汽车气动升力及其对直线行驶能力影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国高等级公路通车里程数的快速增长,汽车实际行驶的平均速度有了明显的提高。同时能源危机、油价上涨引发的汽车轻量化又使得车身重量显著降低。这些原因使得汽车空气动力学性能尤其是气动升力对汽车性能的影响越来越大。伴随着生活水平的不断提高,消费者对汽车的安全性、舒适性等性能日益重视,这就对汽车的品质提出了更高的要求。气动升力作为评价汽车空气动力学性能的重要指标之一,不仅直接影响到汽车的安全性,同时也间接影响到汽车的燃油经济性。高速公路上经常出现的汽车发飘,汽车抬头现象更是进一步引起了相关人员对气动升力的关注
     到目前为止,汽车阻力系数的试验测定方法以及数值计算方法已经比较成熟,试验结果与计算结果吻合较好,但是对于升力系数,试验结果与计算结果经常存在较大误差。相对于阻力系数,升力系数的试验测定结果更易受模型安装、风洞结构等因素的影响,这就造成了升力系数的测量结果重复性差,且同一模型在不同风洞的测量结果经常会有较大差别。汽车的升力主要源于其上下表面的压差。由于汽车离地面很近,且底盘结构凹凸不平,底部流场相对复杂,计算结果易受网格、湍流模型等的影响,与试验结果的一致性较差。除此之外,与阻力越小越好不同,升力系数的优化目标则需根据实际情况具体分析,如赛车通常需要较大的负升力来帮助它实现高速转弯,而对于重型卡车则需要减小负升力,以降低轮胎与地面之间的摩擦阻力,从而实现低油耗。综上所述展开气动升力的试验和仿真研究不仅具有重大的理论意义,同时也能更好地指导工程开发。
     鉴于在气动升力的研究中存在上述问题,本文旨在通过大量的试验和仿真找出一套能获得较高精度气动升力的方法。在此基础上结合多体动力学,分析气动升力对整车直线行驶能力的影响。与此同时找出对气动升力较敏感的造型参数,最后提出一系列有效的造型优化方案改善整车的直线行驶能力。本文的主要研究内容如下:
     1.通过在湖南大学HD-2风洞中展开大量的试验研究,讨论了模型安装方式、地面附面层厚度对升力测量结果的影响。在此基础上对9种不同车型进行了风洞试验,讨论了汽车阻力系数与升力系数之间的关系。然后针对MIRA阶梯背模型研究了气动升力随离地间隙、俯仰角、侧偏角的变化规律,并结合测压试验、PIV试验分析了部分原因。
     2.通过大量仿真探讨了如何提高数值计算的精度与效率,主要做了以下几方面的工作:①对比了不同网格、不同壁面函数、不同湍流模型、不同压力耦合格式、不同压力离散格式对气动升力计算精度与速度的影响;②探讨了速度梯度自适应和Y+自适应法对改善网格合理性,提高计算精度的影响;③以Ahmed模型为研究对象,通过试验设计的方法对Realizable λ-ε湍流模型中的经验系数进行了优化。
     3.通过大量的仿真计算以及某MPV车型油泥模型的风洞试验,分析了气动升力系数对整体以及局部造型参数的敏感性。
     4.通过构建某轿车的动力学模型,探讨了气动升力对该轿车直线行驶能力、直线加速能力以及直线制动能力的影响
     5分析了工程实例中的某轿车的空气动力学性能,并讨论了在考虑气动力的情况下该轿车的直线行驶能力。在此基础上,根据气动升力的有关优化原则,对该轿车的造型进行了优化,提高了该轿车的直线行驶能力。
With the rapid growth of high-grade highway traffic mileage, the average speed of automotive is greatly improved. The body weight is significantly reduced for the tendency of making light automotive which is caused by energy crisis and rising oil prices. For these reasons, the automotive aerodynamic characteristics, especially aerodynamic lift, have increasing influence on the automotive performance. With the continuous improvement of living standards, consumers put more emphasis on vehicle safety, comfort and so on, thus higher requirements for the quality of the automotive is put forward. As one of the most important evaluating indicator of aerodynamic performance, aerodynamic lift not only directly affects the safety of the automotive, but also indirectly affect the automotive's fuel economy. The phenomenon that the driver feels the automotive shimmy dangerously at high speed arouses the concern of the relevant researcher on aerodynamic lift.
