多基地声纳关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代战争中,海上警戒的任务之一是探测、定位敌方潜艇。随着潜艇声隐身技术的不断发展,其自体辐射噪声与二次反射声的声级越来越低。潜艇主被动声隐身技术的进步,使得传统收发合置主动声纳,以及纯被动声纳在反潜方面的诸多瓶颈愈发凸显。主动声纳由于收发合置,工作时较易被敌艇发现进而实施规避。被动声纳对于安静型潜艇的探测能力又十分有限。多基地声纳采用收发分置配置,兼具主动声纳与被动声纳的特点。本文围绕多基地声纳定位跟踪技术展开研究。
     多基地声纳系统在设计论证时,首要问题是其配置形式与声纳平台的选取问题。故此本文首先考虑多基地的配置与声纳平台的选取问题。在建立了双基地声纳的基本概念与表征形式,并推导了能量约束下的双基地有效探测区域表达形式的基础上,给出了一种能量约束下的多基地声纳浮标最优配置策略,可实现对指定海域在能量约束下的最优覆盖。结合双基地声纳目标镜反射回波理论,给出了镜反射回波航迹的概念。依托多基地声纳浮标最优配置形式,分析了圆簇浮标阵配置的镜反射回波航迹。针对目标在镜反射点回波信噪比大的特点,提出了一种基于镜反射回波探测的配置形式。可实现镜反射回波在各接收基地的连续轮次可见。关于收发分置下的目标镜反射回波试验测量结果将在后文给出。
     当多基地声纳平台配置固定后,在满足一定的声纳参数情况下,会出现多基地声纳特有的直达波干扰问题。故此对直达波干扰问题进行研究也有其必要性。针对多基地声纳的直达波干扰问题,讨论了几种自适应干扰抑制方法。给出了基于阻塞矩阵与预成零点约束矩阵的直达波抑制方法。仿真结果表明其有效性。提出了宽带信号模型下的零点约束矩阵的子带划分法。给出了一种舰潜双基地模式下的直达波抑制方法。通过虚拟阵技术,将潜用圆柱阵综合声纳虚拟成平面阵,在通过可分离的二维契比雪夫权进行旁瓣约束的基础上,通过二维零点约束矩阵实现干扰抑制。
     在完成了指定配置下的干扰抑制后,对目标的定位跟踪成为下一项重要任务。因此对目标跟踪与数据关联算法进行了研究。对于目标跟踪与数据关联,基于D-S证据理论提出了一种组合逻辑数据关联算法。仿真分析了单目标直线航迹、双目标平行航迹与多目标交叉航迹三种典型航迹。仿真结果表明组合逻辑数据关联较之于最邻近数据关联,在配合以相应的目标跟踪算法后,可获得更低的误跟率与更高的跟踪精度。
     最后,给出了双基地声纳水池试验结果。在水池条件下,完成了双基地定位误差分布测量试验、镜反射回波测量试验、直达波抑制试验与双基地目标跟踪试验。定位误差测量试验与镜反射回波试验实测结果均与理论结果吻合较好。直达波抑制试验验证了阻塞矩阵与零点约束矩阵直达波抑制算法的有效性。两种算法在高信噪比下其直达波抑制前后主旁瓣比分别可达37dB与47dB。在检测概率上阻塞矩阵法优于零点约束矩阵法。在双基地声纳目标跟踪试验中,完成了单目标直线航迹、双目标平行航迹与单目标圆形航迹三种典型航迹。较之最邻近数据关联算法,在不同的目标运动模型下,组合逻辑数据关联算法均具有更高的正确关联率与跟踪精度。水池条件下的试验结果的有效性对外场试验提供了支持。
Detecting and positioning disoperative submarines is one of the ocean guard keepingtasks today. With the development of acoustic stealth technologies of submarines, radiatednoise and target echo level are getting lower. The acoustic stealth technologies bring thetraditional active sonar and passive sonar great challenges. Active sonar system can be seeneasily by submarine and passive sonar’s detection ability is limited. However, with theadvantages of active and passive sonar, multistatic sonar will get more in submarine detectingtask. This dissertation is organized with issues on multistatic sonar positioning and tracking.
