加速器用BST/Mg_2TiO_4/MgO铁电复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不同掺杂的铁电陶瓷BST复合材料,可以用来制备随外加电场变化而变化的微波调谐器件,例如:调谐器、滤波器、移相器等。此外,近年来铁电体块材也用来制备高功率移相设备的控制元件和直线对撞机的转换开关。在介质填充加速器结构中,可以用铁电层来做控制元件。在这些设备中使用的陶瓷材料的介电性能要满足一定的参数要求:相对低的介电常数(<500),在电场2-5kV/mm下的调谐率不低于10%-20%,微波范围内有较低的介电损耗(<0.005)。
     本论文系统地研究了Ba/Sr比、(Mg2TiO4+MgO)含量及Mg2Ti04与MgO比对复合材料BST/Mg2TiO4/MgO的物相结构和低高频介电性能的影响。探讨了La2O3,Zr02,过渡金属氧化物MnCO3和Co(NO)3·6H2O及低熔点材料CuO、Li2CO3和ZnO掺杂对BST/Mg2TiO4/MgO结构及介电性能的影响。降低Ba/Sr比以及加入MgO可以抑制BST/Mg2TiO4中杂质相BaMg6Ti6O19的产生。
     MnCO3、ZnO和适量的ZrO2掺杂能提高40Ba0.55SrO45TiO3/12Mg2TiO4/48MgO的调谐率和Qxf值。0.5mol%MnCO3掺杂和0.5wt%ZnO掺杂的40Ba0.55Sr0.45TiO3/12Mg2Ti04/48MgO的复合陶瓷的综合性能较好,微波频率下的Qxf值分别为387GHz和470GHz,在10kHz,2kV/mm电场强度下的调谐率分别为12.5%和11.7%。La203掺杂的40Ba0.55Sr0.45TiO3/12Mg2TiO4/48MgO的复合陶瓷,La203的掺杂含量高于2wt%后,调谐率随着外加电场强度的增加反常增加,调谐率为负值,继续增加La203含量,调谐率的绝对值增加。Li2C03掺杂的BST/Mg2TiO4/Mg0的复合陶瓷的烧结温度明显降低,优化的烧结温度从1370℃降低到1250℃。改变制备工艺对Zr02掺杂的40Ba0.55Sr0.45TiO3/12Mg2TiO4/48MgO的复合陶瓷的性能没有明显的影响。
     本论文研究表明,MnCO3、ZnO和适量的Zr02掺杂能有效地提高40Ba0.55Sr0.45TiO3/12Mg2TiO4/48MgO的调谐率和Qxf值,是很有希望的微波调谐材料。
     本论文由国家自然科学基金(项目批准号:10975055)资助。
Ferroelectric ceramics of BST solid solutions with various additives are the basic ceramic materials to design microwave devices operated by the electric field, namely modulators, filters, phase shifters, and other. Moreover, an interest appeared recently towards the use of bulk ferroelectrics as control elements of high-power phase-shifters and switches for linear colliders. Ferroelectric layers can be also used as control elements for accelerating structures with dielectric loading. The main requirement for the electrical properties of ceramic materials to be used in such devices is a combination of relatively low dielectric constant is below500at the electric field tunability not worse than10-20%(electric field magnitude (2-5)kV/mm) and low dielectric losses at the microwaverange (tan δ≤0.005).
     The effect of the proportion of Ba/Sr, BST and (Mg2TiO4+MgO), Mg2Ti04and MgO on the dielectric properties of BST/Mg2TiO4/MgO were studied. The effect of La2O3, ZrO2, MnCO3, Co(NO)3·6H2O, CuO, Li2CO3and ZnO doping on the phase structure and dielectric properties of BST/Mg2TiO4/MgO were studied. The impurity phase BaMg6Ti6O19disappeared with reducing the proportion of Ba/Sr or MgO doping.
