铰接转向工程车辆侧倾稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铰接转向工程车辆行驶路面复杂,工作环境恶劣,并且转弯时车辆重心会发生横向偏移,导致翻车事故发生几率较高。本文结合国家自然科学基金项目“非公路车辆防翻车主动安全技术研究”(NO.51175216)和高等学校博士学科点专项科研基金项目“工程车辆主动防倾翻系统设计理论与控制技术”(NO.20100061110014),对铰接转向工程车辆的侧倾稳定性进行系统研究,以轮式装载机为研究对象,提出了适用于铰接转向工程车辆的侧倾稳定性指标,并建立了7自由度非线性侧倾动力学模型,利用物理样机试验和虚拟样机仿真对所建立的动力学模型进行了验证,提出了改进铰接转向工程车辆的侧倾稳定性的措施。
     在综述国内外铰接转向工程车辆侧倾稳定性研究成果的基础上,结合铰接转向工程车辆的特性以及侧倾失稳原因,分析了铰接转向角、侧向加速度以及侧倾角等因素对现有指标的影响,讨论了现有各稳定性评价指标在铰接转向工程车辆上应用的不足,提出了适用于铰接转向工程车辆的侧倾稳定性指标。
     基于拉格朗日方程及虚功原理,建立了轮式装载机的7自由度非线性侧倾动力学模型,该模型全面考虑了车辆横摆、侧倾、俯仰等3个转动自由度以及纵向、横向、垂向3个平动自由度和后桥摆动自由度。模型以车辆的结构参数、铰接转向角、坡度角以及车速等作为输入,以车辆的动力学和运动学特性如侧倾角、侧倾角速度、侧向加速度、横向载荷转移率等作为输出。采用后向差分法对所建立的模型进行了数值求解。为验证所建立的动力学模型的可靠性,设计并制造了某型号铰接转向装载机的物理样机模型,进行了平面转弯,斜坡转弯以及越障等工况的试验;建立了铰接转向装载机虚拟样机模型,进行了对应工况下的虚拟样机仿真。通过对比侧倾动力学模型仿真结果、试验结果以及虚拟样机仿真结果,发现三者吻合程度较高,从而验证了所建立的动力学模型的正确性。
     利用7自由度非线性侧倾动力学模型,对某轮式装载机的侧倾稳定性进行了详尽的分析。所分析的参数中包括转弯速度、转弯半径、铰接转向角速度、坡度角、前桥到铰接轴线的距离、后桥到铰接轴线的距离、轮距以及摆动桥等。结果显示,摆动桥的存在对车辆在水平路面上的侧倾稳定性影响不大但对其在坡路上的侧倾稳定性影响非常大。分析结果对改进车辆的侧倾稳定性设计有一定的参考价值。
     根据铰接转向工程车辆侧倾稳定性分析结果,提出了基于摆动桥的改进方案。该方案中在现有的被动式摆动桥基础上增加检测组件、控制组件以及液压组件,使其成为主动式摆动桥;当车辆在水平路面上行驶时,该主动式摆动桥所实现的功能与被动式摆动桥基本一致,不会影响到车辆的越障性能;当车辆在坡路行驶时,该主动式摆动桥将会限制后桥的摆动以增强其侧倾稳定性。对改进后的车辆进行了仿真分析,结果显示该方案可以提高铰接转向工程车辆的侧倾稳定性。
     本文建立了全面分析铰接转向工程车辆特性的侧倾动力学模型,提出了适用于铰接转向工程车辆的侧倾稳定性指标,并将被动式摆动桥改进为主动式摆动桥以提高车辆侧倾稳定性。论文的研究工作为铰接转向工程车辆的安全性设计及主动防倾翻安全技术的开发提供了依据,对于提高铰接转向工程车辆作业的安全性和保护司机的生命安全具有重要意义。
Articulated steer engineering vehicle travels on complex road, its working condition isbad, and when steering, the center of gravity will offset laterally which will lead a higherprobability of rollover accident. By the financial support of National Natural ScienceFoundation of China (NO.51175216) and Ministry of Education Fund for the Doctoral(NO.20100061110014). This paper aims at the rollover stability of articulated steerengineering vehicle systematically, suitable indicators for the dynamic rollover stability ofthe articulated engineering vehicle were proposed and a7DOFs nonlinear dynamics modelwas established. Then the dynamics model was validated by the physical prototype test andvirtual prototype simulation. Finally, measures for improving the rollover stability of thearticulated engineering vehicle were presented.
