硬盘驱动器两级磁头定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬盘驱动器作为当今信息时代不可缺少的存储设备,在人们日常生活中正扮演着越来越重要的角色,同时它也成为信息时代科学技术飞速发展的助推器。然而,随着信息量的日益增长,人们对硬盘驱动器存储容量的要求越来越高。但另一方面由于传统硬盘驱动器的低带宽、低定位精度,导致磁头很难准确地定位在目标磁道中心位置,从而限制了存储容量的持续增加。因此,如何设计合理的伺服系统结构和先进的算法以提高磁头定位精度日益成为硬盘存储技术研究的一大挑战,本文的研究工作就是在这样的背景下展开的。
     就伺服系统结构而言,传统的硬盘驱动器仅采用音圈电机作为单一的致动器驱动磁头实现数据的读写。采用这种单级磁头定位结构,由于音圈电机存在机械谐振和高频不确定性,从而限制了伺服带宽的提高,进一步制约了磁道密度的增加。为了满足磁头定位速度、精度和频率响应快的要求,本文开发出两级致动器结构,即采用粗—精两级伺服定位系统以获得高伺服带宽和定位精度。在这一结构配置中,音圈电机作为第一级致动器控制读/写磁头进行粗定位,主要运动于低频段;微致动器作为第二级精定位致动器控制磁头在数据磁道上实现精确的定位,此时该级致动器工作于高频段。
     就先进的算法而言,首先考虑到硬盘驱动器伺服信号存在着噪声,噪声的存在降低了磁头定位的精度,进而影响磁盘密度的提高,严重情况下还会发生误读写,因此事先需要经过滤波处理。由于噪声源和有用信号的频谱相互间有重叠,因而采用一般的数字滤波器达不到滤波的效果。本文在这样的需求下提出了一种新颖的加权递推最小二乘法。
     为便于展开后续的硬盘两级磁头定位研究工作,先简要介绍了单级磁头定位情况,并在此基础上首次将分数阶PI~λD~μ控制器引入到硬盘伺服控制领域。分数阶PI~λD~μ控制器作为常规整数阶PID控制器在微积分阶次上的推广,除了通常的比例、积分和微分系数可调整外,其积分阶次和微分阶次也是可调整的,这使得分数阶PI~λD~μ控制器的设计更灵活,用在硬盘驱动器磁头定位上,鲁棒性更强,控制效果更佳。
     在硬盘两级磁头定位研究工作中,为了实现磁头更快捷、更精确的定位,同时还避免致动器的饱和,从而取得更满意的控制效果,本文基于现代控制理论,提出了一种崭新的控制方法——复合非线性反馈控制结合跟踪微分器。前者的设计思想为开始寻道时系统的阻尼比设置较小,从而保证系统有较快的响应速度。随着磁头逐渐靠近目标磁道而动态地增加系统的阻尼比进而减小超调,这一思想使得系统在获得较快上升时间的同时还保证较低的超调。后者采用前馈的方式将其引入到伺服系统中,主要用来减小输入给致动器的控制电压,从而避免致动器的饱和。此外,本文还通过构建一个恰当的Lyapunov函数,验证了在这一控制方案作用下闭环系统的渐近稳定性。
     考虑到信号电缆产生的常值干扰及其它不确定干扰会使系统存在稳态误差,本文提出了一种H_∞几乎干扰解耦控制器,控制器参数可以自由调整,这尤其适用于系统有不确定性干扰的情形。本文根据硬盘驱动器模型详细地设计了H_∞鲁棒控制器,并分别在时域和频域上验证了该控制器的有效性。
     在磁道跟踪模式下,鉴于硬盘驱动器不可避免地存在着由主轴马达产生的重复性扰动信号,扰动信号的存在使磁头很难定位在期望的磁道上。因此,本文提出一种自适应前馈扰动补偿器。这种自适应补偿器需要求解三个参变量,即相位超前参数、自适应增益和前馈项系数。为了得到最优的参数值,首先将该补偿器等效为一个线性时不变的模型,然后利用环路成形法、奈奎斯特准则和根轨迹分析法定量地获取了这些最优参量值。仿真结果表明该自适应前馈补偿器几乎完全消除了重复性扰动信号,从而保证磁头在磁道跟踪模式下良好的跟踪效果。
     随着硬盘磁道密度越来越大,尺寸越来越小,导致建立准确的对象模型变得越来越困难。基于此,本文提出一种不依赖于精确被控对象模型的控制方法,即采用激活函数可调的神经网络训练分数阶PIλDμ控制器的比例、积分和微分系数。这种控制方法不仅具有对被控对象模型的弱依赖性,而且具有控制性能上的高精度、强鲁棒性。
     最后,对全文的研究工作做了总结,并对今后要进一步开展的研究工作进行了展望。
Hard disk drive (HDD), acted as requisite storage equipment in current information age, plays a more and more vital role in people’s daily life, and it becomes a roll booster in rapid development of science and technology. However, with the increase of information capacity, we put forward a severe request for HDD data storage capacity. Unfortunately, due to the low bandwidth, low positioning accuracy in conventional HDD, magnetic head is hard to be positioned onto the destination track center, thus it limits the continuing increase in storage capacity. Therefore, how to design reasonable servo system structure and advanced algorithms so as to improve head positioning accuracy becomes a challenge in HDD storage technique research, this dissertation is mainly developed based on the above background.
     As far as servo system structure is concerned, conventional HDD only applies with voice coil motor (VCM) as a single actuator to drive the magnetic head to realize data reading and writing. Applying this single-stage head positioning structure, due to mechanical resonances and high frequency uncertainties existed in VCM, it is hard to improve the servo bandwidth, and further increase track density. In order to satisfy the requirements of the head positioning speed, accuracy