     MnCO3, ZnO and a small amount of ZrO2doping can increase the Qxf value and tunability of40Ba0.55Sr0.45TiO3/12Mg2TiO4/48MgO ceramics.0.5mol%MnCO3and0.5wt%ZnO doped40Ba0.55Sr0.45TiO3/12Mg2TiO4/48MgO ceramics show better dielectric properties:the dielectric constant were87.1and131.2at microwave frequency, the Qxf value were387GHz and470GHz and the tunability at2kV/mm were12.5%and11.7%, respectively. With La2O3content exceeding2wt%, the tunabity of40Ba0.55Sr0.45TiO3/12Mg2TiO4/48MgO ceramics abnormal increases with the increase of electric fields. The tunabity is a negative value. With the increase of La2O3content, the absolute value of tunabity increases. Li2CO3doping can reduce the sintering temperature of BST/Mg2Ti04/MgO ceramics from1370℃to1250℃The preparation technology has no obvious effect on the dielectric properties of ZrO2doped40Ba0.55Sr0.45TiO3/12Mg2TiO4/48MgO ceramics.
     Compared with the40Ba0.55Sr0.45TiO3/12Mg2TiO4/48MgO ceramics, MnCO3, ZnO and a small amount of ZrO2doping can increase the Qxf value and tunability and the composite ceramics are promising materials for tunable microwave application.
     The thesis is supported by Natural Science Foundation of China under grant No.10975055.
引文
[1]桂伟燮,洪忠悌.粒子加速器原理.第一版.北京:原子能出版社,1984:1-10
    [2]孙袁.S波段电子直线加速器高功率同轴负载的研究:[博士毕业论文].合肥:中国科技大学图书馆,2011
    [3]W. Gai, P. Schoessow, B. Cole, et al. Experimental demonstration of wake-field effects in dielectric structures. Physical Review Letters,1988,61(24):2756-2758
    [4]C. G. Jing, W. Gai, J. G. Power, et al. Progress toward externally powered X-band dielectric-loaded accelerating structures. IEEE Transactions on Plasma Science, 2010,38(6):1354-1360
    [5]何笑东.X波段介质-金属膜片混合加载加速器研究:[博士毕业论文].合肥:中国科技大学图书馆,2009
    [6]姚充国.电子直线加速器.第一版.北京:科学出版社,1986:1-50
    [7]徐建铭.加速器原理.第二版.北京:科学出版社,1981:6-10
    [8]A. Kanareykin, W. Gai, J. Power, et al. A tunable dielectric wakefield accelerating structure. Proceedings of AIPC.2002.565-576
    [9]A. M. Altmark, A. D. Kanareykin, I. L. Sheinman. Tunable wakefield dielectric-filled accelerating structure. Technical Physics,2005,50(1):87-95
    [10]V. P. Yakovlev, O. A. Nezhevenko, J. L. Hirshfield, et al. Ferroelectric switch for an active RF pulse compressor. Proceedings of AIPC.2003.187-196
    [11]V. P. Yakovlev, O. A. Nezhevenko, J. L. Hirshfield. Fast X-band phase shifter. Proceedings of AIPC.2004.643-650
    [12]O. G. Vendik, S. P. Zubko. Ferroelectric phase transition and maximum dielectric permittivity of displacement type ferroelectrics (BaxSr1-xTiO3). Journal of Applied Physics,2000,88(9):5343-5350
    [13]A. M. Al'tmark, A. D. Kanareykin, I. L. Sheinman. Tunable wakefield waveguide structure with the possibility of mode selection. Technical Physics Letters,2003, 29(10):862-864
    [14]曲远方.功能陶瓷及应用.第一版.北京:化学工业出版社,2003:20-22
    [15]E. A. Nenasheva, A. D. Kanareykin, N. F. Kartenko, et al. Ceramics materials based on (Ba,Sr)TiO3 solid solutions for tunable microwave devices. Journal of Electroceramics,2004,13(1-3):235-238
    [16]钟维烈.铁电体物理学.第一版.北京:科学出版社,1996:1-4,5-9,22-24,68-89,156-158
    [17]刘婷.微波调谐钛酸钡基复合陶瓷材料的研究:[硕士毕业论文].武汉:华中科技大学图书馆,2009
    [18]符春林.铁电薄膜材料及其应用.第一版.北京:科学出版社,2009:57-62
    [19]J. H. Haeni, P. Irvin, W. Chang, et al. Room-temperature ferroelectricity in strained SrTiO3. Nature,2004,430(7001):758-791