     So far, the experimental and computational methods about drag coefficient have been developed maturely, and experimental results agree well with computational results. As to the lift coefficient, experimental results are always different from computational results. Relative to the drag coefficient, the lift coefficient is more vulnerable to the uncertainties of the model installation, wind tunnel structure and so on, thus the repeatability of the lift coefficient is bad, and the lift coefficients are quite different for the same model which is measured in different wind tunnels. The lift of automotive is mainly from the pressure difference between its upper surface and underbody. For the uneven surface of chassis, the flow field around the bottom is complex when the automotive is driving close to the ground, thus the computational results are vulnerable to the influence of the grid, turbulence model and so on, and are often different from the experimental results. In addition, different from drag coefficient which is the smaller the better, the lift coefficient optimization objectives need to be analized specificly according to the actual situation, for a racing car a large amount of negative lift is required to help it cornering at high-speed, while for a heavy duty truck,.the negative lift is want to be reduced to decrease the frictional risistance between the tires and the floor, so as to achieve low fuel consumption. In summary, start the experimental and computational study on aerodynamic lift, and find out a reasonable way to evaluate the aerodynamic lift characteristics of different automotive not only of great theoretical significance, but also to conduct the project development.
     According to the problems mentioned above, the objective of this paper is to find out a method which can obtain high accuracy aerodynamic lift coefficient by a large number of experiments and simulations. On this basis, the influence of aerodynamic lift on vehicle straight-line driving ability is analyzed by combining with the multi-body dynamics; meanwhile the styling parameters which are sensitive to aerodynamic lift are identified. Finally, series schemes which are useful to improve vehicle straight-line driving ability are put forward. The main research contents are as follows:
     1. The influence of model installation and the thickness of the boundary layer on the results of lift measurement are discussed by conducting a large amount of experiments in HD-2wind tunnel of Hunan University. Based on this, the relationship between drag coefficient and lift coefficient is discussed by conducting wind tunnel tests with9different vehicle models. Finally, the laws that the lift coefficients change with the ground clearances, pitch angles, yaw angles are also studied by wind tunnel tests, its mechanism was analyzed by combining with surface pressure tests and PIV tests.
     2. How to improve the numerical accuracy and efficiency is discussed by simulations, the works were done as follows:①Comparing the results of different grids, different wall functions, different turbulence models, different pressure-coupled schemes and different pressure discretization schemes;②Discussing the influence of velocity gradient adaptation and Y+adaptation on improving the grids and the results accuracy;③Based on Ahmed model, the empirical parameters in the Realizable k-ε model were optimized by DOE.
     3. Based on a large number of simulations on model and the wind tunnel tests about some MPV, the sensitivity of the aerodynamic lift coefficient to the styling parameters was analyzed.
     4. Created the dynamic model of some automotive, and discussed the influence of aerodynamic lift on the straight-line driving ability of this automotive.
     5The aerodynamic characteristics of some automotive which is from an engineering project is analized, and its straight-line driving ability under aerodynamic force is also discussed. Based on this, Styling of this automotive is optimized according to relative optimization rules, and its straight-line driving ability is improved.
