大翚.,复合纳米TiO2光催化氧化苯酚的动力学.中国给水排水, 2004. 20(1): p. 48-49.
    81.段晓东.孙德智.余政哲.朱质彬.史鹏飞,光催化氧化法降解废气中苯系物的研究.化工环保., 2003. 23(5): p. 253-257.
    82. Li, Y., Armor, J.N. , Selective catalytic reduction of NOx with methane over metal exchange zeolites Applied Catalysis B, Environmental 1993. 2(2-3): p. 239-256
    83. Yoneyama, H., Torimoto, T. , Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations Catalysis Today, 2000. 58(2): p. 133-140.
    84. Boulamanti, A.K., Korologos, C.A., Philippopoulos, C.J. , The rate of photocatalytic oxidation of aromatic volatile organic compounds in the gas-phase Atmospheric Environment, 2008. 42(34): p. 7844-7850
    85.王建宏.高宁.高仲芳.,陶瓷填料上TiO2薄膜光催化降解甲苯的研究.能源环境保护, 2008. 22(1): p. 26-30.
    86.张前程.张凤宝.张国亮.,苯在TiO2上的气相光催化氧化反应历程.催化学报, 2004. 25(1): p. 39-43.
    87. Martra, G., Coluccia, S., Marchese, L., Augugliaro, V., Loddo, V., Palmisano, L., Schiavello, M. , The role of H2O in the photocatalytic oxidation of toluene in vapour phase on anatase TiO2 catalyst A FTIR study Catalysis Today, 1999. 53(4): p.695-702.
    88. Cao, L., Gao, Z., Suib, S.L., Obee, T.N., Hay, S.O., Freihaut, J.D. , Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts: Studies of deactivation and regeneration Journal of Catalysis, 2000. 196(2): p. 253-261.
    89.王金鹤.黄丽华.薛华欣.郑志坚.陈建民., TiO_2薄膜光催化氧化降解苯的研究.复旦学报(自然科学版), 2004. 43(4): p. 628-632.
    90. Blanchard, C.L., Ozone process insights from field experiments - Part III: Extent of reaction and ozone formation. Atmospheric Environment, 2000. 34(12-14): p. 2035-2043.
    91. Alvim Ferraz, M.C., Preparation of activated carbon for air pollution control Fuel, 1988. 67(9): p. 1237-1241.
    92. Weschler, C.J., Hodgson, A.T., Wooley, J.D., Indoor chemistry: Ozone, volatile organic compounds, and carpets Environmental Science and Technology, 1992. 26(12): p. 2371-2377.
    93. Hoigne, J., Bader, H. , The role of hydroxyl radical reactions in ozonation processes in aqueous solutions Water Research, 1976. 10(5): p. 377-386.
    94. Qiu, Y.Q., Zappi, M. E., Kuo, C. H.,, Kinetics and mechanistic study of ozonation of three dichlorophenols in aqueous solutions. Journal of Environ. Eng, 1999. 125(5): p. 441-450.
    95. Rice, R.G., Netzer, A., Handbook of ozone technology and applications,. Vol. I. 1982: Ann. Arbor. Science.
    96. Hoigne, J., Bader, H. , Rate constants of reactions of ozone with organic and inorganic compounds in water. I. Non-dissociating organic compounds., Water Research, 1983. 17(2): p. 173-183.
    97. Gurol, M.D., Nekoulnaini, S., Kinetic behavior of ozone in aqueous solutions of substituted phenols. Industrial and Engineering Chemistry Fundamentals, 1984. 23(1): p. 54-60.
    98. Beltran, F.J., Garcia-Araya, J.F., Acedo, B. , Advanced oxidation of atrazine in water - I: Ozonation Water Research 1994. 28(10): p. 2153-2164.
    99. Bailey, P.S., Ozonation in Organic Chemistry. Vol. II. 1982: Acadenic Press.
    100. Beltran, F.J., Ozonation of o-cresol in aqueous solutions. Water Research, 1990. 24(11): p. 1309-1316.
    101. Dore, M., Langlais, B., Legube, B., Mechanism of the reaction of ozone with soluble aromatic pollutants. Ozone: Science and Engineering, 1980. 2: p. 39-54.
    102.刘洪亮.侯常春.马蔚.马永民.,臭氧空气净化器对甲醛、苯净化效果的实验研究.环境与健康杂志, 2002. 19(1): p. 53-54.
    103. Kwong, C.W., Chao,Y.H., Hui, K.S., Wan, M.P. , Removal of VOCs from indoor environment by ozonation over different porous materials Atmospheric Environment, 2008. 42(10): p. 2300-2311.