     The first task of multistatic sonar system design is choosing the configuration andplatform of sonars. So these questions are discussed firstly. An optimized configuration ofmultistatic sonobuoys bounded with energy is proposed after the basic principles and effectivedetecting zone of bistatic sonar are given, that can cover a given maritime space with anoptimized theorem. Based on the specular echo theory, a specular echo track concept isproposed. The specular echo track of optimized circle cluster configuration mentioned aboveis given. Aiming at the characteristic that the TS of target in specular spot is higher than otherspots, an optimized configuration based on specular echo detecting is proposed. In thisconfiguration, the specular echoes of target can be captured by different receivers in turn. Thetank experiment result of specular echo will be given in the below.
     When the configuration of multistatic sonar is given, in some special condition, directblast will occur. So it is necessary to research the direct blast problem. Aiming at the problemof direct blast interference in bistatic sonar, several kinds of adaptive algorithms are discussed.Jamming matrix direct blast suppression algorithm and nulls constraint matrix direct blastsuppression algorithm are proposed. Simulation result indicates the validity of the algorithms.The nulls constraint matrix algorithm based on broad band is also presented. Nulls constraintmatrix algorithm based on3dimension column array in integrative sonar of submarine isdiscussed here. With the virtual array transform, column array is transformed into2dimensions rectangle arrays which can be restricted in its side-lobe with Chebyshev weight in2dimensions and the nulls constraint matrix algorithm can be used with a restricted side-lobe.
     Moreover, the next key work is target positioning and tracking. Based on D-S evidencetheory, a combined logic data association (CLDA) algorithm is proposed.3kinds of typicaltracks that are single target linear track,2targets parellel track and3target crossing track aresimulated with CLDA and kalman filter algorithm. The simulation results indicate the validityof CLDA.
     At last, the result of bistatic sonar tank experiment is preseted.4items of bistatic sonartank experiment are measure experiment of GDOP in bistatic, specular echo measure inbistatic, experiment of direct blast constraint and target tracking. The results of GDOPmeasure experiment and specular echo measure experiment fit the theoretical results well.Direct blast suppression experiment also proves the validity of jamming matrix algorithm andnulls constraint matrix algorithm. With the high SNR, the side-lobe level gains of pre and postsuppression of the2algorithms are37dB and47dB approximatively. The detectionprobability of jamming matrix algorithm is high than nulls constraint matrix algorithm in thesame SNR. In the target tracking experiment of bistatic sonar, single target linear track,2targets parellel track and single target circular track are completed. Comared with NNDA,CLDA is provided with a higher correct associating probability and tracking precision. Theresult of bistatic sonar tank experiment can support the outfield trial.
引文
[1]唐晋.大国崛起.人民出版社,2007.
    [2]马克T,胡克.荷兰史.中国出版集团.2009.
    [3]亚当·斯密.国富论.北京出版社,2007.
    [4]任学安.公司的力量.山西教育出版社,2010.
    [5]田坦,刘国枝,孙大军.声纳技术.哈尔滨工程大学出版社,2000:5-17
    [6] Howland P E. Target tracking using television-based bistatic radar. Radar, Sonar andNavigation.1999,146(3):166-174
    [7] Kock W E. A hologram form of bistatic radar of sonar[J]. Proceedings of the IEEE.1969,57(1):100.
    [8] Tyler G L, Simpson R A. Bistatic radar measurements of topographic variations in lunarsurface slopes with Explorer35: Radio Science Symposium on planetary atmosphereand surfaces,11-15Aug.1969[Z]. USA:1970:5,263-271.
    [9] Kock W E. Holographic techniques in continuous wave bistatic radars[J]. Proceedingsof the IEEE.1970,58(11):1863-1864.