     On the basis of domestic and overseas researches on the index of the rollover stabilityof the articulated steer engineering vehicle, and considering the characters of articulatedsteer engineering vehicle and the reasons of lateral instability, the effects of steering angle,lateral acceleration and the roll angle were analyzed, and then the insufficient of eachindicator was discussed. Based on the above analysis, the indicators which are suitable forthe articulated steer engineering vehicle were proposed.
     Basing on the Lagrange method and virtual work principle, and comprehensivelyconsidering three rotary motions, a7DOFs nonlinear dynamics wheel loader model wasestablished. The inputs of this model are structure parameters, articulated steer angle, angleof gradient, velocity and etc., and basing on the dynamics and kinematics characteristics ofthe articulated vehicle, the outputs are roll angle, roll angular velocity, lateral acceleration,lateral-load transfer ratio etc. Then the established model was analyzed by using thebackward difference method. In order to verify the reliability of the established dynamicsmodel, a scaled articulated loader was built and tested in different working conditions, suchas turning on the level ground, turning on the slope, moving through obstacles and etc. Acorresponding virtual prototype model was built, and relevant simulations about the modelswere carried out. By comparing the lateral dynamic model simulations, the test results, andthe virtual prototype simulation results, it shows that the degree of agreement is relativelyhigh, so the correctness of the established dynamics model is validated.
     By using the established dynamics model, detailed analysis of the influencing parameters of a wheel loader’s dynamic rollover stability was carried out, and theparameters include corner velocity, turning radius, articulated steer angular velocity, angleof gradient, the distance between the front axle and the hinge axle, the distance between therear axle and the hinge axle, wheel tread, oscillating axle and etc. Through analysis, itshows that as for the vehicle on the level ground, the influence of the oscillating axle is notlarge, but if on the slope, its influence is very large. The analysis results have somereference values in improving the design of the rollover stability for articulated engineeringvehicle.
     According to the conclusions from the analysis, an improving plan was proposedbasing on the oscillating axle. In this plan, by adding sensing, controlling and hydrauliccomponents, the passive oscillating axle was changed to be an active one; when the vehicleis moving on the level ground, there is almost no difference between the passive and theactive oscillating axle on the obstacle performance; but when travelling on the slope, theactive oscillating axle could strengthen the rollover stability by limiting the swinging of therear axle. Simulations of the improved vehicle were carried out. The analyzing results showthat, this plan could improve the rollover stability of the articulated steer engineeringvehicle.
     A rollover dynamics model which more comprehensively considering the engineeringvehicle features was established; the indicators that are suitable for the rollover stability ofthe articulated steer engineering vehicle were proposed in this paper; and the passiveoscillating axle was replaced by the active oscillating axle which could improve theperformance of vehicle’s rollover stability. This research provides a basis for the design ofthe engineering vehicle safety and the development of active safety technology forarticulated steer engineering vehicle, and it has an important significance in improving theoperational safety and protecting the life of the driver of the articulated steer engineeringvehicle.
引文
[1] Iida M, Fukuta M, Tomiyama H. Measurement and analysis of side-slip angle for anarticulated vehicle [J]. Electrical Journal of Engineering in Agriculture Environmentand Food,2009,3(01):1-6.
    [2] Iida M, Nakashima H, Tomiyama H. Small-radius turning performance of anarticulated vehicle by direct yaw moment control [J]. Computers and Electronics inAgriculture,2011,76:277-283.
    [3]司俊德.基于人体损伤的工程车辆翻车保护系统性能研究[D].长春:吉林大学,2011.
    [4]魏秀玲.工程车辆翻车事故中司机保护系统性能研究[D].长春:吉林大学,2009.
    [5] ISO3471:2008. Earth-moving machinery-Roll-over protective structures-Laboratory tests and performance requirements [S].
    [6]王继新.工程车辆翻车保护结构设计方法与试验研究[D].长春:吉林大学,2006.