引文
[1]谷正气.汽车空气动力学.北京:人民交通出版社,2005
    [2]王宏雁,陈君毅.汽车车身设计基础.北京:北京大学出版社,2009
    [3]W.G.Aston Body design and wind resistance. The Autocar. August 1911
    [4]W. Klemperer. Investigation of the aerodynamics drag of Automobiles. Zeitshrift fur Flugtechnik Motorluftschiffahrt.Vol.13,1922
    [5]L. Romani. Les Essais aerodynamiques des voitures automobilel. Maquettes et vehicles reels. Union Technique de L'Automobile et du Cycle. Paper No.11.1950
    [6]J. Sanders. Wind tunnel corrections in ground effect tests. NRC, Report MA-(1947)
    [7]R.Barth. Effect of shape and airflow about an automobile on drag,lift and directional control, Verein Deutches Ingenieure,98, No.22,(1956)
    [8]R.Barth. The aerodynamics of car body shapes, Engineers Digest,17,No. 10(1956)
    [9]J.J.Cornich. Some aerodynamic characteristics of land vehicles., Am Inst. Aeronaut. & Astronaut. Symp., Los Angeles(1968)
    [10]A.J.Berry. An experimental investigation of ground effect using a mving surface simulation, Thesis, Imperial College, London(1968)
    [11]W.R.Stapleford. Aerodynamic characteristics of exposed rotating wheels, Not. Ind.Res.Ass., Rep.No.2.(1970)
    [12]N.Harrison. The effectiveeness of forward negative lift devices on a racing car. Unpublished, The City University(1973)
    [13]A.J.Scibor-Rylski Experimental investigation of the negative aerodynamic lift wings used on racing car, Advances in road vehicle aerodynamics, Br. Hydromech. Ass., Cranfield(1973)
    [14]F.D.Hales, Stability problems of road vehicles,1st Symp.Road Vehicle Aerodynamics, The City University. London(1969)
    [15]J.B.Russell, Aerodynamic effects on the lateral control and stability of motor vehicles,1st Symp.Road Vehicle Aerodynamics, The City University. London (1969)
    [16]J.B.Russell, The effect of aerodynamic forces and moments on the lateral control and stability of motor vehicles, The City University, Memo. No.Ael,Aug.(1968)
    [17]R.K.Strachan, K.Knowles and N.J.Lawson, A CFD and Experimental Study of an Ahmed Reference Model. SAE paper 2004-01-0442
    [18]S.R.Ahmed, G.Ramm, G.Faltin, Some salient features of the time-averaged ground vehicle wake. SAE paper 840300, Detroit 1984
    [19]S.Krajnovic, L.Davidson, Development of Large-Eddy Simulation for vehicle aerodynamics, Proceedings of IMECE2002, New Orleans, Louisiana, November 17th-22nd,2002, Paper 23883
    [20]S.Kapadia, S.Roy, Detached Eddy Simulation over a reference Ahmed car model, 41st Aerospace Sciences Meering and Exhibit, Reno, Nevada, January 6-9th, 2003, Paper 2003-0857
    [21]吴子牛.空气动力学.清华大学出版社.2007
    [22]Sachin S.,Chi-Man Betty Lo,Albert R.George. A Computational Study of Idealized Bluff Bodies, Wheels, and Vortex Structures in Ground Effect. SAE Paper,2008-01-0327
    [23]Ilhan Bayraktar, Tuba Bayraktar. Assessment of Reynolds Averaged Turbulence Models in Predicting Flow Structure Behind a Generic Automobile Body. SAE Paper,2006-01-0139
    [24]Sinis a Krajnovic, Lars Davidson. Flow Around a Simplified Car, Part1:Large Eddy Simulation. Journal of Fluids Engineering,2005 vol 127907-918
    [25]Sinis a Krajnovic, Lars Davidson. Influence of Floor Motions in Wind Tunnels on the Aerodynamics of Road Vehicles, Journal of Wind Engineering and Industrial Aerodynamics 93(2005) 677-696
    [26]Kevin R.Cooper, T.Bertenyi, G.Dutil,etal. The AerodynamicPerformance of Automotive Underbody Diffusers. SAE Paper,980030
    [27]Robert Lietz, William Pien, Stephen Remondi. A CFD Validation Study for Automotive Aerodynamics. SAE Paper,2000-01-0129
    [28]P. Drage, A. Gabriel, G. Lindbichler, etal. Efficient Use of Computational Fluid Dynamics for the Aerodynamic Development Process in the Automotive Industry. 26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii,18-21 August 2008
    [29]Oliver Fischer, Timo Kuthada, Nils Widdecke, etal. CFD Investigations of Wind Tunnel Interference Effects. SAE Paper,2007-01-1045
    [30]Oliver Fischer, Timo Kuthada, Jochen Wiedemann, etal. CFD Validation Study for a Sedan Scale Model in an Open Jet Wind Tunnel. SAE Paper,2008-01-0325
    [31]R.Buchheim, R.Unger, G.W.Carr, etal. Comparison Tests Between Major European Automotive Wind Tunnels. SAE Paper,800140
    [32]A.Cogotti, R.Buchheim, A.Garrone, etal. Comparison Tests Between Some Full-Scale European Automotive Wind Tunnels-Pininfarina Reference Car. SAE Paper,800139
    [33]Andreas Borg, Sven Perzon, Olga Roditcheva. On the Influence of the Near Wall Formulation of Turbulence Models for Prediction of Aerodynamic Coefficients for Ground Vehicles. SAE Paper,2003-01-1317
    [34]Victor Yakhot, Steven A. Orszag. Renormalization Group Analysis of Turbulence. Journal of Scientific Computing, Vol.1, No.1,1986
    [35]Tsan-Hsing Shih, William W. Liou, A Amir Shabbir etal. A New k-ε Eddy Viscosity Model for High Reynolds Unmber Turbulent Flows. Computers Fluids Vol.24, No.3, pp.227-238,1995
    [36]A.P.Gaylard, A.J.Baxendale, J.P.Howell. The Use of CFD to Predict the Aerodynamic Characteristics of Simple Automotive Shapes. SAE Paper,980036.