    [10] Peterson A M, Teague C C, Tyler G L. Bistatic-radar observation of long-period,directional ocean-wave spectra with LORAN A: Transactions of the AmericanGeophysical Union52nd annual meeting of the American Geophysical Union,12-16April1971[Z]. USA:1970:51,768
    [11] Seegal R, Novick A. On sonar performance estimation for separated source and receiver.ADA068956,1966
    [12] Dasinger S B, Incze B I, Holz T A. A concept for efficient signal excess calculation formultistatic operations analysis: OCEANS2006-Asia Pacific, May16,2007-May19,2007[Z]. Singapore: Inst. of Elec. and Elec. Eng. Computer Society,2007.
    [13] Maksym J N, Sandys-Wunsch M. Adaptive beamforming against reverberation for athree-sensor array[J]. Journal of the Acoustical Society of America.1997,102(6):3433-3438.
    [14] Lang T, Dunne D. Application of particle filters in a hierarchical data fusion system:11th International Conference on Information Fusion, FUSION2008, June30,2008-July3,2008[Z]. Cologne, Germany: Inst. of Elec. and Elec. Eng. Computer Society,2008.
    [15] La Cour B R. Bayesian multistatic tracking with doppler-sensitive waveforms:OCEANS2007-Europe, June18,2007-June21,2007[Z]. Aberdeen, Scotland, Unitedkingdom: Inst. of Elec. and Elec. Eng. Computer Society,2007.
    [16] La Cour B R. Bayesian sensor registration for multistatic active sonar: Oceans2005-Europe, June20,2005-June23,2005[Z]. Brest, France: Institute of Electrical andElectronics Engineers Computer Society,2005:1,131-136.
    [17] Coraluppi S, Grimmett D, De Theije P. Benchmark evaluation of multistatic trackers:20069th International Conference on Information Fusion, FUSION, July10,2006-July13,2006[Z]. Florence, Italy: Inst. of Elec. and Elec. Eng. Computer Society,2006.
    [18] Harrison C H. Closed form bistatic reverberation and target echoes with variablebathymetry and sound speed[J]. IEEE Journal of Oceanic Engineering.2005,30(4):660-675.
    [19] Grimmett D, Coraluppi S. Contact-level multistatic sonar data simulator for trackerperformance assessment:20069th International Conference on Information Fusion,FUSION, July10,2006-July13,2006[Z]. Florence, Italy: Inst. of Elec. and Elec. Eng.Computer Society,2006.
    [20] Mozzone L, Bongi S, Filocca F. Diversity in multistatic active sonar: Proceedings of theOCEANS '99MTS/IEEE-Riding the Crest into the21st Century, September13,1999-September16,1999[Z]. Seattle, WA, USA: IEEE,1999:2,1058-1063.
    [21] Saksena A, Wang I. Dynamic ping optimization for surveillance in multistatic sonarbuoy networks with energy constraints:47th IEEE Conference on Decision and Control,CDC2008, December9,2008-December11,2008[Z]. Cancun, Mexico: Institute ofElectrical and Electronics Engineers Inc.,20081109-1114.
    [22] Grimmett D, Coraluppi S, Hempel C G, et al. MSTWG multistatic tracker evaluationusing simulated scenario data sets:11th International Conference on Information Fusion,FUSION2008, June30,2008-July3,2008[Z]. Cologne, Germany: Inst. of Elec. andElec. Eng. Computer Society,2008.
    [23]赵俊渭,阎宜生,丁纬等.双基地声呐的性能与展望.声学与电子工程.1991,23(3):29-33
    [24]丁玮,阎宜生.航空探潜新体制的研究—关于双/多基地声纳技术.中国航空学会航空武器系统专业委员会第二次学术年会论文集,北京,1991:216-218
    [25]张小凤,赵俊渭,王荣庆等.双基地声纳定位精度和算法研究.系统仿真学报.2003,15(10):1471-1473
    [26]张小凤,赵俊渭.系统参数对双基地声呐定位性能的影响.陕西师范大学学报(自然科学版).2003,31(4):36-40
    [27]邹吉武,孙大军,兰华林.基于矢量传感器的双基地声纳数据融合.高技术通讯.2009,19(9).