and rapid frequency response, this dissertation develops dual-stage actuator structure, that is, coarse-fine dual-stage servo positioning system. This system helps to obtain high servo bandwidth and positioning accuracy. In this configuration, VCM, acted as the first actuator, is to control the read/write (R/W) head to realize coarse positioning, and its movement is mainly limited in low frequency range. While micro-actuator (MA), acted as the secondary actuator, is to control the head to realize accurate positioning in data track, and its movement is mainly limited in high frequency range.
     As far as advanced algorithms are concerned, first of all, there are noises existing in HDD servo signal. The existence of noises reduces the head positioning precision, affects the improvement of disk density, and to be more serious results in track misregistration. Therefore, we need to apply filtering technique in advance. Since there are overlaps between frequency spectrum of noise sources and that of useful signals, it is hard to obtain good filtering effect by using general digital filter. This dissertation puts forward a novel weighted recursive least square (WRLS) algorithm under this requirement.
     In order to expand dual-stage head positioning research work, this dissertation simply presents the situation of single-stage head positioning, and then introduces fractional order PI~λD~μcontroller into HDD servo control field. This controller is the generalization of conventional integer order PID controller. Besides the usual proportional、integral and derivative parameters, the orders of integrator and differentiator can also be tunable, which make the design of fractional order PI~λD~μcontroller be more flexible. In order to verify the superior performance of the fractional order PI~λD~μcontroller, simulation experiment, using hard disk drive servo control as an example, is done. Simulation results show that this controller can make the whole system be more robust and excellent.
     To realize more rapid and accurate head positioning, and simultaneously avoid actuator saturation, this dissertation proposes a novel control scheme----composite nonlinear feedback control combined with tracking differentiator which is based on modern control theory. The design philosophy of the former is that the damping ratio of the overall system is set very little in the seeking stage such that the system has rapid response. When the magnetic head gradually approaches the destination track, the control scheme dynamically increases the system damping ratio so as to reduce the overshoot caused by the initial little damping ratio. This idea can not only obtain fast rising time but also ensure less overshoot. The latter is injected into the servo system using a feedforward way, and the tracking differentiator is mainly used to reduce the control voltage to the actuators and hence avoid their saturation. Furthermore, this dissertation verifies the stability of the closed-loop system under this control scheme by constructing an appropriate Lyapunov function.