    [20]L. Wu, Y. C. Chen, L. J. Chen. Preparation and microwave characterization of Ba1-xSrxTiO3 ceramics. Japanese Journal of Applied Physics,1999,38(9B): 5612-5615
    [21]A. K. Tagantsev, V. O. Sherman, K. F. Astafiev, et al. Ferroelectric materials for microwave tunable applications. Journal of Electroceramics,2003,11(1-2):5-66
    [22]L. C. Sengupta, S. Sengupta. Breakthrough advances in low loss, tunable dielectric materials. Materlals Research Innovations,1999,2(5):278-282
    [23]M. Jain, S. B. Majumder, R. S. Katiyar, et al. Tailoring of BST and MgO layers for phase shifter applications. Integrated Ferroelectrics,2004,60(1):59-68
    [24]A. Kanareykin, P. Schoessow, E. Nenasheva, et al. New deveopments on low-loss ferroelectrics for accelerator applications. Proceedings of EPAC.2006.3251-3253
    [25]A. Kanareykin, A. Dedyk, E. Nenasheva, et al. Ferroelectric based technologies for accelerator component applications. Proceedings of PAC.2007.634-636
    [26]L. C. Sengupta, E. Ngo, J. Dynowczynski, et al. Optical and electrical studies of novel ferroelectric composites for use in phased array antennas. Proceedings of the Tenth IEEE International Symposium on Applications.1996.845-849
    [27]S. Sengupta, S. M. Green. Pulsed laser ablation of ferroelectric composites for phased array antenna applications. Applied Surface Science,1998,127-129: 486-490
    [28]R. H. Liang, X. L. Dong, Y. Chen, et al. Improvement of microwave loss tangent and tunability of Ba0.55Sr0.45TiO3/MgO composites using the heterogeneous precipitation method. Journal of the American Ceramic Society,2006,89(10): 3273-3276
    [29]J. B. L. Rao, D. P. Patel. A novel phased array antenna that uses ferroelectrics and bulk phase shifting. Ferroelectrics,1999,223(1-4):255-262
    [30]S. Kazakov, V. P. Yakovlev, S. Shchelkunov, et al. Fast L-band waveguide phase shifter. Proceedings of EPAC08.2008.769-771
    [31]Q. M. Zhang, L. Wang, J. Luo, et al. Ba0.4Sr0.6TiO3/MgO composites with enhanced energy storage density and low dielectric loss for solid-state pulse-forming line. International Journal of Applied Ceramic Technology,2010,7(S1):E124-E128
    [32]W. Chang, L. Sengupta. MgO-mixed Ba0.6Sr0.4TiO3 bulk ceramics and thin films for tunable microwave applications. Journal of Applied Physics,2002,92(7): 3941-3946
    [33]S. Agrawal, R. Guo, D. Agrawal, et al. Tunable BST:MgO dielectric composite by microwave sintering. Ferroelectrics,2004,306(1):155-163
    [34]S. Agrawal, R. Guo, D. K. Agrawal, et al. Dielectric tunability of BST:MgO composites prepared by using nano particles. Ferroelectric Letters,2004,31(5-6): 149-156
    [35]J. Synowczynski, S. Hirsch, B. Gersten. Rapid gel cast prototyping of complex paraelectric (Ba, Sr)TiO3/MgO composites. Proceedings of MRS.2002. H6.8.1-H6.8.6
    [36]J. M. Wu, X. H. Wang, Y. N. Fan, et al. Microstructures and dielectric properties of Ba0.6Sr0.4TiO3-MgO ceramics prepared by non-aqueous gelcasting and dry pressing. Materials Research Bulletin,2011,46(12):2217-2221
    [37]U. C. Chung, C. Elissalde, M. Maglione. Low-losses, highly tunable Bao.6Sr0.4Ti03 /MgO composite. Applied Physics Letters,2008,92(4):042902-1-042902-3