    [7]张玉新.铰接转向工程车辆倾翻稳定性与防倾翻预警策略研究[D].长春:吉林大学,2012.
    [8] McCann M. Heavy equipment and truck-related deaths on excavation work sites [J].Journal of Safety Research,2006,37(5):511-517.
    [9]胡爱军,王朝晖.汽车主动安全技术[J].机械设计与制造,2010,07:97-99.
    [10]杨秀芳,张新,常桂秀,等.汽车主动安全技术的发展现状及趋势[J].重庆工学院学报(自然科学版),2008,22(04):15-17.
    [11]吴新烨,葛晓宏,罗树友,等.汽车侧翻稳定性研究[J].厦门大学学报(自然科学版),2010,49(06):815-818.
    [12]张庭龙.某重型卡车侧翻性能的试验与仿真研究[D].长沙:湖南大学,2011.
    [13] Rakheja S, Piche A. Development of directional stability criteria for an early warningsafety device [J]. SAE Paper,1990, No.902265.
    [14] Preston-Tomas J, Woodrooffe J H. A feasibility study of a rollover warning device forheavy trucks, No.TP10610E [R].Marine: Transport Canada Publication,1990.
    [15] Nalecz A G, Lu Z. An investigation into dynamic measures of vehicle rolloverpropensity [J].SAE Paper,1990, No.930831.
    [16] Baker D, Bushman R, Berthelot C. Effectiveness of truck rollover warning systems [J].Transportation Research Record: Journal of the Transportation Research Board,2001,1779:134-140.
    [17] Cheng C, Cebon D, Improving roll stability of articulated heavy vehicle using activesemi-trailer steering [J]. Vehicle System Dynamics,2008,46(S1):373-388.
    [18] Sampson D J M., Cebon D. Active roll control of single unit heavy road vehicles [J].Vehicle System Dynamics,2003,40(4):229-270.
    [19] Chen B C, Peng H. Rollover warning for articulated vehicles based on atime-to-rollover metric [J].ASME Journal of Dynamic Systems, Measurement andControl,2005,127:406-414.
    [20] Chen B C, Peng H. A real-time rollover threat index for sports utility vehicles [C].American Control Conference, California:1999.
    [21]金智林,翁建生,胡海岩.汽车侧翻预警及防侧翻控制[J].动力学与控制学报,2007,5(4):365-369.
    [22] Yu H. Heavy duty vehicle rollover detection and active roll control [J]. VehicleSystem Dynamics,2008,46(6):451-470.
    [23]朱天军.基于改进TTR重型车辆侧翻预警及多目标稳定性控制算法研究[D].长春:吉林大学,2010.
    [24]丁良旭,徐宗俊,郭钢.汽车横向静侧翻稳定性的仿真评估[J].客车技术与研究,2005,(06):10-12.
    [25] Magnus G, Olof L. A9-dof tractor-semitrailer dynamic handling model for advancedchassis control studies [J]. Vehicle System Dynamics,2004,41(01):51-82.
    [26] Yisa M G, Terao H, Kubota M. Dynamics of tractor-implement combinations onslopes (Part I): State-of-the-art Review [J].Journal of the Faculty of Agriculture,Hokkaido University,199566(02):240-262.
    [27] Yisa M G, Terao H, Kubota M. Dynamics of tractor-implement combinations onslopes (Part II): Computer simulation of directional dynamics [J]. Journal of theFaculty of Agriculture, Hokkaido University.1995,66(02):263-275.
    [28] Yisa M G, Terao H, Noguchi N, et al, Dynamics of tractor-implement combinationson slopes (Part III): Stability regions and optimum design parameters [J]. Journal ofthe Faculty of Agriculture, Hokkaido University.1998,68(01):1-16.
    [29] Yisa M G, Terao H, Kubota M. Dynamics of tractor-implement combinations onslopes (Part IV): Experimental validation of simulation models [J]. Journal of theFaculty of Agriculture, Hokkaido University.1998,68(01):17-31.
    [30] Ahmadi I. Dynamics of tractor lateral overturn on slopes under the influence ofposition disturbances (model development)[J]. Journal of Terramechanics,201148:339-346.
