多输入多输出(MIMO)雷达波束优化处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(Multiple-input Multiple-output, MIMO)雷达是一种新体制雷达,它的主要特点是在发射和接收两端均采用多天线进行信号的发射和接收。同传统的相控阵雷达(Phased-array Radar, PAR)不同,MIMO雷达发射的是完全正交或是部分相关波形,在接收端通过匹配滤波器组来分离回波信号中的各发射分量,而相控阵雷达发射的是同一尺度相参信号。同双/多基地雷达(Bi/Multi-static Radar)相比,MIMO雷达是将所有的发射-接收信息进行集中处理,而双/多基地雷达是将各单站雷达得到的结果进行再融合。MIMO雷达的这些特性带来了一系列性能的改善。
     当前,对MIMO雷达的研究主要从紧凑式MIMO雷达(Colocated MIMO Radar)、分布式MIMO雷达及波形设计几个方面展开。本文主要对紧凑式MIMO雷达和分布式MIMO雷达的波束优化进行了深入的研究。
     紧凑式MIMO雷达可以视作相控阵雷达的扩展形式,其发射和接收两端仍然采用传统的紧凑式阵列构型。因此,对紧凑式MIMO雷达的波束优化主要是如何获得更高的主瓣分辨率和更低的旁瓣电平。
     分布式MIMO雷达可以视作双/多基地雷达的扩展形式,其发射-接收天线采用大间距分布形式。这种大间距天线分布既可以获得对目标的分集增益,又可以提高系统的观测视场(Field of View)或是天线孔径。分集增益可以克服目标的雷达反射截面(Radar Cross Section, RCS)的“闪烁”效应,提高对目标的检测能力;扩大的天线孔径可以锐化波束主瓣宽度,提高对目标的分辨能力。但是大间距天线分布会引起MIMO雷达发射-接收波束中高副瓣/栅瓣的出现。因此,对分布式MIMO雷达的波束优化主要是如何对发射-接收波束中的高副瓣/栅瓣进行抑制。
     针对以上问题,本文对MIMO雷达波束优化取得的创新点如下:
     在紧凑式MIMO雷达信号模型基础上,给出了MIMO雷达广义形式的发射-接收波束表达形式,分析了MIMO雷达虚拟孔径对发射-接收波束的影响,提出了一种基于矩阵权优化的MIMO雷达低副瓣发射-接收波束设计方法;
     在分布式MIMO雷达信号模型基础上,提出了一种混合处理模式。这种混合处理模式结合了分布式MIMO雷达的非相参和相参处理,它既有利于利用非相参处理提高对目标的检测性能,又有利于利用相参处理提高对目标的分辨性能;
     将频率分集技术与MIMO雷达相结合,提出了一种相参处理分布式MIMO雷达中的波束优化方法,给出了频偏选择与波束指向以及目标距离之间的约束关系,证明了利用频率分集对分布式MIMO雷达栅瓣抑制的有效性;
     同时作为MIMO雷达技术的一个补充,本文也研究了将频率分集分布式MIMO雷达波束优化方法应用于分布式小卫星地面动目标显示(GMTI)的处理方法,以及无源条件下利用双星平台稀疏孔径构型的电子侦察技术。
Multiple-input Multiple-output (MIMO) radar is a new radar system, which utilizes multiple antennas at both the transmitting side and the receiving side. Compared with traditional phased-array radar, which transmits scaled versions of waveform, MIMO radar transmits orthogonal or partially correlated waveforms from each antenna in the transmitting side, and in the receiving side all the signals are extracted by matched filtering. Compared with bi/multi-static radar, MIMO radar jointly processes all the transmit-receive information. All of these can improve the performance of MIMO radar. Till now, the study on MIMO radar mainly includes colocated MIMO radar, distributed MIMO radar and waveform design. In this dissertation, we will focus on how to optimize the beampattern of MIMO radar.
     Colocated MIMO radar can be treated as an extended type of phased-array radar, in which the antenna arrays in the transmitting side and the receiving side are all traditional. Therefore, the beampattern optimization for colocated MIMO radar is how to obtain a narrower mainlobe beamwidth and a lower sidelobe level.