    [38]W. F. Liao, R. H. Liang, X. L. Dong, et al. Dielectric and tunable properties of columnar Bao.6Sro.4Ti03-MgO composites prepared by spark plasma sintering. Applied Physics Letters,2011,99(20):202905-1-202905-3
    [39]M. W. Zhang, J. W. Zhai, B. Shen, et al. MgO doping effects on dielectric properties of Ba0.55Sr0.45TiO3 ceramics. Journal of the American Ceramic Society,2011,94(11): 3883-3888
    [40]J. Y. Wang, X. Yao, L. Y. Zhang. Preparation and microwave properties of Mg doped barium strontium titanate (BSTO) ceramics sintered from sol-gel-derived powders. Journal of Electroceramics,2008,21(1-4):439-443
    [41]J. Y. Wang, J. J. Zhang, X. Yao. Dielectric properties of Mg-doped Bao.6Sro.4Ti03 ceramics prepared by using sol-gel derived powders. Journal of Alloys and Compounds,2010,505(2):783-786
    [42]Q. Xu, X. F. Zhang, Y. H. Huang, et al. Effect of MgO on structure and nonlinear dielectric properties of Ba0.6Sr0.4TiO3/MgO composite ceramics prepared from superfine powders. Journal of Alloys and Compounds,2009,488(1):448-453
    [43]H. F. Zhang, S. W. Or, H. L. W. Chan. Synthesis of fine-crystalline Bao.6Sro.4Ti03-MgO ceramics by novel hybrid processing route. Journal of Physics and Chemistry of Solids,2009,70(8):1218-1222
    [44]E. Ngo, P. C. Joshi, M. W. Cole, et al. Electrophoretic deposition of pure and MgO-modified Bao.6Sro.4Ti03 thick films for tunable microwave devices. Applied Physics Letters,2001,79(2):248-250
    [45]C. X. Yang, H. Q. Zhou, M. Liu, et al. Effect of MnCO3 doping on the dielectric and tunable properties of BSTO/MgO composite for phased array antennas. Journal of Materials Science:Materials in Electronics,2007,18(9):985-989
    [46]J. D. Cui, G. X. Dong, Z. M. Yang, et al. Low dielectric loss and enhanced tunable properties of Mn-doped BST/MgO composites. Journal of Alloys and Compounds, 2010,490(1-2):353-357
    [47]M. H. Kwak, Y. T. Kim, S. E. Moon, et al. Microwave properties of Mn doped (Ba1-x, Srx)TiO3 thin films for tunable phase shifter. Integrated Ferroelectrics,2004, 66(1):283-289
    [48]E. A. Nenasheva, N. F. Kartenko, I. M. Gaidamaka, et al. Low loss microwave ferroelectric ceramics for high power tunable devices. Journal of the European Ceramic Society,2010,30(2):395-400
    [49]R. H. Liang, X. L. Dong, Y. Chen, et al. Effect of ZrO2 doping on the tunable and dielectric properties of Ba0.55Sr0.45TiO3/MgO composites for microwave tunable application. Materials Research Bulletin,2006,41(7):1295-1302
    [50]X. H. Wang, J. Liu, Y. L. Zhou, et al. Effects of La2O3 additions on properties of Bao.6Sro.4Ti03-MgO ceramics for phase shifter applications. Journal of the European Ceramic Society,2006,26(10-11):1981-1985
    [51]R. H. Liang, X. L. Dong, Y. Chen, et al. Effect of La2O3 doping on the tunable and dielectric properties of BST/MgO composite for microwave tunable application. Materials Chemistry and Physics,2006,95(2-3):222-228
    [52]T. V. Rivkin, J. D. Perkins, P. A. Parilla, et al. Composite BST/MgO thin films for microwave tunable devices. Proceedings of MRS.2001. DD5.7.1-DD5.7.6
    [53]J. J. Zhang, J. W. Zhai, M. W. Zhang, et al. Structure-dielectric properties relationship in Mg-Mn co-doped Ba0.4Sr0.6TiO3/MgAl2O4 tunable microwave composite ceramics. Journal of Physics D:Applied Physics,2009,42(7): 075414-1-075414-6
