地铁牵引供电系统故障测距研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市轨道交通是解决大中型城市交通拥堵的首选方案,近年得到了迅速发展。地铁牵引供电系统为城轨车辆提供牵引电能,其安全可靠性是地铁正常运营的前提。牵引网发生短路故障后,由于接触网的无备用特性,需要组织维修人员对接触网的故障点进行快速抢修,因而研究地铁牵引供电系统故障测距,实现短路点的精确定位,从而快速检修并排除故障点,缩短故障停电时间,对于地铁的正常运营具有重要意义。
     目前城市轨道交通牵引供电系统中尚未有成熟的故障测距方法或装置投入实际应用,但是一种基于现场工程经验的、粗略的故障测距方法在某城市地铁中得到了应用,该方法使用双端短路稳态电流比值进行故障测距,根据现场工作人员反映,其测距误差约为供电区间长度的10%左右。本文首先对地铁牵引供电系统进行了研究,并搭建短路故障模型对该粗略的测距方法进行了理论分析和仿真验证,仿真结果表明,该方法对于远端短路的测距精度较高,而近端短路时的测距误差较大。经研究发现,近端测距误差较大的根本原因是未考虑整流机组的输出外特性,因而本文将双端的电压电气量引入到故障测距中,提出一种改进的测距方法,改进后的测距方法对于近端短路和远端短路均有较高的测距精度。此外,前述粗略故障测距方法在实际应用时使用的双端短路稳态电流值是时间不同步的,本文结合地铁牵引供电系统馈线保护原理及双端牵引变电所断路器跳闸情况,对该不同步时间Δt进行了详细分析,提出了另一种基于遗传算法的、考虑双端电气量不同步时的故障测距方法。
     短路故障电气量的数据提取是进行故障测距的前提条件,而机车起动电流由于幅值较大、电流上升率较高,与远端短路电流较难区分,因而是故障数据提取的难点。本文对交流机车的牵引性能、转差频率矢量控制系统以及牵引负荷进行研究,建立电力机车交流传动系统模型,得到机车起动电流,并将其与短路故障电流的特点进行对比,然后考虑利用二者电流增量和电流变化率的差异对这两种电流进行区分,从而正确提取出短路故障电流数据。
     基于上述分析,本文对地铁故障测距整体设计方案进行了介绍,并着重论述其硬件系统设计及控制逻辑设计,最后利用前文的仿真数据对故障测距硬件系统进行了初步调试。
Urban mass transit is the preferred solution to solve the large and medium-sized urban traffic jams, and has been developing rapidly in recent years. The UMT traction power supply system provides traction power for urban rail vehicle, whose safety and reliability is the premise of the subway normal operations. Owing to no spare characteristics of the catenary, when the traction network short-circuit fault occurs, organizing the maintenance staff to repair the faults rapidly is very important. Therefore studying the fault location method of the UMT traction power supply system, so as to locate the precise positioning of the short circuit trouble point and overhaul the faults quickly, is of great significance for the subway normal operations.
     At present, mature fault location methods or devices for UMT traction power supply system has not yet been put into practical application. However a rough fault location method, based on engineering experience, has been applied in a city subway; this method uses the ratio of two-terminal short-circuit steady currents for fault location, whose ranging error is about10%of the distance between the traction substations according to the field staff reflect. This paper buildes the short-circuit fault model, then theoretically analysis and simulation of the rough location method has been made, simulation results show that this rough method has higher raning accuracy for remote short-circiut faults, while relatively low for close-up short-circiut. The output-characteristics of rectifier units can explain this raning error difference. Therefor this paper considers introducing two-terminal voltages into the location method, presents an improved location method, and it has higher ranging accuracy for both close-up and remote short-circiut faults. In addition, the two-terminal short-circuit steady currents used in the aforesaid rough method are not time-synchronous in practical application. Combined with DC feeder protection principle, this paper detailedly analyses this asynchronous time, then another new location method about two-terminal electrical quantities is given, which based on genetic algorithm.
     How to extract the short-circuit fault currents from traction load currents is a prerequisite for fault location. However, because of large amplitude and high current rise of the locomotive starting current, it is difficult to distinguish the remote short-circuit current form the locomotive starting current, thus how to distinguish these becomes a difficult problem. This paper carries on the research of ac locomotive traction performance, slip frequency vector control system and traction load, in order to establish the locomotive traction drive model, and to get the locomotive starting current; and then compares the locomotive starting current with the short-circuit current; finally, distinguishes these two currents based on the differences of their current increment and rise rate, so as to correctly extract short-circuit current.