     Distributed MIMO radar can be treated as an extended type of bi/multi-static radar, in which the antennas are widely separated. The widely separated antennas can obtain not only the diversity gain, but also a wider field of view or aperture length. The diversity gain can overcome the target radar cross section (RCS)“fluctuation”and improve the target detection ability. The longer aperture length can improve the target resolution at the cost of high sidelobes or grating lobes in the transmit-receive beampattern. Therefore, the beampattern optimization for distributed MIMO radar is how to suppress the high sidelobes or grating lobes.
     Considering the aspects mentioned above, the following achievements have been obtained:
     Based on the model of colocated MIMO radar, a generalized transmit-receive beampattern for MIMO radar is given, the relationship between MIMO radar virtual aperture and the transmit-receive beampattern is analyzed, a new minimum sidelobe level design method for MIMO radar is proposed.
     Based on the model of distributed MIMO radar, a hybrid signal processing mode is proposed. The hybrid mode combines the non-coherent processing with the coherent processing, which can improve not only the ability of target detection but also the target resolution.
     Combined frequency diversity with MIMO radar, a new beampattern optimization method for coherent processing distributed MIMO radar is proposed, the restriction on the selection of frequency offset is analyzed, the effectiveness of the grating lobes suppression using frequency diversity is demonstrated;
     The paper has also studied on the distributed small-satellites GMTI method based on frequency MIMO radar beampattern optimization, and electronic reconnaissance technology based on two satellites with sparse aperture equipments.
引文
[1] M. I. Skolnik著,王军等译.雷达手册(第二版),北京:电子工业出版社, 2003
    [2]郭燕昌,钱继曾,黄富雄等.相控阵和频率扫描天线原理.北京:国防工业出版社, 1978
    [3]张光义,赵玉洁.相控阵雷达技术.北京:电子工业出版社, 2006
    [4]杨振起,张永顺,骆永军.双(多)基地雷达系统.北京:国防工业出版社, 2001
    [5]张直中.双基地合成孔径雷达.现代雷达, 2005, 27(1): 9-14
    [6] G. L. Guttrich. Wide area surveillance concepts based on geosynchronous illumination and bistatic unmanned airborne vehicles or satellite reception. IEEE National Radar Conference, 1997: 126-131
    [7] P. M. Hartnet, M. E. Davis. Operations of an airborne bistatic adjunct to space based radar. Proc. 2003 IEEE Radar Conference, 2003:133-138
    [8]朱敏,游志胜,聂键荪.双(多)基地系统中的若干关键技术研究.现代雷达, 2002, 24(6): 1-5
    [9] E. Fisher, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela. MIMO radar: An idea whose time has come. Proc. 2004 IEEE Radar Conference, April 2004: 71-78
    [10] J. Li, and P. Stoica. MIMO radar signal processing. John Wiley& Sons. Inc., 2008
    [11] S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, Oct. 1998, 16(8): 1451-1458
    [12] V. Tarokh, N. Seshadri, and A. Calderbank. Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Trans. On Information Theory, Mar. 1998, 44(2): 744-765
    [13] J. Dorey, G. Garnier, and G. Auvray. RIAS, radar a impulsion et antenna synthetique. Colloque International sur le Radar, Paris, April 1989: 556-562.
    [14] Aluce, et al. Experimental results on RIAS digital beamforming radar, IEEE International Radar Conference, London, 1992: 505-510
    [15] B. Chen, S. Zhang, Y. Wang, and J. Wang, Analysis and experimental results on sparse array synthetic impulse and aperture radar, Proc. 2001 CIE Internation Radar Conference (Radar 01’), Oct. 2001: 76-80
    [16]保铮,张庆文.一种新型的米波雷达-综合脉冲孔径雷达.现代雷达, 1995, 17(1): 1-13
    [17]陈伯孝. SIAR四维跟踪及其长相干积累等技术研究: [博士学位论文].西安:西安电子科技大学, 1997
    [18]何子述,韩春林,刘波. MIMO雷达概念及其技术特点分析.电子学报, 2005, 33(12A): 2441-2445
    [19] D. J. Rabideau, and P. Parker. Ubiquitous MIMO multifunction digital array radar. Proc. 37th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, Nov. 2003