    104. Helmig, D., Ozone removal techniques in the sampling of atmospheric volatile organic trace gases., Atmospheric Environment, 1997. 31(21): p. 3635-3651.
    105. Naydenov, A., Mehandjiev, D. , Complete oxidation of benzene on manganese dioxide by ozone Applied Catalysis A, General 1993. 97(1): p. 17-22.
    106.钟理臭氧氧化降解废气中的苯及其反应性能.华南理工大学学报(自然科学版), 1998. 26(10): p. 29-33.
    107.吕锡武.孔青春.,紫外-微臭氧处理饮用水中有机优先污染物.中国环境科学, 1997. 17(4): p. 377-380.
    108.李来胜.祝万鹏.张彭义.陈中颖.陈乐., TiO2薄膜光催化臭氧化邻苯二酚.催化学报, 2003. 24(3): p. 163-168.
    109. Laura Sanchez, J.P., Xavier.D, Aniline degradation by combined photocatalysis and ozonation. Applied Catalysis B: Environmental, 1998. 19(1): p. 59-65.
    110. Ragaini, V., Selli, E., Letizia Bianchi, C., Pirola, C., Sono-photocatalytic degradation of 2-chlorophenol in water: Kinetic and energetic comparison with other techniques Ultrasonics Sonochemistry 2001. 8(3): p. 251-258.
    111. Balcioglu, I.A., Getoff, N., Bekbol?et, M. , A comparative study for the synergistic effect of ozone on theγ-irradiated and photocatalytic reaction of 4-chlorobenzaldehyde Journal of Photochemistry and Photobiology A: Chemistry, 2000. 135(2-3): p. 229-233.
    112.毛传峰.童少平.刘维屏.,臭氧与TiO2/UV协同降解对氯苯酚.环境污染与防治, 2003. 25(2): p. 259-261.
    113. Shinpon, W., Fumihide, S., Katsuyuki, N,. A synergistic effect of photocatalysis and ozonation on decomposition of formic acid in an aqueous solution. Chemical Engineering Journal, 2002. 87(2): p. 261-271.
    114. Keiichi, T., Keiji, A., Temaki, H. , Photocatalytic water treatment on immobilized TiO2 combined with ozonation. Journal of Photochemistry and Photobiology A: Chemistry, 1996. 101(1): p. 85-87.
    115. Sandra, G.,M., Renato, S, F., Nelson, D. , Degradation and toxicity reduction of textile emuent by combined photocatalytic and ozonation processes. Chemosphere, 2000. 40(4): p. 369-373.
    116.梁夫艳.张彭义.余刚.陈清.,气相中甲苯的臭氧-光催化降解.环境科学, 2002.23(6): p. 17-21.
    117. Hernández-Alonso, M.D., Coronado, J.M., Javier Maira, A., Soria, J., Loddo, V., Augugliaro, V., Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanide ions Applied Catalysis B: Environmental 2002. 39(3): p. 257-267.
    118. Linares-Solano, A., Rodriguez Reinoso, F., Salinas-Martinez, C., DeLecea, O. P. Walker Jr, P. L., Platinum catalysts supported on graphitized carbon black—I: Characterization of the platinum by titrations and differential calorimetry. Carbon, 1982. 20(3): p. 177-184.
    119. Martí'n-Gullón, A., Prado-Burguete, C., Rodríguez-Reinoso, F., Effect of carbon properties on the preparation and activity of carbon-supported molybdenum sulfide catalysts. Carbon, 1993. 31(7): p. 1099-1105.
    120. Laine,J., Labady,M., Optimum Ni Composition in Sulfided Ni-Mo Hydrodesulfurization Catalysts: Effect of the Support. Journal of Catalysis, 1994. 147(1): p. 355-357.
    121. Laine,J., Labady,M., Severino,F., Yunes,S., Sink Effect in Activated Carbon-Supported Hydrodesulfurization Catalysts. Journal of Catalysis, 1997. 166(2): p. 384-387.
    122.阪田祐作.井上吉明.,竹よヤシ殼かろ调制(に炭化物および赋活物のがス吸着特性). Bamboo Journal, 1993(11): p. 63-70.
    123.刘洪波.张红波.伍恢和.,竹节制备高比表面积活性炭的研究.林产化学与工业, 2001. 21(4): p. 63-74.
    124.阪田祐作.谷原学.,竹とおがくずからの均一ソ细孔性炭素,金属铁复合体の制造.日本科学技术文献速报, 1999: p. J99091294.
    125. Li, Y., Li, X., Li,J., Yin, J., Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Research., 2006. 40: p. 1119-1126.
