大功率甚低频水下声源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水声工程学科的发展和海洋对于人类未来生存重要性的体现,凸显了具有传播距离优势的甚低频声波在海洋探测、开发以及军事领域运用的广阔前景,因而使得水下甚低频声源成为水声换能器领域研究的一个热点。在此研究背景下,论文将电-磁直线振动技术作为甚低频声源的突破口,以期在较小的体积、重量前提下,实现甚低频声源大功率发射并且有一定工作带宽等工作性能。
     首先对甚低频大功率声源的设计难点进行了分析,结合对甚低频声源发展的研究,提出了电磁式大功率甚低频水下声源的设计思路。通过对等效磁路和机电能量转换原理的研究,建立了电磁式甚低频声源的等效磁路模型、机械振动动力学模型和动态特性微分方程组,为电磁式声源的动态性能研究提供了基础。
     在此基础上,研制了电磁式驱动大功率甚低频水下声源:从平面活塞辐射特性研究出发,建立电-磁、磁-力、力-振动转换模型。采用Matlab/Simulink仿真模块建立了电磁式声源电压、磁链、反电动势、电磁力和机械运动仿真模块构成的声源动态特性仿真模型。运用仿真模型分析了电磁式声源磁路参数、驱动电压与电磁力的关系,研究了电磁声源在不同频率下的振动动态特性。然后利用电磁有限元分析软件Ansoft对电磁式声源性能进行了仿真。在仿真中引入了材料非线性和驱动匹配的概念,精确的优化了声源的磁路特性、动态特性。根据优化分析的结果,制作了电磁式大功率甚低频水下声源试验样机。通过仿真计算和试验测试,验证了电磁式声源具有大功率甚低频发射、体积小、重量轻的优点。试验样机最大外形尺寸φ320mm×280mm,重量45kg。实际测得水中谐振频率72Hz,-3dB带宽71Hz-82Hz,最大声源级186dB。
     为了克服电磁式声源倍频效应和工作带宽窄的缺点,进一步降低声源的工作频率,引入了动磁式驱动概念,设计了圆桶型和平板型两种动磁式甚低频声源。动磁式甚低频声源采用Ansoft软件进行了磁路、电磁力、动态特性优化。分析了磁路磁场均匀性、电磁力与磁路结构和永磁体的关系以及电磁力与声源动态特性的关系,从而进一步优化了声源的辐射效率和工作带宽。根据优化结果,设计了圆桶型和平板型动磁式甚低频声源试验样机。圆桶型动磁式甚低频声源直径φ420mm,长930mm,质量103kg。声源水中谐振频率12.5Hz,发射电流响应152dB。在5Hz到500Hz发射电流响应都大于140dB。平板型动磁式甚低频声源直径φ216mm,长460mm,重28kg。声源水中谐振频率15Hz,最大声源级168dB,10Hz到200Hz工作频段内声源级大于145dB。
With the development of underwater acoustic engineering and the importantembodiment of ocean for the future survival of the human, the broad prospects of ultra-lowfrequency sound wave which has advantage of long transmission distance is prominent inocean exploration, ocean exploitation and military field. So the ultra-low frequencyunderwater sound source becomes a hot point in underwater acoustic researches. In thisresearch background, the electric-magnetic linear vibration technology becomes an entrypoint for high-power transmitter of ultra-low frequency with a certain bandwidth, which hasthe small size and light weight.
     The challenges of ultra-low frequency sound source design are analyzed at first. Thenthe design idea of high-power electromagnetism ultra-low sound source is brought forwardwith the development of ultra-low frequency sound source research. By researching thetheories of equivalent magnetic circuit and electromechanical energy conversion, theequivalent magnetic circuit model, dynamic model of mechanical vibration and differentialequations for dynamic characteristics are established for the researching dynamiccharacteristics of electromagnetism ultra-low sound source.