    [28]凌青,杨丽,蔡志明.双(多)基地声纳浮标系统在反潜中的应用研究.海军工程大学学报.2006,18(2):47-51
    [29]杨丽,蔡志明.混响背景下双基地声呐的探测范围分析.哈尔滨工程大学学报.2006,27(4):597-602
    [30]张小凤,赵俊渭.非入射方向有限长弹性柱声散射特性研究.陕西师范大学学报(自然科学版).2002,30(3),57-61
    [31]邹吉武,孙大军师俊杰等.双基地声纳矢量传感器直达波抑制技术.高技术通讯.2010,20(11).
    [32]张小凤,赵俊渭.单/多基地声呐定位性能比较.探测与控制学报.2003,25(3):48-61
    [33]张小凤,赵俊渭,王荣庆,韩静.基于波达方位的双基地声呐定位算法.电声基础.2003,9:4-6
    [34]张小凤.双/多基地声呐定位及目标特性研究.西北工业大学博士学位论文.2003:38-74
    [35]凌青.基于多站址信息综合的水下探测定位技术研究.哈尔滨工程大学博士学位论文.18-64
    [36]朱喜,王成,毕宏伟,陶林伟.双基地声呐接收站信息定位算法研究.电声基础.2009,33(11):37-40
    [37]孙勇,赵俊渭,张小凤.关于双基地声呐定位及其优化算法的研究.系统仿真学报.2007,19(4):725-728
    [38]刘若辰,王英民,朱婷婷. T-Rn配置型多基地声纳距离信息定位算法精度分析.声学技术.2009,28(6):90-94
    [39]孙勇,赵俊渭,张银兵.基于时延和方位的双基地声呐数据融合算法的研究.水声信号处理技术.2007,26(5):108-110
    [40]孙勇,赵俊渭,张小凤.双基地声呐定位算法的研究与比较.计算机仿真.2006,23(9):129-132
    [41]张小凤,张光斌,赵俊渭.基于最佳线性数据融合的双基地声呐定位优算法.应用声学.2004,23(3):40-44
    [42]张小凤,赵俊渭.基于加权最小二乘估计的双基地声呐定位算法研究.声学学报.2004,29(3):283-286
    [43]孙勇,赵俊渭,张银兵.多基地声纳系统定位精度分析与最优布站.计算机仿真.2008,25(8):20-23
    [44]顾晓东,邱志明,袁志勇.多基地声呐接收机最优布阵的探讨.兵工学报.2008,29(3):287-290
    [45] Dommermuth F. Location ambiguity in a multistatic sonar system with range onlyinformation[J]. Journal of the Acoustical Society of America.1982,71(1):218-220
    [46] Fenwick A J. Algorithms for position fixing using pulse arrival times[J]. IEEProceedings: Radar, Sonar and Navigation.1999,146(4):208-212.
    [47]张小凤,赵俊渭,王荣庆等.双基地加权最小二乘估计算法定位精度研究.兵工学报.2004,25(6):761-765
    [48] Kim S, Ku B, Hong W, et al. Performance comparison of target localization for activesonar systems[J]. IEEE Transactions on Aerospace and Electronic Systems.2008,44(4):1371-1380.
    [49] Sandys-Wunsch M, Hazen M G. Multistatic localization error due to receiverpositioning errors[J]. IEEE Journal of Oceanic Engineering.2002,27(2):328-334.
    [50] Coraluppi S, Carthel C. Distributed tracking in multistatic sonar[J]. IEEE Transactionson Aerospace and Electronic Systems.2005,41(3):1138-1147.
    [51] Coraluppi S. Analysis of tracker performance models for centralized and distributedtracking[C]:20057th International Conference on Information Fusion, FUSION, July25,2005-July28,2005. Philadelphia, PA, United states: Inst. of Elec. and Elec. Eng.Computer Society,2005:2,1404-1411.