    [31] Pazooki A, Rakheja S, Cao D, Modeling and validation of off-road vehicle ridedynamics [J]. Mechanical Systems and Signal Processing,2012,28:679-695.
    [32]何锋,杨宁,郑秉康.影响载重汽车倾翻的主要汽车因素分析[J].贵州工业大学学报(自然科学版),2001,30(04):92-96.
    [33]张玉新,王国强,陈超,等.主动防倾翻技术及其在工程车辆上的应用展望[J].工程机械,2011,42(06):56-60.
    [34] Xue X, Ingleton S, Roberts J, et al. Qualitative comparison of the characteristics ofarticulated and non-articulated trains and their effects on impact [J].Proceedings of theInstitution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit,2011,225(01):24-37.
    [35] Islam M M, Ding X J, He Y P.A closed-loop dynamic simulation-based design methodfor articulated heavy vehicles with active trailer steering systems [J]. Vehicle SystemDynamic,2012,50(5):675-697.
    [36] Huang H H, Yedavalli R K, Guenther D A. Active roll control for rollover preventionof heavy articulated vehicles with multiple-rollover-index minimisation [J]. VehicleSystem Dynamic,2012,50(3):471-493.
    [37] Rangavajhula K, Tsao H S J. Command steering of trailers and command-steering-based optimal control of an articulated system for tractor-track following [J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal ofAutomobile Engineering,2008,222(06):935-954.
    [38] Pradalier C, Usher K. Robust trajectory tracking for a reversing tractor trailer [J].Journal of Field Robotics,2008,25(6-7):378-399.
    [39] Odhams A M C, Roebuck R L, Cebon D, et al. Dynamic safety of active trailersteering systems [J]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics,2008,222(04):367-380.
    [40] Martinez J L, Morales J, Mandow A, et al. Steering limitations for a vehicle pullingpassive trailers [J]. IEEE Transactions on Control Systems Technology,2008,16(4):809-818.
    [41] Du H, Zhang N. Robust stability control of vehicle rollover subject to actuator timedelay [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal ofSystems and Control Engineering,2008,222(03):163-174.
    [42] Rangavajhula K, Tsao H S J. Active trailer steering control of an articulated systemwith a tractor and three full trailers for tractor-track following [J]. InternationalJournal of Heavy Vehicle Systems,2007,14(03):271-293.
    [43] Rangavajhula K, Tsao H S J. Effect of multi-axle steering on off-tracking anddynamic lateral response of articulated tractor-trailer combinations [J]. InternationalJournal of Heavy Vehicle Systems,2007,14(04):376-401.
    [44] Liu Z H. Characterisation of optimal human driver model and stability of atractor-semitrailer vehicle system with time delay [J]. Mechanical Systems and SignalProcessing,2007,21(05):2080-2098.
    [45] Du H, Zhang N. Robust controller design for improving vehicle roll control[J].International Journal of Automotive Technology,2007,8(04):445-453.
    [46] Hussain K, Stein W, Day A J. Modelling commercial vehicle handling and rollingstability [J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journalof Multi-body Dynamics,2005,219(04):357-369.
    [47] Tai M, Tomizuka M. Modelling of multi-unit heavy vehicle systems for automatedguidance [J].International Journal of Heavy Vehicle Systems,2004,11(01):26-46.
    [48] Kamnik R, Boettiger F, Hunt K. Roll dynamics and lateral load transfer estimation inarticulated heavy freight vehicles [J]. Proceedings of the Institution of MechanicalEngineers, Part D: Journal of Automobile Engineering,2003,217(11):985-997.
    [49] Wu D H. A theoretical study of the yaw/roll motions of a multiple steering articulatedvehicle [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal ofAutomobile Engineering,2001,215(12):1257-1265.
    [50] Mangialardi L, Mantriota G. Stability of an articulated vehicle with suspended cargo[J]. International Journal of Heavy Vehicle Systems,2001,8(01):83-102.
    [51] Goldman R W, El-Gindy M, Kulakowski B T. Rollover dynamics of road vehicles:Literature survey [J]. International Journal of Heavy Vehicle Systems,2001,8(02):103-141.