    [54]L. Wu, S. Wu, F. C. Chang, et al. DC field dependence of dielectric constant and loss factor of Al2O3-doped barium strontium titanate for application in phased array antennas. Journal of Materials Science,2000,35(23):5945-5950
    [55]L. Radhapiyari, O. P. Thakur, C. Prakash. Structural and dielectric properties of the system Ba1-xSrxFe0.01Ti0.99O3. Materials Letters,2003,57(12):1824-1829
    [56]L. Q. Zhou, P. M. Vilarinho, J. L. Baptista. Dielectric properties of bismuth doped Ba1-xSrxTiO3 ceramics. Journal of the European Ceramic Society,2001,21(4): 531-534
    [57]H. T. Jiang, J. W. Zhai, M. W. Zhang, et al. Enhanced microwave dielectric properties of Ba0.40Sr0.60TiO3-Zr0.80Sn0.20TiO4 composite ceramics. Journal of Materials Science,2012,47(6):2617-2623
    [58]Y. Chen, X. L. Dong, R. H. Liang, et al. Dielectric properties of Bao.6Sro.4Ti03/Mg2Si04/MgO composite ceramics. Journal of Applied Physics,2005, 98(6):064107-1-064107-12
    [59]J. J. Zhang, J. W. Zhai, H. T. Jiang, et al. Raman and dielectric Study of Ba0.4Sr0.6TiO3-MgAl2O4 tunable microwave composite. Journal of Applied Physics, 2008,104(8):084102-1-084102-8
    [60]L. Wu, Y. C. Chen, Y. P. Chou, et al. Dielectric properties of Al2O3-soped barium strontium titanate for application in phased array antennas. Japanese Journal of Applied Physics,1999,38(9A):5154-5161
    [61]H. D. Wu, F. S. Barnes. Doped Bao.6Sro.4Ti03 thin films for microwave device applications at room temperature. Integrated Ferroelectrics,1998,22(1-4):291-305
    [62]L. Vincent, C. Romain, H. Fiffamen, et al. Microwave study of tunable planar capacitors using Mn-doped Bao.6Sro.4Ti03 ceramics. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2009,56(11):2363-2369
    [63]X. J. Chou, J. W. Zhai, H. T. Jiang, et al. Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. Journal of Applied Physics,2007,102(8):084106-1-084106-6
    [64]Y. Yun, G. Tailiang. Dielectric properties of Fe-doped Ba0.65Sr0.35TiO3 thin films fabricated by the sol-gel method. Ceramics International,2009,35(7):2761-2765
    [65]X. J. Chou, J. W. Zhai, X. Yao. Dielectric tunable properties of low dielectric constant Ba0.5Sr0.5TiO3-Mg2TiO4 microwave composite ceramics. Applied Physics Letters,2007,91(12):122908-1-122908-3
    [66]Q. W. Zhang, P. Qi, J. W. Zhai, et al. Percolative property and microwave dielectric characterization of Ba0.4Sr0.6TiO3-Mg2TiO4 diphasic ceramics. Materials Research Bulletin,2011,46(5):738-742
    [67]P. Liu, J. L. Ma, L. Meng, et al. Preparation and dielectric properties of BST-Mg2TiO4 composite ceramics. Materials Chemistry and Physics,2009, 114(2-3):624-628
    [68]E. F. Alberta, R. Guo, A. S. Bhalla. Novel BST:MgTiO3 composites for frequency agile applications. Ferroelectrics,2002,268(1):169-174
    [69]S. M. Ke, H. Q. Fan, W. Wang, et al. MgTiO3 doping effect on dielectric properties of Bao.6Sro.4Ti03 ceramics via a molten salt process. Composites:Part A,2008, 39(4):597-601
    [70]M. W. Zhang, J. W. Zhai, H. T. Jiang, et al. Dielectric relaxor behavior of ZnWO4 content on Ba0.5Sr0.5TiO3 composite ceramics for tunable microwave applications. Materials Science and Engineering B,2010,172(3):311-316
    [71]M. W. Zhang, J. W. Zhai, J. J. Zhang, et al. Effect of MgWO4 content on properties of Ba0.5Sr0.5TiO3 composite ceramics for tunable microwave applications. Materials Research Bulletin,2011,46(7):1102-1106