    [52]陆大gàn(纟+金).随机过程及其应用.清华大学出版社,2006:38-109
    [53]李嶷,孙长瑜,余华兵,陈新华.多基地声纳配置策略研究.兵工学报.2009,30(6):844-848
    [54] Schenck H A. Bistatic active sonar equation[R]. ADA214231,1986.
    [55] Brian R L. Bistatic side scan sonar[R]. ADD014803,1987.
    [56]杨丽,蔡志明.双基地声纳探测范围分析.兵工学报.2007,28(7):839-843
    [57] Ngatchou P N, Fox W L J, El-Sharkawi M A. Multiobjective multistatic sonar sensorplacement[C]:2006IEEE Congress on Evolutionary Computation, CEC2006, July16,2006-July21,2006. Vancouver, BC, Canada: Inst. of Elec. and Elec. Eng. ComputerSociety,20062713-2719.
    [58] Martin J. Multiplying the effectiveness of helicopter ASW sensors[J]. Sea Technology.2006,47(11):33-36.
    [59] Erdinc O, Willett P, Coraluppi S. Multistatic sensor placement: A tracking approach[C]:20069th International Conference on Information Fusion, FUSION, July10,2006-July13,2006. Florence, Italy: Inst. of Elec. and Elec. Eng. Computer Society,2006.
    [60] Tharmarasa R, Lang T, Kirubarajan T. Joint path planning and sensor subset selectionfor multistatic sensor networks[C]: Signal and Data Processing of Small Targets2008,March18,2008-March20,2008. Orlando, FL, United states: SPIE,2008:6969, TheInternational Society for Optical Engineering (SPIE).
    [61] La Cour B. Bayesian multistatic tracking: Results on simulated data from the multistatictracking working group[C]:20069th International Conference on Information Fusion,10-13July2006. Piscataway, NJ, USA: IEEE,20067.
    [62] Lang T, Hayes G. Evaluation of an MHT-enabled tracker with simulated multistaticsonar data[C]: OCEANS2007-Europe, June18,2007-June21,2007. Aberdeen,Scotland, United kingdom: Inst. of Elec. and Elec. Eng. Computer Society,2007.
    [63] Hempel C G. Probabilistic multi-hypothesis tracking for distributed multi-static activesonar[C]:20069th International Conference on Information Fusion,10-13July2006.Piscataway, NJ, USA: IEEE,20065.
    [64] Grimmett D. Multistatic target tracking using specular cue initiation and directed dataretrieval[C]:11th International Conference on Information Fusion, FUSION2008, June30,2008-July3,2008. Cologne, Germany: Inst. of Elec. and Elec. Eng. ComputerSociety,2008.
    [65] Grimmett D J. Reduction of false alarm rate in distributed multistatic sonar systemsthrough detection cueing[C]: OCEANS2007-Europe, June18,2007-June21,2007.Aberdeen, Scotland, United kingdom: Inst. of Elec. and Elec. Eng. Computer Society,2007.
    [66] De Theije P, Kester L, Bergmans J. Application of the M6T tracker to simulated andexperimental multistatic sonar data[C]:20069th International Conference onInformation Fusion, FUSION, July10,2006-July13,2006. Florence, Italy: Inst. ofElec. and Elec. Eng. Computer Society,2006.
    [67] Blanding W, Willett P, Coraluppi S. Sequential ML for multistatic sonar tracking[C]:OCEANS2007-Europe, June18,2007-June21,2007. Aberdeen, Scotland, Unitedkingdom: Inst. of Elec. and Elec. Eng. Computer Society,2007.
    [68] Erdinc O, Willett P, Coraluppi S. The Gaussian mixture cardinalized PHD tracker onMSTWG and SEABAR'07datasets[C]:11th International Conference on InformationFusion, FUSION2008, June30,2008-July3,2008. Cologne, Germany: Inst. of Elec.and Elec. Eng. Computer Society,2008.