    [52] Bolzern P, Desantis R M, Locatelli A. An input-output linearization approach to thecontrol of an n-body articulated vehicle [J].Journal of Dynamic Systems,Measurement, and Control,2001,123(3):309-316.
    [53] van de Molengraft-Luijten M F J, Besselink I J M, Verschuren M A F, et al. Analysisof the lateral dynamic behaviour of articulated commercial vehicles [J]. VehicleSystem Dynamic,2012,50(S1):169-189.
    [54]向光.铰接式车辆在横坡上的稳定性研究[J].建筑机械化,1988,(07):16-19.
    [55]向光.铰接式车辆转向时的横向稳定性分析[J].工程机械,1981,(02):1-7.
    [56] Chen, C, Tomizuka, M. Modeling and control of articulated vehicles, UCB-ITS-PRR-97-42[R].Institute of Transportation Studies,1997.
    [57]朱国玺,王大洪.铰接转向车辆稳定性的研究[J].东北林业大学学报,1986,(01):45-50.
    [58]卢和铭.装载机的横向稳定性分析[J].长沙交通学院学报,1994,(03):32-37.
    [59]周齐齐.装载机纵向稳定性的分析与计算[J].机械工程师,2005,(08):95-96.
    [60]周国建.铰接式装载机转向及横向稳定动态数学模型[J].建筑机械,1993,(02):26-29.
    [61]张俊海.轮式机械坡道行驶稳定性分析[J].广西轻工业,2008,116(07):41-42.
    [62]罗士军.轮式铰接转向装载机线控转向控制系统研究[D].长春:吉林大学,2008.
    [63]赵美荣,常凯,杨希.矿井铰接式车辆转向特性分析[J].机械工程与自动化,2009,155(04):100-102.
    [64]魏勇刚,申进杰.煤矿井下铰接转向车辆转向机构优化设计[J].煤炭工程,2009,364(03):98-100.
    [65]葛强胜.铰接式车辆高速直线行驶动态仿真[J].农业机械学报,2003,34(04):39-42.
    [66]葛强胜,郭刚,华瑞平,等.铰接式车辆转向及横向动态数学模型[J].矿山机械,2000,(06):29-31.
    [67]汪建春,刘旺.铰接式车辆对扰动的瞬态和稳态响应(上)[J].矿山机械,2008,36(09):26-29.
    [68]汪建春,刘旺.铰接式车辆对扰动的瞬态和稳态响应(下)[J].矿山机械,2008,36(11):35-39.
    [69]汪建春.铰接式车辆原地转向阻力矩计算及力学模型讨论[J].矿山机械,2008,36(21):53-57.
    [70]蒋美华.工程铰接式车辆转向系的合理化设计[J].建筑机械,1996,(02):4-9.
    [71]徐挺.铰接式工程机构不稳定转向过程的运动学与动力学[J].工程机械,1979,(02):1-13.
    [72]许纯新,赵丁选,诸文农,等.铰接式车辆坡道行驶的动力分析[J].中国公路学报,1993,6(02):90-96.
    [73]刘昕晖,张杨.铰接式工程机械车辆转向振摆现象分析[J].机床与液压,2008,36(03):105-107.
    [74]刘建勋,王红坚,何绍华.军用铰接式工程机械高速行驶稳定性研究[J].工程机械学报,2003,01(01):30-35.
    [75]赵丁选,张子达,刘昕辉,等.铰接工程车辆稳定性的固有模态[J].中国公路学报,1995,8(03):76-79.
    [76]黄卫东,鲍劲松,徐有生,等.坡道行驶工况下月球车运动控制策略仿真[J].中国机械工程,2012,23(20):2481-2487.
    [77]葛安华,徐克生,涂洪森.铰接式车辆的稳定性研究[J].林业劳动安全,1995,(04):3-5.
    [78] Oreh S H T, Kazemi R, Azadi S. A new desired articulation angle for directionalcontrol of articulated vehicles [J].Proceedings of the Institution of MechanicalEngineers, Part K: Journal of Multi-body Dynamics,2012,226(04):298-314.
    [79] Lim K B, Yoon Y S. Reconfiguration planning for a robotic vehicle with activelyarticulated suspension in obstacle terrain during straight motion [J]. AdvancedRobotics,2012,26(13):1471-1494.