    [20] F. C. Robey, S. Coutts, D. Weikle, J. C. McHarg, and K. Cuomo. MIMO radar theory and experimental results. Proc. 38th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, Nov. 2004: 300-304
    [21] D. W. Bliss and K. W. Forsythe. Multiple-input multiple-output (MIMO) radar and imaging: Degrees of freedom and resolution. Proc. 37th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, Nov. 2003: 54-59
    [22] K. W. Forsythe, D. W. Bliss and G. S. Fawcett. Multiple-input multiple-output (MIMO) radar: Performance issues. Proc. 38th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, Nov. 2004: 310-315
    [23] E. Fisher, A.Haimovich, R. Blum, L. Cimini, D. Chizhik, and R. Valenzuela. Performance of MIMO radar systems: Advantages of angular diversity, Proc. 38th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, Nov. 2004: 305-309
    [24] E. Fisher, A.Haimovich, R. Blum, L. Cimini, D. Chizhik, and R. Valenzuela. Spatial diversity in radars-models and detection performance. IEEE Trans. on Signal Processing, March 2006, 54(3): 823-838
    [25] J. Li, and P. Stoica. MIMO radar with colocated antennas: Review of some recent work. IEEE Signal Processing Magazine, Sep. 2007, 24(5): 106-114
    [26] J. Li, P. Stoica, L. Xu, and W. Roberts. On parameter identifiability of MIMO radar. IEEE Signal Process Letter, Dec. 2007, 14(12): 968-971
    [27] J. Li and P. Stoica. MIMO radar-diversity means superiority. Proc. 14th Annual Workshop on Adaptive Sensor Array Processing (invited), MIT Lincoln Laboratory, Lexington, MA, June 2006
    [28] P. Stoica, J. Li and Y. Xie. On probing signal design for MIMO radar. IEEE Trans. on Signal Processing, Aug. 2007, 55(8): 4151-4161
    [29] L. Xu and J. Li. Iterative generalized likelihood ratio test for MIMO radar. IEEE Trans. on Signal Processing, June 2007, 55(6): 2375-2385
    [30] V. F. Mecca, D. Ramakrishnan, and J. L. Krolik. MIMO radar space-time adaptive processing for multipath clutter mitigation. Proc. 4th IEEE Workshop on Sensor Array and Multi-channel processing, Waltham, MA, July 2006
    [31] C. Chen and P. P. Vaidyanathan. MIMO radar space-time adaptive processing using prolate spheroidal wave functions. IEEE Trans. on Signal Processing, Feb. 2008, 56(2): 623-635
    [32] I. Bekkerman and J. Tabrikian. Spatially coded signal model for active arrays. Proc. 2004 IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP 04'), Montreal, Canada, March 2004: 209-212
    [33] I. Bekkerman and J. Tabrikian. Target detection and localization using MIMO radars and sonars. IEEE Trans. on Signal Processing, Oct. 2006, 54(10): 3873-3883
    [34] J. Bergin, S. Mcneil, L. Fomundam, P. A. Zulch. MIMO phased-array for SMTI radar. Proc. 2008 IEEE Aerospace Conference, March 2008
    [35] H. Yan, J. Li, and G. Liao. Multitarget identification and localization using bistatic MIMO radar systems. EURASIP Journal on Advances in Signal Processing, Volume 2008, Article ID 283483, 8 pages
    [36]夏威,何子述. APES算法在MIMO雷达参数估计中的稳健性研究.电子学报, 2008, 36(9): 1804-1809
    [37] T. Aittomaki and V. Koivunen. Low-complexity method for transmit beamforming in MIMO radars. Proc. 2007 IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP 07'), Honululu, April 2007
    [38] D. R. Fuhrmann and G. San Antonio. Transmit beamforming for MIMO radar systems using signal cross-correlation. IEEE Trans. On Aerospace and Electronic Systems, Jan. 2008, 44(1): 171-186
    [39] K. W. Forsythe and D. W. Bliss. Waveform correlation and optimization issues for MIMO radar. Proc. 39th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, Nov. 2005: 1306-1310
    [40]刘韵佛,刘峥,谢荣.一种基于拟牛顿法的MIMO雷达发射方向图综合方法.电波科学学报, 2008, 23(6): 1188-1193
    [41]张宇,王建新. MIMO雷达发射波束形成技术研究.南京理工大学学报(自然科学版), 2008, 32(3): 356-359
    [42] G. J. Frazer, Y. I. Abramovich, and B. A. Johnason. Spatially waveform diverse radar: Perspectives for high frequency OTHR. Proc. 2007 IEEE Radar Conference, April 2007: 385-390
    [43] G. J. Frazer, Y. I. Abramovich, B. A. Johnason, and F. C. Robey. Recent results in MIMO Over-the-horizon radar. Proc. 2008 IEEE Radar Conference, May 2008