    [37]Joel A.Walter, Victor Canacci, R.K.Rout etal. Uncertainty Analysis of Aerodynamic Coefficients in an Automotive Wind Tunnel. SAE Paper, 2005-01-0870
    [38]Chris Connor, Amir Kharazi, Joel Walter etal. Comparison of Wind Tunnel Configurations for Testing Closed-Wheel Race Cars:A CFD Study. SAE Paper, 2006-01-3620
    [39]Lasse. Uncertainty Analysis of Aerodynamic Coefficients in an Automotive Wind Tunnel. SAE Paper,2005-01-0870
    [40]Ioannis Dimitriou, Sven Klussmann. Aerodynamic Forces of Exposed and Enclosed Rotating Wheels as an Example of the Synergy in the Development of Racing and Passenger Cars. SAE Paper,2006-01-0805
    [41]Christoffer Landstrom, Tim Walker, Lennart Lofdahl. Effects of Ground Simulation on the Aerodynamic Coefficients of a Production Car in Yaw Conditions. SAE Paper,2010-01-0755
    [42]Chen-Guang Lai, Yasuaki Kohama, Shigeru Obayashi, etal. Investigation of Aerodynamic Performance due to the Interaction between the Rear Diffuser Angle and the Cooling Airflow Outlet. SAE Paper,2010-01-0755
    [43]Christoffer Landstrom, Tim Walker, Lennart Lofdahl. Effects of Ground Simulation on the Aerodynamic Coefficients of a Production Car in Yaw Conditions. SAE Paper,2010-01-0755
    [44]Todd H. Lounsberry, Mark E. Gleason, Satheesh Kandasamy, etal. The Effects of Detailed Tire Geometry on Automobile Aerodynamics-a CFD Correlation Study in Static Conditions. SAE Paper,2009-01-0777
    [45]Gerhard Wickern, Andreas Wagner, Christoph Zoerner. Induced Drag of Ground Vehicles and Its Interaction with Ground Simulation. SAE Paper,2005-01-0872
    [46]Rajneesh Singh, Kevin Golsch. A Fownforce Optimization Study for a Racing Car Shape. SAE Paper,2009-01-0777
    [47]Joseph Katz, Darwin Garcia, Robin Sluder. Aerodynamics of Race Car Liftoff. SAE Paper,2004-01-3506
    [48]B.Hetherington, D.B.Sims-Williams. Support Strut Interference Effects on Passenger and Racing Car Wind Tunnel Models. SAE Paper,2009-01-0777
    [49]Makoto Tsubokura, Kozo Kitoh, Nobuyuki Oshima, etal. Large Eddy Simulation of Unsteady Flow Around a Formula Car on Earth Simulator. SAE Paper, 2007-01-0106
    [50]Jeffrey Joffman, Bill Martindale, Stephen Arnette, etal. Open Jet Wind Tunnel Tests for an Extended Range of Vehicle Shapes. SAE Paper,2003-01-0934
    [51]Peter Gullbery, Lennart Lofdahl. The Role of Aerodynamics in the 1955 Le Mans Crash. SAE Paper,2008-01-2996
    [52]Amir A. Hashmi,Ioannis Dimitriou. Needs and Possibilities for the Correction of Drag and Lift Wheel Forces which have been Derived by Integrating its Static Pressure Distribution. SAE Paper,2006-01-3623
    [53]Rajneesh Singh. CFD Simulation of NASCAR Racing Car Aerodynamics. SAE Paper,2008-01-2996
    [54]Wael A. Mokhtar, Jonathan Lane. Racecar Front Wing Aerodynamics. SAE Paper, 2008-01-2988
    [55]Oren J. Breslouer, Albert R. George. Exploratory Experimental Studies of Forces and Flow Structure on a Bluff Body with Variable Diffuser and Wheel Configurations. SAE Paper,2008-01-0326