    [80] Chen L K, Shieh Y A. Jackknife prevention for articulated vehicles using modelreference adaptive control [J]. Proceedings of the Institution of Mechanical Engineers,Part D: Journal of Automobile Engineering,2011,225(01):28-42.
    [81] Rehnberg A, Drugge L, Trigell A S. Snaking stability of articulated frame steervehicles with axle suspension [J]. International Journal of Heavy Vehicle Systems,2010,17(2):119-138.
    [82] Kang J, Kim W, Lee J, et al. Design, implementation, and test of skid steering-basedautonomous driving controller for a robotic vehicle with articulated suspension[J].Journal of Mechanical Science and Technology,2010,24(03):793-800.
    [83] Wideberg J, Dahlberg E. A comparative study of legislation and stability measures ofheavy articulated vehicles in different regions [J]. International Journal of HeavyVehicle,2009,16(3):354-361.
    [84] Salaani M K. The application of understeer gradient in stability analysis of articulatedvehicles [J]. International Journal of Heavy Vehicle,2009,16(1-2):3-25.
    [85] Regehr J D, Montufar J, Rempel G. Safety performance of longer combinationvehicles relative to other articulated trucks [J]. Canadian Journal of Civil Engineering,2009,36(01):40-49.
    [86] Moon K H, Lee S H, Chang S, et al. Method for control of steering angles forarticulated vehicles using virtual rigid axles [J]. International Journal of AutomotiveTechnology,2009,10(04):441-449.
    [87] Lee S H, Park T W, Moon K H, et al. The articulated vehicle dynamic analysis usingthe AWS (All Wheel Steering) ECU (Electronic Control Unit) test [J].Journal ofMechanical Science and Technology,2009,23(04):923-926.
    [88] Azad N L, Khajepour A, Mcphee J. A survey of stability enhancement strategies forarticulated steer vehicles [J]. International Journal of Heavy Vehicle Systems,2009,16(01-02):26-48.
    [89] Goodarzi A, Behniadi M, Esmailzadeh E. An optimised braking force distributionstrategy for articulated vehicles [J].Vehicle System Dynamic,2008,46(S1):849-856.
    [90] Chen L K, Hsu J Y. Investigation of jack-knife prevention in an articulated scaledvehicle [J]. Vehicle System Dynamic,2008,46(S1):765-777.
    [91] Yossawee W, Tsubouchi T, Kurisu M, et al. A semi-optimal path generation schemefor a frame articulated steering-type vehicle [J]. Advanced Robotics,2006,20(08):867-896.
    [92] Yavin Y. Modelling the motion of an underground mining vehicle [J]. Mathematicaland Computer Modelling,2005,42(09-10):1123-1130.
    [93] Miege A J P, Cebon D. Active roll control of an experimental articulated vehicle [J].Proceedings of the Institution of Mechanical Engineers, Part D: Journal ofAutomobile Engineering,2005,219(06):791-806.
    [94] Miege A J P, Cebon D. Optimal roll control of an articulated vehicle: theory andmodel validation [J]. Vehicle System Dynamic,2005,43(12):867-893.
    [95] He Y, Khajepour A, Mcphee J, et al. Dynamic modelling and stability analysis ofarticulated frame steer vehicles [J]. International Journal of Heavy Vehicle Systems,2005,12(01):28-59.
    [96] Haggag S, Alstrom D, Cetinkunt S, et al. Modeling, control, and validation of anelectro-hydraulic steer-by-wire system for articulated vehicle applications [J].IEEE/ASME Transactions on Mechatronics,2005,10(06):688-692.
    [97] Khajepour A, Mcphee J. The effects of drive configuration on undesirable behaviorsof articulated steer vehicles [C].Vehicle Power and Propulsion,2005IEEEConference,2005.
    [98] Mantriota G. Directional stability of articulated tank vehicles: A simplified model [J].International Journal of Heavy Vehicle Systems,2003,10(01-02):144-165.
    [99] Kaneko T, Kageyama I. A study on the braking stability of articulated heavy vehicles[J]. JSAE Review,2003,24(02):157-164.