    [44] G. Krieger, N. Gebert, and A. Moreira. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing. IEEE Trans. On Geoscienceand Remote Sensing, Jan. 2008, 46(1): 31-46
    [45] M. Gong, X. Wang, and S. Huang. Performance improvements in MIMO SAR. Proc. 2008 IEEE Radar Conference, May 2008
    [46] A. Harmovich, R. Blum, and L. Cimini. MIMO radar with widely separated antennas: Reviewing recent work. IEEE Siganal Processing Magazine, Jan. 2008: 116-129
    [47] H. Gorich, A. M. Harmovich, and R. S. Blum. Target localization techniques and tools for MIMO radar. Proc. 2008 IEEE Radar Conference, May 2008
    [48]戴喜增,彭应宁,汤俊. MIMO雷达检测性能.清华大学学报(自然科学版), 2007, 47(1): 88-91
    [49] N. H. Lehmann, A. M. Haimovich, R. S. Blum, and L. Cimini. High resolution capabilities of MIMO radar. Proc. 40th Asilomar Conf. Signals, Systems and Computers, Oct. 29- Nov. 1 2006: 25-30
    [50] N. Lehmann. Some Contributions on MIMO Radar. PhD. Dissertation, New Jersey Institute of Technology, 2006
    [51] Y. Yang and R. S. Blum. MIMO radar waveform design based on mutual information and minimum mean-square estimation. IEEE Trans. On Aerospace and Electronic Systems, Jan. 2007, 43(1): 330-343
    [52] B. Friedlander. Waveform design for MIMO radar with space-time constraints. Proc. 41th Asilomar Conf. Signal, Systems and Computers, Pacific Grove, CA, Nov. 2006: 2168-2172
    [53]刘波. MIMO雷达正交波形设计及信号处理研究: [博士学位论文],成都:电子科技大学, 2007
    [54] B. Friedlander. Waveform design for MIMO radars. IEEE Trans. On Aerospace and Electronic Systems, July 2007, 43(3): 1227-1238
    [55] Y. T. Lo and S. W. Lee. Antenna handbook. Van Nostrand Reinhold Co., New York, 1998
    [56] C. L. Dolph. A current distribution for broadside arrays which optimizes the relationship between beamwidth and sidelobe level. Prodeedings of the IRE, 1946, 34(6): 335-348
    [57] R. Elliott. Antenna theory and design. Englewood Cliffs, NJ: Prentice-Hall, 1981
    [58] H. Lebret and S. Boyd. Antenna array pattern synthesis via convex optimization. IEEE Trans. On Signal Processing, March 1997, 45(3): 526-532
    [59] M. Lobo, L. Vandernberghe, S. Boyd, et al. Application of second-order cone programming. Linear Algebra Application, 1998, 284 (1-3): 193-228
    [60] Eli Brooker. Practical phased array antenna system. Artech House Boston, London, 1991
    [61]李建新.阵列多台阶稀疏技术.电子学报, 1999, 27 (3): 79-80
    [62]姚易.稀疏直线阵列的优化布阵技术研究: [博士学位论文],成都:电子科技大学, 1996
    [63] S. J. Rabinowitz, R. F. Kolar. Statistical design of space-taped arrays. Presented at the 1962 12th annual symposium on USAF antenna research and development program, University of Illinois, Urbana
    [64] B. D. Steinberg. The peak sidelobe of the phased array having randomly located elements. IEEE Trans. On Antenna and Propagation, March 1972, 20(2): 129-136
    [65] M. G. Bray, D. H. Werner, D. W. Boeringer and D. W. Machuga. Optimization of thinned aperiodic linear phased array using genetic algorithms to reduce grating lobes during scanning. IEEE Trans. On Antenna and Propagation, Dec. 2002, 50(12): 1732-1742
    [66] D. W. Boeringer and D. H. Werner. Particle swarm optimization versus genetic algorithm for phased array synthesis. IEEE Trans. On Antenna and Propagation, Mar. 2004, 52(3): 771-779
    [67] M. Skolnik. Resolution of angular ambiguities in radar array antennas with widely-spaced elements and grating lobes. IEEE Trans. On Antenna and Propagation, May 1962, 10(3):351-352
    [68] B. D. Steinberg and E. H. Attia. Sidelobe reduction of random arrays by element position and frequency diversity. IEEE Trans. On Antenna and Propagation, Nov. 1982, 31(6): 922-930
    [69] D. R. Kirk, J. S. Bergin, P. M. Techau, and J. E. Don Carlos. Multi-static coherent sparse aperture approach to precision target detection and engagement. Proc. 2005 IEEE Radar Conference, May 2005: 579-584
    [70]邵慧,田文涛,张浩,罗丰. MIMO雷达非均匀布阵的性能分析.雷达科学与技术, 2008, 6(4): 247-250