     On this basis, the electromagnetism high-power ultra-low sound source is developed:The radiation characteristic in piston type is researched at first and the electricity-magnetism,magnetism-force, force-vibration conversion model is founded. Then, the voltage, fluxlinkage, back EMF, electromagnetic force and the mechanical movement simulation moduleare established by Matlab/Simulink. With these modules, the dynamic characteristicssimulation model is composed. The next, the performances of electromagnetism sound sourceare simulated by electromagnetism finite element analysis software Ansoft. In the simulation,the magnetic characteristics and dynamic characteristics are optimized accurately by puttingforward the concepts of Material nonlinearity and power matching. According to the results ofoptimization analysis, the test prototype of electromagnetism high-power ultra-low soundsource is produced. Through simulation and experimental testing, the advantages of highpower, small size and light weight in sound source are verified. The prototype of the soundsource has a size of320mm in outside diameter,280mm in length and45kg in weight, with anunderwater resonant frequency of72Hz,71Hz-82Hz for-3dB bandwidth, and maximumsound level of186dB at the resonant frequency.
     In order to overcome the double frequency effect and narrow bandwidth of electromagnetism sound source and further reduce the resonant frequency, the advancedmoving magnet driver is brought forth. Then the drum type and flat type moving magnet ultralow frequency sound source are designed. Using the Ansoft software, the magnetic circuit,electromagnetic force and dynamic characteristics are optimized。By analyzing uniformity ofmagnetic field, relationship between electromagnetic force and structure of magnetic circuit,the radiation efficiency and bandwidth of sound source are further optimized. According tothe results of optimization analysis, the test prototype of drum type and flat type movingmagnet ultra low frequency sound source are designed. Drum type moving magnet ultra lowfrequency sound source has a size of420mm in outside diameter,930mm in length and103kgin weight with an underwater resonant frequency of12.5Hz. The maximum transmittingcurrent response is152dB at the resonant frequency and the transmitting current response areall over140dB between5Hz-500Hz. Test prototype of flat type moving magnet ultra lowfrequency sound source has a size of216mm in outside diameter,460mm in length and28kgin weight with an underwater resonant frequency of15Hz. The maximum sound level is168dB at the resonant frequency and the sound level are all over145dB between10Hz-200Hz.
引文
[1] Chsrles H.Sherman, John L.Butler. Transducers and Arrays for underwaterSound. Springer,2006:4-5P
    [2]阎福旺,凌青.水声换能器技术.海军出版社,1999:1-2页
    [3]吴运发,孙乃宏.反潜的关键设备—声纳浮标的现状和发展.声学技术,1999(2):94-96页
    [4] W S伯迪克.水声系统分析.海洋出版社,1992:84页
    [5]刘伯胜.水声学原理.哈尔滨工程大学出版社,1993:68-70页
    [6] Walter H, Robert C, Spindel. The Heard island Feasibility Test. Acoust. Soc. Am.1994.96(04):2330-2342P
    [7]关定华.用声学方法监测海洋—海洋声层析技术和大洋气候声学测温.物理学进展.1996,16(3):505-513页
    [8] Astrid Z, Klaus A, Armin R. Acoustic tomography as a remote sensing method toinvestigate the near-surface atmospheric boundary layer in comparison with situmeasurements.Journal of Atmospheric and Oceanic Technology,2002,19(2):1205-1215P.
    [9] Акуличев. Акустическая томография для мониторингя японского моря, Морскиетехнологии,2000:151-158P
    [10]郑士杰,袁文俊.水声计量测试技术.哈尔滨工程大学出版社,1995年:365-370页
    [11] Jeff Nelligan. Testing Needed to prove SURTASS/LFA Effectiveness in Littoralwaters.2002, GAO-02-692
    [12] J.S. Johnson. Executive SummaryFinal Supplemental Environmental Impact Statementfor Surveillance Towed Array Sensor System Low Frequency Active (SURTASS LFA)Sonar.2007
    [13]蒋华.解密美国音响测定舰.舰船知识.2009(5):20-25页
    [14]陈煌铭.振动基础分析与设计.科技图书股份有限公司,1986:3页
    [15] M. D. McCollun. Transducers for Sonics ang Ultrasonics. Technomic pulishingCO.INC,1992:17-21P
    [16] R.W.Timme, A.M. Young. Transducer Needs for low-frequency sonar. Naval researchlaboratory, A270232
    [17]程耀东.机械振动学.高等教育出版社,2005:46页
    [18]杜功焕,牛哲民,龚秀芬编著.声学基础(下册).上海科学出版社,1981:69页
    [19]栾桂冬,张金,朱厚卿.低频大功率发射换能器的要求与限制.声学技术,1999,18(2):54-58页
    [20] Ralph S. Woollet. Underwater Helmholtz-resonator Transducers: General designprinciples. AD-A043359.1977.