    [56]Sachin Desai, Emily Leylek, Chi-Man Betty Lo, etal. Experimental and CFD Comparative Case Studies of Aerodynamics of Race Car Wings, Underbodies with Wheels, and Motorcycle Flows. SAE Paper,2008-01-2997
    [57]Jeff Howell, Geoff Le Good. The Effect of Backlight Aspect Ratio on Vortex and Base Drag for a Simple Car-Like Shape. SAE Paper,2008-01-0737
    [58]R. Buchheim, J. Maretzke, R.Piatek. The Control of Aerodynamic Parameters Influencing Vehicle Dynamics. SAE Paper,850279
    [59]Yoshihiro Okada, Takahide Nouzawa, Takaki, etal. Flow Structures above the Trunk Deck of Sedan-Type Vehicles and Their Influence on High-Speed Vehicle Stability 1st Report:On-Road and Wind-Tunnel Studies on Unsteady Flow Characeristics that Stabilize Vehicle Behavior. SAE Paper,2009-01-0004
    [60]Takuji Nakashima, Makoto Tsubokura, Takahide Nouzawa, etal. Flow Structures above the Trunk Deck of Sedan-Type Vehicles and Their Influence on High-Speed Vehicle Stability 2nd Report:Numerical Investigation on Simplified Vehicle Models using Large-Eddy Simulation. SAE Paper,2009-01-0004
    [61]Jeff Howell, Joshua Bsden Fuller. A Relationship between Lift and Lateral Aerodynamic Characteristics for Passenger Cars. SAE Paper,2010-01-1025
    [62]Rob Litlewood, Martin Passmore. The Optimization of Roof Trailing Edge Geometry of a Simple Square-Back. SAE Paper,2010-01-0510
    [63]Bundorf R.T, Pollock D.E, Hardin M.C. Vehicle handling response to aerodynamic inputs. Soc. Automot. Engrs. Yearbook,72,7-73.(1964)
    [64]Braess H-H. Improvement of Handling Characteristics of Automobiles by Reducing Aerodynamics Lift. AIAA Symposium'The Aerodynamics of Racing and Sports Cars'.1974
    [65]Windsor S.C, Le Good G.M. The Influence of Aerodynamic Lift on High Speed Stability of Passenger Cars.. Paper C462/24/214. Autotech 1993. Birmingham
    [66]Howell J.P. The Influence of Aerodynamic Lift on Lane Change Manoeuvrability. MIRA Aerodynamics Conference 1009. Coventry
    [67]Jeff Howell, Geoff Le Good. The Influence of Aerodynamic Lift on High Speed Stability. SAE Paper,1999-01-0651
    [68]Emmanuel Guilmineau and Francis Chometon. Experimental and Numerical Analysis of the Effect of Side Wind on a Simplified Car Model. SAE Paper, 2007-01-0108
    [69]Nazli E.Kahveci. Adaptive Steering Control for Uncertain Vehicle Dynamics with Crosswind Effects and Steering Angle Constraints. Proceedings of the 2008 IEEE International Conference on Vehicular Electronics and Safty, Columbus, OH, USA,2008, September
    [70]Cooper, Kevin R., T. Bertenyi, G.Dutil, J. Syms, G. Sovran. "The Aerodynamic Performance of Automotive Underbody Diffusers," SAE Paper 98-0030, Society of Automotive Engineers, Warrendale,PA, USA,1998
    [71]Cooper, K. R., Sovran, G., and Syms, J., "Selecting Automotive Diffusers to Maximise Underbody Downforce," SAE Paper 2000-01-0354, Society of Automotive Engineers, Warrendale, PA, USA,2000