    [71] C. Chen and P. Vaidyanathan. Minimum redundancy MIMO radars. IEEE 2008 International Symposium on Circuits and Systems, May 2008: 45-48
    [72] Y. Qu, G. Liu, S. Zhu, X. Liu and H. Jiang. Performance analysis of beamforming for MIMO radar. Progress in Electromagnetics Research, PIER 84, 2008: 123-134
    [73] E. Paul, Y. Desmond. On fast-time beamforming with linearly independent waveforms. Signal Processing, 2008
    [74] M. A. Haleem and A. Haimovich. On the distribution of ambiguity levels in MIMO radar. Proc. 42th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, Nov. 2008
    [75] R. Calderband, S. D. Howard, and B. Moran. Waveform diversity in radar signal processing. IEEE Signal Proc. Magazine, Jan. 2009: 32-41
    [76] L. Zhuang and X. Liu. Grating lobes resolving for sparse array beamforming. Proc. 2006 CIE Internation Radar Conference (Radar 06’), Nov. 2006
    [77] B. J. Donnet, and I. D. Longstaff. MIMO radar, techniques and opportunities. Proc. 3rd European Radar Conference, Sept. 2006: 112-115
    [78] C. A. Olen, R. Compton. A numerical pattern synthesis algorithm for arrays. IEEE Trans. On Antenna and Propagation, 1990, 38(10): 1666-1676
    [79] P. Zhou and M. Ingram. Pattern synthesis for arbitrary array using an adaptive array method. IEEE Trans. On Antenna and Propagation, May 1999, 47: 862-869
    [80]陆必应,量甸农.凸优化法实现多维稀疏阵的方向图综合.信号处理, 2006, 22(3): 321-324
    [81] F. Wang, V. Balakrishnan, P. Y. Zhou, J. J. Chen, R. Yang and C. Frank. Optimal array pattern synthesis using semidefinite programming. IEEE Trans. on Signal Processing, May 2003, 51(5): 1172-1183
    [82] Y. Xie, J. Li, X. Zheng and J. Ward. Optimal array pattern synthesis via matrix weighting, Proc. IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP 07'), 2007: 885-888
    [83] J. Li, Y. Xie, P. Stoica, X. Zheng and J. Ward. Beampattern synthesis via a matrix approach for signal power estimation. IEEE Trans. on Signal Processing, Dec. 2007, 55(12): 5643-5657
    [84] J. Sturm. Using SeDuMi 1.02, a matlab toolbox for optimization over symmetric cones. Optimiz. Meth. Softw., vol. 11-12, 1999: 625-653
    [85] N. Lehmann, E. Fisher, A. M. Haimovich, R. S. Blum, D. Chizhik, L. Cimini, and R. Valenzuela. Evaluation of transmit diversity in MIMO radar-direction finding. IEEE Trans. on Signal Processing, May 2007, 55(5): 2215-2225
    [86] H. L. Van Trees. Detection, Estimation, and Modulation Theory III. John Wiley & Sons Inc., 2001
    [87]马晓岩,向家彬,朱裕生等.雷达信号理论.长沙:湖南科学技术出版社, 1999
    [88] G. San. Antonio, D. R. Fuhrmann, and F. C. Robey. MIMO radar ambiguity functions. IEEE J. of Select. Topics Signal Processing, June 2007, 1(1): 167-177
    [89] C. Y. Chen and P. P. Vaidyanathan. MIMO radar ambiguity optimization using frequency-hopping waveforms. Proc. 41th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, Nov. 2007
    [90] C. Y. Chen and P. P. Vaidyanathan. Properties of the MIMO radar ambiguity function. Proc. IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP 08'), April 2008: 2309-2312
    [91]陈客松.稀布天线阵列的优化布阵技术研究: [博士学位论文],成都:电子科技大学, 2006
    [92] P. Antonik, M. C. Wicks, and C. J. Baker. Frequency diverse array radars. Proc. 2006 IEEE RadarConference, April 2006: 215-217
    [93] P. Antonik, M. C. Wicks, H. D. Griffiths, and C. J. Baker. Multi-mission Multi-mode waveform diversity. Proc. 2006 IEEE Radar Conference, April, 2006
    [94] P. Antonik, M. C. Wicks, and C. J. Baker. Range dependent beamforming. IEEE 2006 International Waveform Diversity and Design Conference (WDD 06'), Jan. 2006
    [95] M. Secmen, S. Demir, A. Hizal, and T. Eker. Frequency diverse array antenna with periodic time modulated pattern in range and angle. Proc. 2007 IEEE Radar Conference, Waltham, MA, April, 2007: 427-430
    [96] P. Baizert, T. B. Hale, M. A. Temple and M. C. Wicks. Forward-looking radar GMTI benefits using a linear frequency diverse array. Electronics Letters, vol. 42, no.22, Oct. 2006.