     Based on the above analysis, this paper describes the whole design scheme of the metro fault location device in brief, and focuses on fault location hardware system and its control logic design; then debugges this hardware system using the previous simulation data.
引文
[1]于松伟,杨兴山,韩连祥,等.城市轨道交通供电系统设计原理与应用[M].成都:西南交通大学出版社,2008.
    [2]黄德胜.地下铁道供电[M].北京:中国电力出版社,2010.
    [3]曹雅怀.城市轨道直流馈线保护新原理研究[D].北京:华北电力大学,2011.
    [4]Fan S, Li Y, Li X, et al. Algorithms for blocking reclosing onto permanent faults and fault distance calculation in DC traction power supply system[Z].20071674-1677.
    [5]葛耀中.新型继电保护和故障测距的原理与技术[M].西安:西安交通大学出版社,2007.
    [6]蔡德礼.高压输电线故障点定位的一种新的计算机方法[J].重庆大学学报(自然科学版).1982(2):1-18.
    [7]毛晓明,刘沛,程时杰.利用单侧电量的高压输电线路故障测距算法研究[J].电网技术.1998(11):17-19.
    [8]徐启峰,魏孝铭.高压输电线路故障测距的负距问题及修正方法[J].中国电机工程学报.1989(3):43-52.
    [9]李洪波.超高压直流输电线路故障测距原理研究及软件开发[D].天津:天津大学,2009.
    [10]Sauhats A, Dannilova M. Fault Location Algorithms for Super High Voltage Power Transmission Lines[Z].2003.
    [11]宋国兵,周德生,焦在滨,等.一种直流输电线路故障测距新原理[J].电力系统自动化.2007(24):57-61.
    [12]Song G, Suonan J, Xu Q. Parallel Transmission Lines Fault Location Algorithm Based On Differential Component Net[J]. IEEE Transactions on Power Delivery. 2005,20(4): 2396-2406.
    [13]刘薇.基于双端不同步数据的故障测距算法与装置的研究[D].北京:华北电力大学,2004.
    [14]Novosel D, Hart D G, Udren E. Unsynchronized Two-Terminal Fault Location
    Estimation[J]. IEEE Transactions ON Power Delivery. 1996,11(1):130-138.
    [15]林金洪.电力电缆线路故障测距方法研究[D].重庆:重庆大学,2003.
    [16]Shenxing S, Xingzhou D, Shuangxi Z. Analysis of single-phase-to-ground fault generated traveling waves[J]. Automation of Electric Power Systems.2005,29(23):29-32.
    [17]F G P, A C P, Y X B. Fault location based on travelling waves[Z].199354-59.
    [18]Shan X Q. Fault location for parallel transmission lines using one-term inal current traveling waves[J]. Journal of Harbin Institute of Technology. 2009:408-412.
    [19]林浩.输电线路行波故障定位系统的研究与实现[D].成都:西南交通大学,2010.
    [20]张帆.基于单端暂态行波的接地故障测距与保护研究[D].济南:山东大学,2008.
    [21]黎颖.高压输电线路故障定位方法综合研究[D].重庆:重庆大学,2007.
    [22]C. C, P. T D W, A. W. Signal Processing and Discriminating Techniques Incorporation in a Protective Scheme Based on Traveling Waves[J]. Generation,Transmission and Distribution, IEE Proceedings C.1989,136(5):279-288.
    [23]万耕,穆华宁.高压架空输电线路的行波故障测距方法[J].高压电器.2005(2):135-138.
    [24]鲍英豪.全并联AT供电系统馈线保护与故障测距方案研究[D].成都:西南交通大学,2008.
    [25]林国松,李群湛,陈小川.电气化铁道供电牵引网故障测距综述[J].电气化铁道.2005:192-196.
    [26]王继芳.全并联AT供电牵引网故障测距研究[D].成都:西南交通大学,2006.
    [27]曹笃峰.电气化铁道接触网行波故障测距研究[D].北京:北京交通大学,2008.
    [28]张殿睿.接触网短路暂态仿真与行波测距装置开发[D].北京:北京交通大学,2009.
    [29]S. C C, T. F, M K A, et al. Remote Short-Circuit Current Determination in DC Railway Systems Using Wavelet Transform[J]. Elctric Power Applications.2000,147(6):520-526.
    [30]任韬.城轨牵引供电系统短路试验及短路特征分析[D].北京:北京化工大学,2010.
    [31]S T Y. Harmonic analysis of parallel-connected 12-pulse Uncontrolled Rectifier Without an interphase transformer[J]. IEE Proceedings on Electric Power Applications.1998, 145(3):253-260.