    126.解强.边炳鑫.,煤的炭化过程控制理念及其在煤基活性炭制备中的应用. 2002:中国矿业大学出版社.
    127.周建斌,竹炭环境效应及作用机理的研究. 2002,南京林业大学:南京. p. 25.
    128.黄律先,木材热解工艺学. 1996,北京:中国林业出版社. 20-80.
    129.立本英楼,安部郁夫, ed.活性炭的应用技术:其维持管理及存在问题. ed.高尚愚. 2002,东南大学出版社:南京.
    130.刘吉平.孙洪强.,碳纳米材料. 2004,北京:科学出版社. 31-36.
    131. J.S.Beck, J.C.V., W.J.Roth, A new family of mesoporous molecular sieves preparedwith liquid crystal templates. J.Am.Chem.Soc, 1992. 114(27): p. 10834-10843.
    132. Kresge,C.T., Leonowica,M.E., Roth,W.J., Ordered mesoporous molecular sieves synthesized by liquid-crystal template mechanism. Nature, 1992. 359: p. 710-712.
    133. Zhao, X.S., Lu, G.Q., Millar, G.J., Advances in mesoporous molecular sieve MCM-41 Industrial and Engineering Chemistry Research 1996. 35(7): p. 2075-2090.
    134. Araújo, A.S., Souza, M.J.B., Silva, A.O.S., Pedrosa, A.M.G., Aquino, J.M.F.B., Coutinho, A.C.S.L.S. , Study of the adsorption properties of MCM-41 molecular sieves prepared at different synthesis times Adsorption, 2005. 11(2 Spec. Iss): p. 181-186.
    135. Ciuparu. D, Lim S, Mechanism of cobalt cluster size control in Co-MCM-41 during single-wall carbon nanotubes synthesis by CO disproportionation. J.Phys.Chem.B, 2002. 108(40): p. 15565-15571.
    136. Sayari, A., Catalysis by crystalline mesoporous molecular sieves., Chemistry of Materials 1996. 8(8): p. 1840-1852.
    137. Taguchi, A., Schüth, F., Ordered mesoporous materials in catalysis., Microporous and Mesoporous Materials 2005. 77(1): p. 1-45.
    138. Reddy, E.P., Davydov, L., Smirniotis, P., TiO2-loaded zeolites and mesoporous materials in the sonophotocatalytic decomposition of aqueous organic pollutants: The role of the support Applied Catalysis B: Environmental 2003. 42(1): p. 1-11.
    139. Zhang, Z.-D., Zhao, M., Synthesis of metal and metal oxide nano-crystallines by pyrolysis of metal complex. Mater.Chem.Phys, 2001. 71(2): p. 161-164.
    140. Meziani, M.J., Zajac, J., Jones, D.J., Rozière, J., Partyka, S. , Surface characterization of mesoporous silicoalurninates of the MCM-41 type: Evaluation of polar surface sites using flow calorimetry, adsorption of a cationic surfactant as a function of pore size and aluminum content Langmuir, 1997. 13(20): p. 5409-5417.
    141. Corma, A., Grande, M.S., Gonzalez-Alfaro, V., Orchilles, A.V. , Cracking activity and hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY zeolite Journal of Catalysis, 1996. 159(2): p. 375-382.
    142. Vinu, A., Ariga, K., Mori, T., Nakanishi, T., Hishita, S., Golberg, D., Bando, Y. , Preparation and characterization of well-ordered hexagonal mesoporous carbon nitride Advanced Materials 2005. 17(13): p. 1648-1652.
    143. Yuan, S., Shi,L., Mori,K., Yamashita,H., Preparation of highly dispersed TiO2 in hydrophobic mesopores by simultaneous grafting and fluorinating Microporous and Mesoporous Materials 2009. 117(1-2): p. 356-361.
    144. Zhang, P., Liang, F., Yu, G, Chen, Q., Zhu. W., Acomparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV. J. Photochem.Photobiol. A: Chem., 2003. 156: p. 189-194.
    145. Fujita,H,. Sagehashi,M., Fujii,T., Sakoda,A., Decomposition oftrichloroethene on ozone-adsorbed high silica zeolites. Water Research, 2004. 38: p. 166-172.
    146. Kang, J., Rao, Y., Trudeau, M., Antonelli, D. , Sulfated mesoporous tantalum oxides in the shape selective synthesis of linear alkyl benzene Angewandte Chemie - International Edition 2008. 47(26): p. 4896-4899.
    147. Weizs.P.B, Frilette.V.J, Intracrystalline and molecular shape-selective catalysis by zeolite salts. J. Phy. Chem., 1960. 64: p. 382-389.