    [69] Hempel C G. Adaptive track detection for multi-static active sonar systems[C]:OCEANS2006, September18,2006-September21,2006. Boston, MA, United states:Inst. of Elec. and Elec. Eng. Computer Society,2006.
    [70] Lazoff H. Target tracking using fuzzy logic association[C]: Proceedings of the1998IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP.Part1(of6), May12,1998-May15,1998. Seattler, WA, USA: IEEE,1998:4,2457-2460.
    [71]高洁,侯卫民,刘云涛,蔡惠智.一种自适应的主动声呐直达波干扰抑制算法.声学技术.2008,27(6):418-422
    [72]高洁,李磊,刘云涛,蔡惠智.主动声纳直达波干扰抑制的盲分离算法.声学技术.2009,28(4):537-540
    [73]郭晶,王英民,王成.多基地主动声呐直达波抑制研究.电声基础.2009,33(7):38-40
    [74] LI J, LIU GQ, Stoica P, et al. Airborn phased array radar: clutter and jammingsuppression and moving target dection and feature extracion[C]. IEEE2000SensorArray and Multichannel Signal Processing Workshop, Cambridge, MA,2000:240-244.
    [75] Herault J, Jutten C. Space or time adaptive signal processing by neural networkmode[C]. Neural networks for computing: AIP conf. Processings151, New York:Amrican Institute for physics, Aprial,1986:13-16.
    [76] Belouchrani A, Meriam K A, Cardoso J F,et al. A bline source separation techniqueusing secong-order statistics[J]. IEEE Trans. On Signal Processing,1997, SP-45(2):434-444.
    [77] Sorouchyari E. Blind separation of sources, Part Ⅲ: Stability Analysis [J]. SignalProessing,1991,24(1):21-29.
    [78] Lee T W, Bell A J, Orglmeister R. Blind source separation of real world signals[R].IJCNN1998:2282-2286.
    [79]邹吉武,孙大军.线阵双基地声纳波束零点形成MUSIC算法.兵工学报.2010,31(3):364-368
    [80]邹吉武,孙大军,黄新华等.圆阵双基地声纳直达波抑制技术研究.高技术通讯.2010,20(1):106-110
    [81] Varadan V K, Varadan V V. Acoustic, Electromagnetic elastic wave scattering-Focuson T-matrix approach[J]. Journal of Acoustic Society of America,1980,68(3):987-991.
    [82] Zhen Ye. A novel approach to sound scattering by cylinders of finite length. AcousticalSociety of America. J.Acoust.Soc.Am.102(2), Pt.1, August,1997.
    [83]张小凤,赵俊渭,王荣庆,韩静.双基地声呐散射声场的建模与仿真.系统仿真学报.2002,14(5):562-565
    [84]程广利,张明敏.双基地声纳目标低频散射特性研究.海军工程大学学报.2008,20(6):31-34
    [85]彭水,张明敏,程广利.双基地目标强度及回波时域特性研究.舰船电子工程.2009,29(9):175-177
    [86] Detheije P A M, Sindt J C. Regular Issue Peer-Reviewed TechnicalCommunication-Single Ping target speed and course estimation using a bistatic sonar[J].IEEE Journal of Oceanic Engineering.2006,31(1):236-243.
    [87] Dommermuth F. Probabilistic modeling of bistatic Doppler shift [J].IEE Proc.-Radar,Sonar and Navigation,2001,148(6):348-352
    [88]杨丽,张明敏,刘丹丹.基于多普勒频移的双基地声纳目标速度测量.系统工程与电子技术.2009,31(11):2622-2625
    [89] M swft, J L Riley, S Lourey and L Booth. An overview of the multistatic sonar programin Australia[C]. Processing of the fifth international symposium on signal processingand its applications,1999(8SSPA’99),1999,1:321-324.
    [90] Mozzone L, Bogi S, Primo F. Deployable underwater surveillance system-targetlocalizaiton with multiple sonar receivers, SR-317[R]. AD-A378091/XAB,1998.