    [32]Tzeng Y, Chen N, Wu R. Modes of Operation in Parallel-Connected 12-Pulse Uncontrolled Bridge Rectifiers Without and Interphase Transformer[J]. IEEE Transactions on Inductrial Electronics.1997,44(3):344-355.
    [33]J C F, J F A, R T D. A Simple Passive 24-Pulse AC-DC Converter With Inherent Load Balancing[J]. IEEE transations on power electronics.2006, 21(2):430-439.
    [34]黄维军.城市轨道交通DC1500V牵引供电系统短路故障分析[D].成都:西南交通大学,2010.
    [35]李良威.城市轨道交通直流侧短路故障研究[D].成都:西南交通大学,2007.
    [36]P. P. Transient and steady-state short-circuit currents in rectifiers for DC traction supply[J]. IEEE Transactions on vehicular technology. 1998,47(4):1390-1404.
    [37]李良威,李群湛,刘炜.24脉波整流器外特性仿真及其在城市轨道交通中的应用[J].城市轨道交通研究.2007(10):52-55.
    [38]杨莉莉.DC1500V三轨供电系统直流馈线保护研究[D].成都:西南交通大学,2008.
    [39]杜芳.地铁机车建模及直流牵引供电系统故障分析[D].北京:北京交通大学,2010.
    [40]徐安.城市轨道交通电力牵引[M].北京:中国铁道出版社,2000.
    [41]杜永红.轻轨车牵引电机矢量控制研究[D].北京:北京交通大学,2009.
    [42]徐劲松,高劲,江平,等.浅析地铁直流牵引变电所的保护原理[J].电气化铁道.2003(6):43-46.
    [43]王晓红.地铁直流馈线保护研究[D].成都:西南交通大学,2002.
    [44]喻展.地铁1500V直流开关跳闸故障处理[J].都市快轨交通.2010(2):106-108.
    [45]孔玮.城市轨道交通直流牵引系统故障分析及若干问题的研究[D].北京:华北电力大学,2005.
    [46]刘炜.城市轨道交通列车运行过程优化及牵引供电系统动态仿真[D].成都:西南交通大学,2009.
    [47]Aihara T, Morimoto H, Hase S, et al. Development of a DC Feeding Bus Ground Fault Detection System for Railway Substation[R]. Railway Technical Research Institute, 2005.
    [48]李墨雪.直流牵引供电系统建模及基于电流变化特征量的保护算法研究[D].北京: 北京交通大学,2010.
    [49]李国欣.直流牵引回流系统分析及轨电位相关问题研究[D].徐州:中国矿业大学,2010.
    [50]陶功安,袁立祥,马喜成.广州地铁3号线地铁车辆[J].机车电传动.2006(4):53-59.
    [51]饶忠.列车牵引计算[M].北京:中国铁道出版社,1997.
    [52]林文立.地铁动车牵引传动系统分析、建模及优化[D].北京:北京交通大学,2010.
    [53]冯晓云.电力牵引交流传动及其控制系统[M].北京:高等教育出版社,2009.
    [54]陈伯时.电力拖动自动控制系统:运动控制[M].北京:机械工业出版社,2003.
    [55]Y T, A K. Disturbance observer based adhesion control for shinkansen[Z]. 2000169-174.
    [56]Y I, A K. Maximum Adhesive Force Control in Super High Speed Train[Z]. 1997951-954.
    [57]Li M X, He J H, Bo Z Q. Simulation and Algorithm Development of Protection Scheme in DC Traction System[Z].20091-6.
    [58]肖明辉.区间牵引变电所设置钢轨电位限制装置问题分析[J].电气化铁道.2011(2):39-41.
    [59]江明.基于FPGA的高速数据采集系统的研制[D].哈尔滨:哈尔滨理工大学,2011.
    [60]Hall S H, James G W H, Mccall J A. High-Speed Digital System Design — A Handbook of Interconnect Theory and Design Practices[M]. John Wiley & Sons, Ltd, 2000.
    [61]陈欣琳,王海峰,金亮.PC机和MCS-51单片机间的串行通信[J].中国科技信息.2009(13):86-87.
    [62]夏宇闻.Verilog数字系统设计教程[M].北京:北京航空航天大学出版社,2008.
    [63]Minns P, Elliott I. FSM-based Digital Design using Verilog HDL[M]. John Wiley & Sons, Ltd, 2008.
    [64]Bening L, Foster H. Principles of Verifiable RTL Design[M]. Kluwer Acadmic Publishers,2001.
    [65]E D, Thomas. The Verilog Hardware Description Language[M]. Kluwer Acadmic Publishers,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700