    [21] A. M. Young, T. A. Henriquez, Underwater Helmholtz resonator for Low Frequency,High-power Applications. AD-A232532.1987
    [22] Ralph S. Woollet. VFL flexural disk transducers using disks1meter in diameter.AD-A034165.1976
    [23] Bruce M. Howe, Stephen G.. Anderson. Instrumentation for the acoustic thermometryof ocean climate(ATOC) prototype pacific ocean network. Challenges of OurChanging Global Environment Conference Proceedings. Washington,1995:1483-1500P
    [24] J. K. Bertoldi. Underwater acoustic projector for acoustic thermometry of oceanclimate. Undersea Defense Technology Conference.1995.
    [25]朱厚卿.稀土超磁致伸缩材料的研究.应用声学.1998(5):3-10页
    [26] J. M. Sewell and P. M. Kuhn. Opportunities and. Challenges in the use of terfenol forsonar transducer. Transducer needs for low-frequency sonar. Power Transducers forSonics and Ultrasonics. Proceeding of the international workshop, France,1987:134-142P
    [27] Mark B. Moffett, A. E. Clark, M. wun-Fogle, J. F. Lindberg, J. P. Teter, E. A.Mclaughlin. Characterization of Terfenol-D for magnetostrictive transducers. J. Acoust.Soc. Am.1991,89(3):1448-1455P
    [28] John L. Butler, Susan M. Cohick. Rare earth iron octagonal transducer.J.Acoust.Soc.Am.1980,67(5):1809-1811
    [29] Susan M. Cohick, John L. Butler. Rare-earth iron ‘square ring’ dipole transducer.J.Acoust. Soc.Am.1982,72(2):313-315P
    [30]奚德昌.振动台及振动试验.机械工业出版社,1985:152页
    [31]郑士杰,袁文俊,缪荣兴,薛耀泉.水声计量测试技术.哈尔滨工程大学出版社,1995:39页
    [32]李宁,陈建峰.各种水下声源的发声机理及特性.应用声学.200928(4):241-248页
    [33]陈兵,宋昭海.枪式气爆声源的工作原理及发展趋势.水雷战与舰船防护.2006(3):42-43页
    [34]修瑞贵,张秀海.论液电效应及产生原因.山东师大学报.1991,6(4):40-44页
    [35]刘强,孙鹞鸿.水中脉冲电晕放电的声学特性研究.高压电技术.2007,33(2):59-61页
    [36]金明剑.水下等离子体声源电特性的基础性研究.中国科学院电工研究所.2004
    [37] W. T. Harris. Split Cylindrical Transducer. U.S. Patent2,812,452, Nov.5,1957
    [38] Lucien A. Petermann. Transducer. U.S. Patent2,928,069, Mar.8,1960
    [39] Patrick M. Brogan, Frank V. Costanzo, William J. Marshall, Dino Roberti. SlottedCylinder Acoustic Transducer. U.S. Patent2009/0245027A1, Oct.1,2009
    [40] Jason W. Osborn, Ultra-Low Frequency Acoustic Transducer. U.S. Patent6,781,288,Aug.24,2004
    [41] Charles H. Sherman, Transducers and Arrays for Underwater Sound. Springer,2006:143-146P
    [42] Rune tengham. PGS Electrical Marine Vibrator. PGS Geophysical.20055(11)
    [43] Rune tengham. Electrodynamic driving means for acoustic emitters. U.S. Patent5,959,939, Sep,28,1999
    [44] Rune tengham. Drive assembly for acoustic sources. U.S. Patent6,851,511,Feb,8,2005
    [45] Rune tengham. Low frequency flextensional acoustic source for underwater use. U.S.Patent6,076,629, Jun,20,2000