    [97] J. Farooq, M. A. Temple and M. A. Saville. Application of frequency diverse arrays to synthetic aperture radar imaging. International Conference on Electromagnetics in Advanced Applications, Sept. 2007: 447-449
    [98] L. Zhuang and X. Liu. Precisely beam steering for frequency diverse arrays based on frequency offset selection. Proc. 2009 International Radar Conference, Radar 09’, Oct. 2009
    [99] L. Zhuang and X. Liu. Coherent synthesis sparse aperture radar with grating lobes suppressed using frequency MIMO technique. Proc. 2008 IEEE Radar Conference, May 2008
    [100] L. Zhuang and X. Liu. Application of frequency diversity to suppress grating lobes in coherent MIMO radar with separated subapertures EURASIP Journal on Advances in Signal Processing. (To be published)
    [101]张明友,汪学刚.雷达系统(第二版).北京:电子工业出版社, 2006
    [102] X. Z. Dai, J. Xu, and Y. N. Peng. High resolution frequency MIMO radar. Proc. 2007 IEEE Radar Conference, Waltham, MA, USA, 2007: 693-697
    [103] X. Z. Dai, J. Xu, C. Ye, and Y. N. Peng. Low-sidelobe HRR profiling based on the FDLFM-MIMO radar. Proc. Of the 1st Asian and Pacific Conf. on Synthetic Aperture Radar (APSAR 07'), Nov. 2007: 132-135
    [104]杨明磊,张守宏,陈佰孝,张焕颖.多载频MIMO雷达的一种新的信号处理方法.电子与信息学报, 2009年1月, 31(1): 147-151
    [105] J. Zhang and A. Papandreou-Suppappola. MIMO radar with frequency diversity. IEEE 2009 International Waveform Diversity and Design Conference (WDD 09'),, 2009
    [106] B. J. Donnet and I. D. Longstaff. Combining MIMO radar with OFDM communications. Proc. 3rd European Radar Conference, Sept. 2006: 249-253
    [107]刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社, 1999
    [108] M. E. Davis. Technology challenges in affordable space based radar. Proc. IEEE International Radar Conference, Alexandria, VA, May 7-12, 2000: 18-23
    [109] D. A. Leatherwood, W. L. Melvin and R. Acree. Configuring a sparse aperture antenna for spaceborne MTI radar. Proc. 2003 IEEE radar conference, 2003: 139-146
    [110] N. A. Goodman. SAR and MTI processing of sparse satellite clusters. PH.D. dissertation, University of Kansas, Lawrence, 2002
    [111] D. A. Leatherwood and W. L. Melvin. Adaptive processing in a nonstationary spaceborne environment. Proc. 2003 IEEE Aerospace conference, Mar. 2003
    [112] R. S. Adve, R. A. Schneible, and R. McMillan. Adaptive space/frequency processing for distributed apertures. Proc. 2003 IEEE Radar Conference, May 2003
    [113] A. Das and R. Cobb. TechSat 21-Space missions using collaborating constellations of satellites. Proceedings of the 12th AIAA/USU conference on small satellites, Logan, UT, Aug. 1998
    [114] M. Martin and S. Kilberg. TechSat 21 and revolutionizing space mission using microsatellite. AIAA, SSC01-1-3
    [115] J. E. Winter and L. N. C. Anderson. Distributed aperture implementation on the TechSat 21 satellites. Proc. 2003 IEEE Aerospace Conference, 2003: 815-823
    [116]宁蔚.机载/星载雷达地面动目标检测方法研究: [博士学位论文],西安:西安电子科技大学, 2005
    [117] J. R. Guerci. Space-Time Adaptive Processing for Radar. Artech House, Norwood, MA, 2003.