    [72]M. W. Zhang, J. W. Zhai, X. Yao. Tunable and microwave dielectric properties of Ba0.5Sr0.5TiO3-BaW04 composite ceramics doped with Co2O3. Materials Research Bulletin,2010,45(12):1990-1995
    [73]G. X. Hu, F. Gao, L. L. Liu, et al. Microstructure and dielectric properties of Ba0.6Sr0.4TiO3-MgAl2O4 composite ceramics. Ceramics International,2011,37(4): 1321-1326
    [74]G. X. Hu, F. Gao, L. L. Liu, et al. Microstructure and dielectric properties of highly tunable Ba0.6Sr0.4TiO3/MgO/Al2O3/ZnO composite. Journal of Alloys and Compounds,2012,518(25):44-50
    [75]G. X. Dong, S. W. Ma, J. Du, et al. Dielectric properties and energy storage density in ZnO-doped Ba0.3Sr0.7TiO3 ceramics. Ceramics International,2009,35(5): 2069-2075
    [76]X. F. Liang, W. B. Wu, Z. Y. Meng. Dielectric and tunable characteristics of barium strontium titanate modified with Al2O3 addition. Materials Science and Engineering: B,2003,99(1-3):366-369
    [77]X. F. Liang, Z. Y. Meng, W. B. Wu. Effect of acceptor and donor dopants on the dielectric and tunable properties of barium strontium titanate. Journal of the American Ceramic Society,2004,87(12):2218-2222
    [78]D. G. Yan, Z. P. Xu, X. L. Chen, et al. Microstructure and electrical properties of Mn/Y codoped Ba0.67Sr0.33TiO3 ceramics. Ceramics International,2012,38(4): 2785-2791
    [79]S. E Hao, C. Y. Wang, D. S. Fu, et al. Preparation and characterization of La-doped Ba(1-x)SrxTiO3 powders and thin films. Thin Solid Films,2010,518(20):5645-5648
    [80]L. Xiao, K. L. Choy, I. Harrison. Co-doped BST thin films for tunable microwave applications. Surface & Coatings Technology,2011,205(8-9):2989-2993
    [81]L. Gao, J. W. Zhai, X. Yao. The influence of Co doping on the dielectric, ferroelectric and ferromagnetic properties of Ba0.70Sr0.30TiO3 thin films. Applied Surface Science,2009,255(8):4521-4525
    [82]S Liu, M. D. Liu, S. L. Jiang, et al. Fabrication of SiO2-doped Ba0.85Sr0.15TiO3 glass-ceramic films and the measurement of their pyroelectric coefficient. Materials Science and Engineering B,2003,99(1):511-515
    [83]S. W. Yun, J. K. Koh. The ac conductivity and complex impedance of CuO-doped (Ba0.5Sr0.5)TiO3 ceramic. Journal of Physics and Chemistry of Solids,2012,73(4): 568-572
    [84]S. W. Yun, S. M. Koo, J. G. Ha, et al. Influence of CuO addition to (Ba0.5, Sr0.5)TiO3 ceramics on sintering behavior and dielectric properties. Ferroelectrics,2010, 403(1):19-25
    [85]Y. C. Lee, Y. L. Huang. Effects of CuO doping on the microstructural and dielectric properties of Ba0.6Sr0.4TiO3 ceramics. Journal of the American Ceramic Society, 2009,92(11):2661-2667
    [86]H. T. Jiang, J. W. Zhai, X. J. Chou, et al. Influence of Bi2O3 and CuO addition on low-temperature sintering and dielectric properties of Ba0.6Sr0.4TiO3 ceramics. Materials Research Bulletin,2009,44(3):566-570
    [87]H. Jantunen, T. Hu, A. Uusimaki, et al. Ferroelectric LTCC for multilayer devices. Journal of the Ceramic Society of Japan,2004,112(5):1552-1556
    [88]T. Hu, H. Jantunen, S. Leppavuori, et al. Electric field controlled permittivity ferroelectric composition for microwave LTCC modules. Journal of the American Ceramic Society,2004,87(4):578-583