    [100] Iagnemma K, Rzepniewski A, Dubowsky S, et al. Control of robotic vehicles withactively articulated suspensions in rough terrain [J]. Autonomous Robots,2003,14(01):5-16.
    [101] Rakheja S, Romero J A, Lozano A, et al. Assessment of open-loop rollover control ofarticulated vehicles under different manoeuvres [J]. International Journal of HeavyVehicle Systems,2002,9(03):204-222.
    [102] Mantriota G. Influence of suspended cargoes on dynamic behaviour of articulatedvehicles [J]. International Journal of Heavy Vehicle Systems,2002,9(01):52-75.
    [103] Haque I, Nagurka M. Modelling and linear analysis of high-speed articulated trainsets[J]. International Journal of Vehicle Design,2001,26(02-03):249-263.
    [104] Corke P I, Ridley P. Steering kinematics for a center-articulated mobile robot [J].IEEE Transactions on Robotics and Automation,2001,17(2):215-218.
    [105] Azad N L. Dynamic modeling and stability controller development for articulatedsteer vehicles [D]. Waterloo Ontario: University of Waterloo,2006.
    [106] Azad N L, Mcphee J, Khajepour A. Robust variable structure control for stabilisationof articulated steer vehicles by torque vectoring [J].International Journal of HeavyVehicle System,2007,14(4):331-354.
    [107] Azad N L, Khajepour A, Mcphee J. Robust state feedback stabilization of articulatedsteer vehicles [J], Vehicle System Dynamics.2007,45:249-275.
    [108] Polotski V, Hemami A. Control of articulated vehicle for mining applications:Modeling and laboratory experiments, Proceedings of the1997IEEE InternationalConference on Control Applications[C]. Hartford:1997.
    [109] Yavin Y. Modeling the motion of an underground mining vehicle [J].Mathematicaland Computer Modeling.2005,42:1123-1130.
    [110]赵丁选.铰接车辆稳定性及其仿真与控制[M].北京:中国铁道出版社,1997.
    [111]刘刚,张子达.铰接式车辆行驶稳定性的理论分析与数值计算[J].吉林大学学报(工学版),2004,34(03):367-372.
    [112]叶盛,贾会星.关于铰接转向车辆侧翻过程的探讨,福建省科协第五届学术年会数字化制造及其它先进制造技术专题学术年会论文集[C].厦门:2005.
    [113]田晋跃,贾会星.铰接车辆侧倾过程动态仿真[J].农业机械学报,2006,37(7):26-29.
    [114]田晋跃,张克庭,贾会星.铰接式非公路车辆侧倾过程动态仿真[J].中国工程机械学报.2005,3(3):257-282.
    [115] Liu J. Development of stability index for tractors and its application in protectivestructure deployment [D]. Colorado: Colorado State University,1998.
    [116] Freedman M, Olson P L, Zador P L. Speed actuated rollover advisory signs for truckson highway exit ramps [R]. Arlington: Insurance Institute for Highway Safety,1992.
    [117] Strickland R, McGee H. Evaluation of prototype automatic truck rollover warningsystems, FHWA-RD-97-124[R]. Washington, DC: Federal Highway Administration,1998.
    [118] Ervin R D. Two active systems for enhancing dynamic stability in heavy truckoperations, PATH Record Number14833[R]. University of Michigan,1998.
    [119] QC/T480—1999汽车操纵稳定性指标限值与评价方法[S].
    [120] GB/T6323.3—94汽车操纵稳定性试验方法[S].
    [121] GB/T14172—2009汽车静侧翻稳定性台架试验方法[S].
    [122]葛安华.一种评价车辆稳定性的新方法[J].林业机械,1988,(02):58-59.
    [123] Moshchuk N K, Chen S K, Chen C F. Roll stability indicator for vehicle rollovercontrol: USA,7788007B2[P].2010-08-31.
    [124]郭凌汾.装载机横向一级稳定性计算[J].建筑机械,1986,(05):6-10.
    [125]赵丁选,王登峰,程悦荪,等.铰接转向拖拉机静态二级倾翻稳定性分析[J].农业机械学报,1994,25(01):21-26.
    [126]赵丁选,刘昕辉,朱诗顺,等.铰接车辆稳定性的监测与控制方法[J].中国公路学报,1996,9(02):115-121.