    [72]George, Albert R., J.E. Donis, "Flow Patterns, Pressures, and Forces on the Underside of 26 Idealized Ground Effect Vehicles," Proceedings of the ASME Fluids Engineering Division Symposium on Aerodynamics of Transportation-Ⅱ, Vol.7 pp.69-79, American Society of Mechanical Engineers, New York, NY, USA,1983
    [73]George, A. R., "Aerodynamic Effects of Shape Camber, Pitch, and Ground Proximity on Idealized Ground Vehicle Bodies," ASME J. Fluids Eng., Vol.103 pp.631-638, American Society of Mechanical Engineers, York, NY, USA,1981. ***Reprinted with slightly different information in:Edited by Morel, T., C Dalton, Aerodynamics of Transportation, American Society of Mechanical Engineers, New York, NY, USA,1979
    [74]Zhang, Xin, Willem Toet, Jonathan Zerihan, "Ground Effect Aerodynamics of Race Cars," ASME Applied Mechanics Reviews, Vol.59 pp.33-49, American Society of Mechanical Engineers, New York, NY, USA,2006
    [75]Zhang, X., A.E. Senior, Andreas Ruhrmann, "Vortices Behind a Bluff Body With an Upswept Aft Section in Ground Effect," Int. J. Heat Fluid Flow, Vol.25 pp.1-9,2004
    [76]Ruhrmann, Andreas, X. Zhang, "Influence of Diffuser Angle on Bluff Body in Ground Effect," ASME J. Fluids Eng., Vol.125 pp.332-338, American Society of Mechanical Engineers, New York, NY, USA,2003
    [77]Senior, A. E., X. Zhang, "The Force and Pressure of a Diffuser-Equipped Bluff Body in Ground Effect," ASME J. Fluids Eng., Vol.123 pp.105-111, American Society of Mechanical Engineers, New York, NY, USA,2001
    [78]Mahon, S., X. Zhang, C. Gage, "The evolution of edge vortices underneath a diffuser equipped bluff body," 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, pp.1-10, Lisbon, Portugal,2004
    [79]张丕付,汽车车身几何建模与三维气动网格生成的应用研究,湖南大学博士学位论文,1998
    [80]谷正气,基于弧长参数空间的汽车车身表面网格生成 机械工程学报2002年4月第4期第38卷(EI)P58-60
    [81]谷正气.气动侧力对汽车性能的影响研究.湖南大学学报,1993,20(2):68-72
    [82]海贵春,谷正气.非稳态侧向风对高速汽车操纵稳定性的影响研究.科学技术与工程,2004,(7):637-639
    [83]Gu Zhengqi and Hai Guichun. Research on the Transient State Steering Stability in Side Winds for High-Speed Vehicle Using ADAMS. SAE Paper, 2005-01-0982
    [84]谷正气,赵荣远,杨易等.基于多体动力学的悬架优化对汽车侧风稳定性的影响与研究.科技导报,2008,26(8):48-51
    [85]谷正气,赵荣远,杨易等.汽车气动造型在侧风稳定性中的应用研究.湖南大学学报(自然科学版),2008,35(9):44-47
    [86]郭孔辉,林柏忠.高速汽车侧风响应仿真与影响侧风稳定性的结构参数分析.吉林工业大学学报,1994,24(4):1-7
    [87]许振华,吴宪,于晓军.燃料电池汽车侧风稳定性预测.计算机辅助工程,2008,17(1):25-29
    [88]高广军,田红旗,张健.横风对双层集装箱平车运行稳定性的影响.交通运输工程学报,2004,4(2):45-48
    [89]周丹,张健.横风对双层集装箱平车气动特性的影响.铁道机车车辆,2004,24(3):17-20
    [90]zhengqi Gu,Xin Song,Yejie Jiang,etal. Optimization of the Realizable k-ε Turbulence Model Especially for the Simulation of Road Vehicle. SAE Paper, 2012-01-0778
    [91]宋听,谷正气,何亿兵等.基于Ahmed模型的气动升力研究.汽车工程,2010,32(10):846-850
    [92]张海峰,谷正气,宋昕等.基于湍流模型的汽车气动升力仿真.湖南大学学报(自然科学版),2010第37卷第12期54-59
    [93]容江磊,谷正气,杨易等.基于Kriging模型的跑车尾翼断面形状的气动优化.中国机械工程.2011,(02)
    [94]A.J.赛伯-里尔斯基.汽车空气动力学.人民交通出版社,1984
    [95]贾杨成.虚拟样机技术在汽车制动仿真方面应用研究:[合肥工业大学硕士学位论文].合肥:合肥工业大学,2004,1-6
    [96]Kazuhiro Maeda, Ken Nambo. Correlation Tests Between Japanese Full-Scale Automotive Wind Tunnels Using the Correction Methods for Drag Coefficient. SAE Paper 2005-01-1457