    [91] Grimmett D. Specular-cued multistatic sonar tracking on the SEABAR'07dataset[C]:200912th International Conference on Information Fusion (FUSION),6-9July2009.
    [92] Coraluppi S, Carthel C. Performance limits of real-time contact-based tracking[C]:OCEANS2007-Europe, June18,2007-June21,2007. Aberdeen, Scotland, Unitedkingdom: Inst. of Elec. and Elec. Eng. Computer Society,2007.
    [93]兰华林.深海水声应答器定位导航技术研究.哈尔滨工程大学博士学位论文.2008:46-47
    [94] Coraluppi S. Multistatic sonar localization. Special Issue on HF/VHF Ocean SurfaceRadar,2006,31(4):964-974
    [95]田坦.声呐技术(第二版).哈尔滨工程大学出版社.2010.
    [96]杨丽.双/多基地声纳系统性能及混响特性研究.海军工程大学博士学位论文.2009:80-85
    [97] A. D. Waite.实用声纳工程.电子工业出版社,2004.
    [98] Grimmett D. Multi-sensor placement to exploit complementary properties of diversesonar waveforms[C]:20069th International Conference on Information Fusion,FUSION, July10,2006-July13,2006. Florence, Italy: Inst. of Elec. and Elec. Eng.Computer Society,2006.
    [99]王永良,丁前军,李荣锋.自适应阵列处理.清华大学出版社,2009.
    [100]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法.清华大学出版社,2004.
    [101] Harry L. Van Trees.最优阵列处理技术.清华大学出版社,2008:120-127.
    [102]覃岭,黄茜,李会勇,何子述.主瓣干扰下宽带圆阵自适应波束形成方法.电子科技大学学报,2009,38(3):360-363
    [103]杨德培,陈航,王琨鹏.一种简单的低旁瓣控制波束形成算法.电声基础,2009,33(01):44-47
    [104]胡鹏.虚拟阵元波束形成方法研究.西北工业大学硕士学位论文,2009.
    [105]韦俊霞.虚拟阵元宽带波束形成技术研究.哈尔滨工程大学硕士学位论文,2006.
    [106]叶西宁.多目标跟踪系统中数据关联与多维分配技术.西北工业大学博士学位论文.2003
    [107]林岳松.多运动目标的无源跟踪与数据关联算法研究.浙江大学博士学位论文.2003
    [108]孙福明.机动目标跟踪状态估计与数据关联技术的研究.这个科学技术大学博士学位论文.2007.
    [109] Kalman R E. A new approach to linear filtering and prediction problems[J]. Journal ofbasic engineering,1960,2(2):35-46.
    [110]党建武.水下多目标跟踪理论.西北工业大学出版社,2009:76-97.
    [111] Singer R A, Stein J J. An optimal tracking filter for processing sensor data ofimprecisely determined origin in surveillance systems. Proceedings of the1971IEEEConference on Decision and Control. Miami Beach:1971,171-175
    [112] Singer R A, Sea R G, Housewright K B. Derivation and evaluation of improvedtracking filters for use in dense multi-target environments. IEEE Trans. InformationTheory.1974,20(7):201-211
    [113] Bar-Shalom Y, Jaffer A G. Adaptive nonlinear filtering for tracking with measurementsof uncertain. Proceedings of the11thIEEE Conference on decision and Control.1972:243-247
    [114] Bar-Shalom Y. Extension of the probabilistic data associaiton filter in multi-targettracking. Proceedings of the5thSymp, on Nonlinear Estimation.1974:16-21
    [115]康耀红.数据融合理论与应用.西安电子科技大学出版社.2006
    [116]韩静,陶云刚.基于D-S证据理论和模糊数学的多传感器数据融合算法.仪器仪表学报,2000,21(06):644-647
    [117]蓝金辉,马宝华,蓝天等. D-S证据理论数据融合方法在目标识别中的应用.清华大学学报(自然科学版).2001,41(02):53-55,59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700