    [46] Andrew R. McNeese. An investigation of the combustive sound source.159thMeetingAcoustical Society of America/NOISE-CON.2010
    [47] Andrew R. McNeese. An investigation of the combustive sound source. IEEE Journalof oceanic engineering.1995:311-320p
    [48]戚诒让,许龙江.水下光击穿所激发的声场的方向特性.声学学报.1991,16(2):145-151页
    [49]冯绍松.激光在液体中发声及其在海洋开发中的应用.声学技术.1992,11(1):17-22页
    [50]李荣福,许龙江.水中激光声脉冲特新及其传播损失.舰船科学技术.2002,24(1):41-45页
    [51]刘永平,莫西平.采用弯曲梁结构的壳体制作的甚低频水声换能器.中国专利.200620008145.72007年5月
    [52]王宇虹,王江安.激光致声换能器的实验与应用论证.声学学报.2011,36(1):20-26页
    [53]刘国强. Ansoft工程电磁场有限元分析.电子工业出版.2005:120-125P
    [54]赵博,张洪亮. Ansoft12在工程电磁场中的应用.中国水利水电出版社.2010
    [55]盛剑霓.工程电磁场数值分析.西安交通大学出版社.1991
    [56]吴昌聚,沈润杰.水下振动动态特性研究.机械设计.2003,20(3):35-39页
    [57]何文.宽频大尺寸水下振动台关键技术的研究.浙江大学硕士学位论文.2006
    [58]刘同娟,金能强.电磁铁瞬态特性的仿真研究.低压电器.2005(6):14-18页
    [59]白志红,周玉虎.电磁铁的动态特性的仿真与分析.电力学报.2004(3):200-204页
    [60]李勇,崔友,陆永平.一种高速电磁制动器制动过程的动态特性分析.电工技术学报.2007,22(8):131-135页
    [61] Derek N. Dyck. Transient analysis of an electromagnetic shaker using circuitsimulation with response surface models. IEEE transactions on magnetics.2001:3698-3701P
    [62] Yoshhiir Kawase.3-D finite element analysis of dynamic characteristics ofelectromagnet with permanent magnets. IEEE transactions on magnetics.2002(38):361-364P
    [63]黄耀清.基于Maxwell3D的电磁体的优化设计.江苏大学硕士学位论文.2007
    [64]叶云岳.直线电机原理与运用.机械工业出版社.2000
    [65]王旭平,王淑红.动圈式直线振动电机动态分析.微电机.2005,38(4):41-43页
    [66] Robert Redlich. A summary of twenty years experience with linear motor andaltermators. Linear drives for industry applications.1995. Nagasaki. Japan
    [67]张琛.电磁型微电机的发展趋势及我们的对策.上海交通大学信息存储研究中心
    [68]钱庆鹏.动圈式永磁直线电机的磁场和电磁力.2002年全国直线电机学术年会论文集.2002年
    [69]王序平.动圈式永磁振动电机研究.太原理工大学硕士学位论文.2004年
    [70]李肖伟.动铁型直线振动电机的动态分析.电工技术学报.1996,11(2):42-46页
    [71] I. Boldea, S.A. Nasar. Linear electri actuators and generators. IEEE Trans.onengery conversion.1999(3):712-715P
    [72]蔡长春,徐志锋.直线电机的应用和发展.南昌航空工业学院材料系.2003,6
    [73]夏永明.新型双定子直线振荡电机研究.浙江大学博士学位论文.2007年
    [74] Jin Liu, Steven Garrett. Characterization of a small moving-magnet electrodynamiclinear motor. J. Acoust. Soc. Am.2005118(4):2289-2294P
    [75]郝双晖,刘吉柱,龙瑞政,郑伟峰,郝明晖.动磁式永磁直线同步电动机电磁力分析.微特电机.2010(1):1-8页
    [76]赵科,金涛,童水光,郑水英.冰箱用动磁式直线压缩机的动态特性仿真.浙江大学学报.2009,43(1):138-142页
    [77] Thomas A.Froeschle. Permanent magnet transducing. U.S. Patent5,216,723, Jun.1,1993
    [78] Paul. J. Patt. Frictionless motor material testing. U.S. Patent6,405,599,Jun.18,2002
    [79] Roger Mark. Relieving stress in a flexure. U.S. Patent7,679,229, Mar.16,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700