    [127]蔡婷婷,董满朝,崔守娟,等.基于稳定度的装载机稳定性评价[J].煤矿机械,2012,33(09):78-80.
    [128] Sampson D J M, Jeppesen B P, Cebon D. The development of an active roll controlsystem for heavy vehicles [C].Proceedings of6th International Symposium on HeavyVehicle Weights and Dimensions, Saskatoon:2000.
    [129] Miege A J P, Cebon D. Design and implementation of an active roll control system forheavy vehicles [C]. Proceedings of6th International Symposium on Advanced VehicleControl, Hiroshima:2002.
    [130] Gaspar P, Szaszi I, Bokor J. Reconfigurable control structure to prevent the rollover ofheavy vehicles [J]. Control Engineering Practice,2005,13(6):699–711.
    [131] Gaspar P, Bokor J. Fault-tolerant rollover prevention system based on an LPV method[J]. International Journal of Vehicle Design,2006,42(3-4):392–412.
    [132] Wolk A. Active suspension control for roll stability in a heavy vehicle [D].Cape Town:University of Cape Town,2006.
    [133]黄金凤.基于油气悬架的车身姿态控制[D].长春:吉林大学,2007.
    [134]杨占敏,张春秋.轮式装载机[M].北京:化学工业出版社,2006
    [135]姚宗伟,王国强,张玉新,等.铰接转向装载机动态重心位置检测系统及方法:中国, ZL201210109550.8[P].2013-03-06.
    [136]姚宗伟,王国强,张玉新,等.铰接转向装载机动态重心位置检测系统:中国,ZL201220158282.4[P].2012-10-31.
    [137]齐朝晖.多体系统动力学[M].北京:科学出版社,2008.
    [138]段正敏,王汉明.线性代数[M].北京:清华大学出版社有限公司,2006.
    [139]陈立群.理论力学[M].北京:清华大学出版社有限公司,2006.
    [140] Pacejka H B. Tyre and vehicle dynamics [M].Oxford: Butterworth-HeinemannLimited,2002.
    [141] Ortiz A, Cabrera J A, Castillo J, et al. Analysis and evaluation of a tyre model throughtest data obtained using the IMMa tyre test bench [J]. Vehicle System Dynamic,2005,43:241-252.
    [142] Fiala E. Seitenkr fte am rollenden luftreifen [J]. VDI Zeitschrift,1954,29(11):81-92.
    [143] Matlab User Guide [M]. Massachusetts: Mathworks Inc.,2010.
    [144] Kunkel P, Mehrmann V L. Differential-algebraic equations: analysis and numericalsolution [M]. Zürich: European Mathematical Society,2006.
    [145] Bottiglione F, Mantriota G. Field tests and validation of dynamical models of tankvehicles Part I: Mathematical model and experimental apparatus [J]. InternationalJournal of Heavy Vehicle System,2012,19(01):1-22.
    [146] Bottiglione F, Mantriota G. Field tests and validation of dynamical models of tankvehicles Part II: Experimental tests and results [J]. International Journal of HeavyVehicle System,2012,19(01):23-39.
    [147]杨忠炯,何清华.铰接车辆液压动力转向系统动态特性仿真[J].中南大学学报(自然科学版),2004,35(01):80-85.
    [148]鲁力群,黄铜生,石博强.铰接转向车辆液压转向系统参数计算及其计算机辅助设计[J].矿山机械,2009,37(03):44-47.
    [149]杜卫刚,赵闯. ADAMS在铰接转向车辆转向平稳性研究中的应用[J].煤矿机械,2011,32(08):67-68.
    [150]焦晓娟,张湝渭,彭斌彬编著. RecurDyn多体系统优化仿真技术[M].北京:清华大学出版社,2010.
    [151]连晋毅,张启胤,吴新,等.用于装载机的液压阻尼平衡式摆动桥装置:中国,201210026177.X [P].2012-07-04.
    [152]马俊,胡帮友,沈满清,等.轮式装载机用的后摆动架液压阻尼平衡装置:中国,201120223462.1[P].2012-03-07.
    [153]成大先,王德夫,姬奎生,等.机械设计手册:单行本.液压传动[M].北京:化学工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700