    [97]Berndsson A, Eckert W T and Mercker E. The Effect of Groundplane Boundary Layer Control on Automotive Testing in a Wind Tunnel. Soc. Automot. Eng.(Detroit), SAE Technical Paper 880248
    [98]周雪漪.计算水力学.北京:清华大学出版社,1995
    [99]陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001
    [100]郭鸿志.传输过程数值模拟.北京:冶金工业出版社,1998
    [101]严鹏,吴光强,傅立敏,胡兴军.轿车外流场数值模拟.同济大学学报.2003, 31(9):1082-1086
    [102]Sachin S.Desai, Chi-Man Betty Lo and Alber R.George. A Computational Study of Idealized Bluff Bodies, Wheels, and Vortex Structures in Ground Effect. SAE Paper 2008-01-0327
    [103]宋听,谷正气,张清林等.基于多岛遗传算法的湍流模型优化研究湖南大学学报,2011,38(2):23-29
    [104]H.K.Versteeg, W.Malalasekera, an Introduction to Computational Fluid Dynamics:The Finite Volume Method.Wiley, New York,1995
    [105]陈魁.试验设计与分析.北京:清华大学出版社,2005.
    [106]Nestor V. Queipo, Raphael T.Haftka, Wei Shyy, Tushar Goel, Rajkumar Vaidyanathan, P.Kevin Tucker. Surrogate-based Analysis and Optimization Aerospace Sciences,2005,41:1-28
    [107]Hong Chen, Ryozo Ooka, Shinsuke Kato. Study on Optimum Design Method for Pleasant Outdoor Thermal Environment Using Genetic Algorithms and Coupled Simulation of Convection, Radiation and Conduction. Building and Environment,2008,43(1):18-31.
    [108]Guilmineau,E., Computational study of flow around a simplified car body. J.Wind Eng.Ind.Aerodyn.(2007), doi:10.1016/j.jweia.2007.06.041
    [109]王福军.计算流体动力学分析——CFD软件原理与应用.北京:清华大学出版社,2004
    [110]P,Rollet-Miet, D.Laurence and J.Ferziger. LES and RANS of Turbulent Flow in Tube Bundles. International Journal of Heat and Fluid Flow,1999,20(3): 241-254
    [111]H.K.Versteeg and W.Malalasekera. An Introduction to Computational Fluid Dynamics:The Finite Volume Method.Wiley. New York,1995
    [112]B.E.Launder and D.B.Spalding. Lectures in Mathematical Models of Turbulence. London:Academic press,1972
    [113]V.Yakhot and S.A.Orzag. Renormalization Group Analysis of Turbulence: Basic Theory Scient Comput.l,1986,3-11
    [114]彭亚美.中气轿车气动特性模型风洞试验研究:[湖南大学硕士学位论文].湖南长沙:湖南大学,2010
    [115]杨有根.高层建筑的抗风实测分析与大跨度屋盖的风致响应研究:[湖南大学博士学位论文].长沙:湖南大学,2007
    [116]E. Kesseler and W.J. Vankan. Multidisciplinary Design Analysis and Multi-objective Optimization Applied to Aircraft Wing. Journal WSEAS Transactions on Systems and Control,2006,1(2)
    [117]Ramesh Padmanaban, Radha Krishnan and Malik Kayupov. Multi-Disciplinary Optimization of a Sport Utility Vehicle. SAE Paper,2004-05AE-271
    [118]S. Pierret. Multi-objective and Multi-Disciplinary Optimization of Three-dimensional Turbomachinery Blades.6th World Congresses of Structural and Multidisciplinary Optimization,2005, May 30-June 03, Brazil
    [119]A.S. Hedayat, N.J.A. Sloane and John Stufken. Orthogonal Arrays:Theory and Applications. New York:Springer-Verlag,1999
    [120]张志红,何桢,郭伟.在响应曲面方法中三类中心复合设计的比较研究.沈阳航空工业学院学报,2007,24(1):87-91
    [121]M.D. McKay, R.J. Beckman and W.J. Conover. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code. Technometrics,1979,21:239-245