    148. Tang, X., Zhou, H., Qian, W., Wang, D., Jin, Y., Wei, F. , High selectivity production of propylene from n-butene: Thermodynamic and experimental study using a shape selective zeolite catalyst. Catalysis Letters 2008. 125(3-4): p. 280-285.
    149. Zhao, L., Wang, H., Liu, M., Guo, X., Wang, X., Song, C., Liu, H. , Shape-selective methylation of 2-methylnaphthalene with methanol over hydrothermal treated HZSM-5 zeolite catalysts Chemical Engineering Science 2008. 63(21): p. 5298-5303.
    150. Yanyan, J., Chunyu, W., Yongcun, Z., Jiangwei, S., Jingyuan, W., Fei, L., Feng-Shou, X. , Design and synthesis of microporous and micro/mesoporous silica materials with excellent adsorption properties via self-assembly of silica species with tetraethyl ammonium in acidic aqueous media Journal of Physical Chemistry C 2008. 112(49): p. 19367-19371.
    151. Vu, D.V., Miyamoto, M., Nishiyama, N., Ichikawa, S., Egashira, Y., Ueyama, K., Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites. Microporous and Mesoporous Materials 2008. 115(1-2): p. 106-112.
    152. Jiang, S., Huang, S., Tu, W., Zhu, J. , Infrared spectra and stability of CO and H2O sorption over Ag-exchanged ZSM-5 zeolite: DFT study Applied Surface Science 2009. 255(11): p. 5764-5769
    153. AgruaerRobert, J., Cyrstalline zeolite ZSM-5 and method of preparing the same zeolites. 1972: U.S. .
    154. Ghezini, R., Sassi, M., Bengueddach, A., Adsorption of carbon dioxide at high pressure over H-ZSM-5 type zeolite. Micropore volume determinations by using the Dubinin-Raduskevich equation and the "t-plot" method. Microporous and Mesoporous Materials, 2008. 113(1-3): p. 370-377.
    155. Bressel, A., Donauer, T., Sealy, S., Traa, Y. , Influence of aluminum content, crystallinity and crystallite size of zeolite Pd/H-ZSM-5 on the catalytic performance in the dehydroalkylation of toluene with ethane Microporous and Mesoporous Materials, 2008. 109(1-3): p. 278-286.
    156. Wu, Z.Y., Wang, H.J., Ma, L.L., Xue, J., Zhu, J.H. , Eliminating carcinogens inenvironment: Degradation of volatile nitrosamines by Zeolites Y and ZSM-5 Microporous and Mesoporous Materials, 2008. 109(1-3): p. 436-444.
    157. Kustova, M.Y., Kustov, A., Christiansen, S.E., Leth, K.T., Rasmussen, S.B., Christensen, C.H. , Cu-ZSM-5, Cu-ZSM-11, and Cu-ZSM-12 catalysts for direct NO decomposition Catalysis Communications 2007. 7(9): p. 705-708
    158. Ohtsuka, H., Tabata, T., Influence of Si/Al ratio on the activity and durability of Pd-ZSM-5 catalysts for nitrogen oxide reduction by methane Applied Catalysis B: Environmental 2000. 26(4): p. 275-284
    159. Yang, G., Zhou, L., Liu, X., Han, X., Bao, X., Reaction mechanisms of H2 reduction and N2O decomposition on Fe/ZSM-5 zeolite: A density functional theoretical study Journal of Physical Chemistry C 2009. 113(42): p. 18184-18190
    160. Ahmed.K.Aboul-Gheit, S., Samia A., Exchanged zeolites with transition metals of the first period as photocatalyts for n-hexadecane degradion. Journal of Molecular Catalysis A:Chemical, 2008. 288: p. 52-57.
    161. Okachi.T., Formaldehyde Encapsulated in Zeolite: A Long-Lived, Highly Activated One-Carbon Electrophile to Carbonyl-Ene Reactions. J. Am. Chem. Soc, 2004. 126: p. 2306-2307.
    162. Imachi.S., Conjugate addition of electron-rich aromatics to acrolein in the confined space of zeolite Y,. Chemistry Letter, 2005. 34(5): p. 708-709.
    163. Ding. D, Long. M, Cai. W, Wu. Y, Wu. D, Chen. C, In-situ synthesis of photocatalytic CuAl2O4-Cu hybid nanorod arrays, Chemical Communication., 2009. 14:p.3588-3590.
    164. Rajeswari, R., Kanmani, S., A study on synergistic effect of photocatalytic ozonation for carbaryl degradation., Desalination 2009. 242 (1-3), p. 277-285

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700