    [89]Y. S. Ham, S. W. Yun, J. H. Koh. Analysis on the temperature dependent structural properties of Li2CO3 doped (Ba,Sr)TiO3 ceramics. J Electroceram,2011,26(1-4): 32-36
    [90]H. W. You, S. M. Koo, J. G. Ha, et al. Microstructure and dielectric properties of Li2CO3 doped 0.7(Ba,Sr)TiO3-0.3MgO ceramics. Current Applied Physics,2009, 9(4):875-879
    [91]B. Zhang, X. Yao, L. Y. Zhang, et al. Study on the structure and dielectric properties of BaO-SiO2-B2O3 glass-doped (Ba,Sr)TiO3 ceramics. Ceramics International,2004, 30(7):1767-1771
    [92]P. Gao, H. M. Ji, Q. Q. Jia, et al. Low temperature sintering and dielectric properties of Ba0.6Sr0.4TiO3-MgO composite ceramics with CaO-B2O3-SiO2 glass addition. Journal of Alloys and Compounds,2012,527(25):90-95
    [93]L. Sengupta, E. Ngo, S. Stowell, et al. Ceramic ferroelectric composite material-BSTO-MgO. US patent,5427988,1995.62-65
    [94]A. Belous, O. Ovchar, D. Durilin, et al. High-Q microwave dielectric materials based on the spinel Mg2TiO4. Journal of the American Ceramic Society,2006, 89(11):3441-3445
    [95]Y. B. Xu, T. Liu, Y. Y. He, et al. Dielectric properties of Bao.6Sro 4Ti03-La (Bo.5Tio.5)03 (B=Mg, Zn) ceramics. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2009,56(11):2343-2350
    [96]T. B. Adams, D. C. Sinclair, A. R. West, et al. Decomposition reactions in CaCu3Ti4O12 ceramics. Journal of the American Ceramic Society,2006,89(9): 2833-2838
    [97]N. Shoichiro, T. Keiichiro, K. Kumiko. Effect of Mn doping on the dielectric properties of BaaTi9O20 ceramics at microwave frequency. Japanese Journal of Applied Physics,1983,22(7):1125-1128
    [98]Z. Yuan, Y. Lin, J. Weaver, et al. Large dielectric tunability and microwave properties of Mn-doped (Ba,Sr)TiO3 thin films. Applied Physics Letters,2005, 87(15):152901-1-152901-3
    [99]R. S. Katiyar, M. Jain, S. B. Majumder. Investigations on sol-gel derived Ba0.5Sr0. 5Ti1-δMnδO3 (δ=0.0 to 5.0 at%) thin films for phase shifter applications. Proceedings of MRS.2002. H2.1.1-H2.1.12
    [100]A. J. Moulson, J. M. Herbert. Electroceramics:Materials, Properties, Application. Chapman and Hall, London,1990
    [101]M. Jain, S. B. Majumder, R. S. Katiyar, et al. Improvement in electrical characteristics of graded manganese doped barium strontium titanate thin films. Applied Physics Letters,2003,82(12):1560861-1-1560861-3
    [102]S. G. Lee, C. I. Kimb, J. P. Kim, et al. Structural and dielectric properties of barium strontium calcium titanate thick films modified with MnO2 for phased array antennas. Materials Letters,2004,58(1-2):110-114
    [103]L. H. Chiu, L. C. Sengupte, S. Stowell. Ceramic ferroelectric composite materials with enhanced electronic properties BSTO-Mg based compound-rare earth oxide. US Patent:US6074971,2000.1-10
    [104]R. Rani, P. Kumar, S. Singh, et al. Influence of Zr substitution on ferroelectric properties of BST ceramics. Ferroelectrics Letters,2011,38(4-6):108-113
    [105]S. Jayanthi, T. R. N. Kutty. Dielectric properties of barium magnesiotitanate ceramics, BaMg6Ti6019. Materials Letters,2006,60(6):796-800
    [106]B. Wu, L. Y. Zhang, X. Yao, et al. Low temperature sintering of BaxSr1-xTiO3 glass-ceramic. Ceramics International,2004,30(7):1757-1761

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700