    [122]Nestor V. Queipo, Raphael T. Haftka, Wei Shyy, etal. Surrogate-based Analysis and Optimization. Progress in Aerospace Sciences,2005,41:1-28
    [123]Stephen Leary, Atul Bhaskar and Andy Keane. Optimal Orthogonal-Array-based Latin Hypercubes. Journal of Applied Statistics,2003,30(5):585-598
    [124]Michael Stein. Large Sample Properties of Simulations Using Latin Hypercube Sampling. Technometrics,1987,29(2):143-151
    [125]Man Mohan Rai and Nateri K. Madavan. Aerodynamic Design Using Neural Net-works. AIAA Journal,2000,38(1):173-182
    [126]MM Rai, NK Madavan and FW Huber. Improving the Unsteady Aerodynamic Performance of Transonic Turbines Using Neural Networks. In:Proceedings of the 38th AIAA Aerospace Sciences Meeting and Exhibit. Reno,2000, AIAA,2000-0169
    [127]J.-C. Jouhaud, P. Sagaut, M. Montagnac and J. Laurenceau. A Surrogate-Model based Multidisciplinary Shape Optimization Method with Application to a 2D Subsonic Airfoil. Computers & Fluids,2007,36:520-529
    [128]Nateri K. Madavan,Man Mohan Rai and Frank W. Huber. Neural Net-Based Redesign of Transonic Turbines for Improved Unsteady Aerodynamic Perform-ance. In:AIAA/SAE/ASME/ASEE 35th Joint Propulsion Conference, 1999, AIAA 99-0559
    [129]陈军MSC. ADAMS技术与工程分析实例.北京:中国水利水电出版社,2008,157-158
    [130]贾杨成.虚拟样机技术在汽车制动仿真方面应用研究:[合肥工业大学硕士 学位论文].合肥:合肥工业大学,2004
    [131]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践.西安:西北工业大学出版社,2002
    [132]海贵春.某智能四驱SUV动力学性能分析与优化研究:[湖南大学博士学位论文].长沙:湖南大学,2008
    [133]范成建,熊光明,周明飞等.虚拟样机软件MSC.ADAMS应用与提高.北京:机械工业出版社,2006,1-155
    [134]陈立平.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社,2005,1-110
    [135]李增刚ADAMS入门详解与实例.北京:国防工业出版社,2007,1-27
    [136]陈军MSC.ADAMS技术与工程分析实例.北京:中国水利水电出版社,2008,157-206
    [137]谷正气.轿车车身.第一版.北京:人民交通出版社,2005
    [138]杨志刚.抽吸气体回送位置及流量比例对整车风洞试验段流场影响的研究.汽车工程.2010.04(32)
    [139]武藤真理著.汽车空气动力学.程正译.第1版.长春:吉林科学技术出版社,1989
    [140]傅立敏.汽车空气动力学.北京:机械工业出版社,1998
    [141]黄向东.汽车空气动力学与车身造型,北京:人民交通出版社,2000.1.
    [142]黄向东.轿车车身造型空气动力学寻优的探索.机械工程学报.1998(3):64-71
    [143]余志生.汽车理论.北京:机械工业出版社,2005
    [144]何忆斌.汽车车身气动造型优化研究及工程应用.[湖南大学博士学位论文].长沙:湖南大学,2008
    [145]约翰D.安德森.计算流体力学基础及其应用.吴颂平,刘赵淼译.北京:机械,工业出版社,2007
    [146]张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用.北京:清华大学出版社,2008
    [147]Deardoff J W.The Use of Subgrid Transport Equation in a Three Dimensional Model of Atmospheric Turbulence.ASME J.Fluid Engineering,1995:429
    [148]Christoffer Landstrom, Tim Walker, Lennart Lofdahl. Effects of Ground Simulation on the Aerodynamic Coefficients of a Production Car in Yaw Conditions. SAE Paper,2010-01-0755
    [149]Peter S. Bernard, Pat Collins, Mark Potts. Vortex Method Simulation of Ground Vehicle Aerodynamics. SAE Paper,2005-01-0549
    [150]Makoto Tsubokura, Kaito Takahashi, Tomofuyu. HPC-LES for Unsteady Aerodynamics of a Heavy Duty Truck in Wind Gust-1st report:Validation and Unsteady Flow Structures. SAE Paper,2010-01-1010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700