    [118] N. A. Goodman, S. C. Lin and D. Rajakrishna. Processing of multiple-receiver spaceborne arrays for wide area SAR. IEEE Transaction on Geoscience and Remote Sensing, 2002, 40(4): 841-852
    [119] N. A. Goodman and J. Stiles. Resolution and synthetic aperture characterization of sparse radar arrays. IEEE Trans. On Aerospace and Electronic Systems, 2003, 39(3): 921-935
    [120] K. Marias and R. Sedwick. Space based GMTI using scanned pattern interferometric radar (SPIR). Proc. of the IEEE Aerospace Conference, 2001: 2047-2055
    [121] T. L. Hacker. Performance analysis of a space-based GMTI radar system using separated spacecraft interferometry. Master thesis, MIT, 2002
    [122] H. Steyskal, J. K. Schindler, P. Franchi and R. J. Mailoux. Pattern synthesis for Techsat21- A distributed space-based radar system. IEEE Antenna and Propagation Magzine, Aug. 2003: 725-732
    [123] J. K. Schindler, H. Steyskal. Pattern synthesis for moving target detection with TechSat 21- adistributed space-based radar system. Proc. 2002 IEEE radar conference, 2002:375-379
    [124] H. steyskal and J. K. Schindler. Separable space-time pattern synthesis for moving target detection with Techsat21- A distributed space-based radar system. Proc. 2003 IEEE Aerospace Conference, Mar. 2003
    [125]陆必应,梁甸农.角度模糊对天基稀疏孔径GMTI雷达的影响与抑制方法.电子学报, 2007, 35(3): 501-505
    [126] L. Zhuang and X. Liu. Separable space-time pattern synthesis for SBR sparse aperture array GMTI. Proc. 1st Asian and Pacific Conference on Synthetic Aperture Radar, (APSAR 07’), Nov. 2007: 119-122
    [127] L. Zhuang and X. Liu. Beam pattern synthesis for spaceborne sparse aperture radars. Proc. IET International Conference on Radar systems, Radar 07’, Oct. 2007
    [128] M. Zatman. Space-time adaptive processing using sparse arrays. Proc. Of the 11th Annual Workshop on Adaptive Sensor Array Processing, MIT Lincoln Laboratory, Lexington, MA, 2003
    [129]万红,李申堂,冯向荣,王志刚.基于FM广播的MIMO无源雷达性能分析.现代雷达, 2008, 30(3): 30-36
    [130]陆海磊,张剑云.一种基于广播电视信号的MIMO雷达.舰船电子对抗, 2008, 31(6): 54-58
    [131]梅国宝,吴世龙.电子侦察卫星的发展、应用及其面临的挑战.舰船电子对抗, 2005, 28(4): 28-31
    [132]魏钟铨,孟执中.电子侦察卫星.中国大百科全书智慧藏
    [133]王德昆译.美国海军空间电侦察系统“白云”.电子对抗参考资料, 1996: 28-32.
    [134] Y. T. Chan and J. Towers. Passive localization from Doppler-shifted frequency measurements. IEEE Trans. on Signal Processing, 1992, 40(10): 2594-2598
    [135]袁孝康.相位干涉仪测向定位研究.上海航天, 1999, pp: 1-7
    [136] K. Pasala, R. Penno and S. Schneider. Novel wideband multimode hybrid interferometer system. IEEE Trans. On Aerospace and Electronic Systems, 2003, 39(4): 1396-1406
    [137]陈玲,李少洪.无源测向测时差定位算法.电子与信息学报, 2003, 25(6): 771-776
    [138] P. C. Chestnut. Emitter location accuracy using TDOA and differential Doppler. IEEE Trans. On Aerospace and Electronic Systems, 1982, 18(2): 214-218
    [139]陆安南.对电子侦察卫星无源定位技术发展问题的思考.通信对抗, 2008: 15-20
    [140] J. Capon. High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 1969, 57(8): 1408-1418
    [141] B. D. Carlson. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEETrans. On Aerospace and Electronic Systems, 1988, 24(4): 397-401
    [142] F. Daum, and J. Huang. MIMO radar: snake oil or good idea? IEEE 2009 International Waveform Diversity and Design Conference (WDD 09'), 2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700