     Considering constant disturbances caused by data flex cable and other uncertain runouts which make the servo system be steady-state error, this dissertation presents an H_∞almost disturbance decoupling controller. The parameters of this controller can be arbitrarily adjusted. This is especially suitable for those occasions which have uncertain disturbances. According to the model of the HDD, this dissertation designs this robust controller in detail, and verifies the effectiveness of this controller in time domain and frequency domain.
     In track following mode, there inevitably exists repeatable runout (RRO) which is caused by spindle motor, and this RRO makes the head be hard to be positioned onto the desired track center. Therefore, this dissertation presents an adaptive feedforward compensation (AFC) controller. This adaptive controller needs to solve three types of parameters, that is, phase advance parameters, adaptive gains and feedthrough coefficients. In order to obtain the optimal parameters, this time-varying compensator should be converted into a linear time invariant (LTI) model, and then quantitively acquire these optimal parameters by using loop-shaping approach, Nyquist criteria and root locus analysis. Simulation results show that this adaptive feedforward compensator nearly eliminates the repeatable runout signal, and hence ensures the servo system achieve satisfactory tracking effect in the track following mode.
     With the improvement of HDD track density and the reduction of HDD dimensions, the accurate model construction becomes more and more difficult. This dissertation proposes an advanced control method which is independent of plant model, to be more specific, this method is tunable activation function-multilayer forward neural network (TAF-MFNN), this neural network can be used to train proportional, integral and derivative coefficients of the fractional order PI~λD~μcontroller. This control strategy can not only have weak dependence on plant model, but also have good characteristics such as high precision and robustness.
     Finally, a summary has been done for all discussions in the dissertation. The research works in further study are presented.
引文
[1] http://www.pcworld.com.cn/product/hardware/1/2006/0927/238.shtml
    [2]王玉娟.高密硬盘系统动力学分析和优化设计:[博士学位论文].东南大学, 2002
    [3] Tanaka Y. Fundamental features of perpendicular magnetic recording and design considerations for future portable HDD integration. IEEE Trans. on Magnetics, 2005, 41(10): 2834-2838
    [4] Grochowski E, Hoyt R F. Future trends in hard disk drives. IEEE Trans. on Magnetics, 1996, 32(3): 1850-1854
    [5] Chen B M, Lee T H, Peng K, et al. Hard disk drive servo systems (2nd edition). New York: Springer-Verlag, 2006
    [6]范中磊.高性能硬盘驱动器主轴结构的计算机仿真研究:[博士学位论文].华中理工大学, 1999
    [7]刘爱龙.微硬盘磁头弹性臂的研究:[硕士学位论文].电子科技大学, 2006
    [8] http://www.cnetnews.com.cn/2006/0914/314966.shtml
    [9] http://www.windowsba.com/thread-470-1-1.html
    [10] http://www.techspot.com/review/54-hitachi-deskstar-7k1000/
    [11] Kozierok C M. A brief history of the hard disk drive. http://www.storagereview.com/guide2000/ref/hdd/hist.html
    [12] http://stor-age.zdnet.com.cn/stor-age/2006/0907/398280.shtml
    [13] Abramovitch D, Franklin G. A brief history of disk drive control. IEEE Control Systems Magazine, 2002, 22(3): 28-42
    [14] Abramovitch D, Franklin G. Disk drive control: the early years. Annual Reviews in Control, 2002, 22: 229-242
    [15] http://hi.baidu.com/xiaofeixia2004/blog/item/7427d23643029c310b55a9fe.html
    [16] Afzulpurkar N, Weerakamhaeng Y. Precision positioning using MEMS based microactuator. Mechatronics, 2002, 12: 1213-1223
    [17] Uematsu Y, Koganezawa S, Imamura T. Piggyback Microactuators for Ultra-high Track Density Hard Disk Drives. Sensors Update, 1999, 6(1): 333-358
    [18] Al-Mamun A, Ge S S. Precision control of hard disk drives. IEEE Control SystemsMagazine, 2005, 25(4): 14-19
    [19] Fan L-S, Hirano T, Hong J, et al. Electrostatic microactuator and design considerations for HDD applications. IEEE Trans. on Magnetics, 1999, 35(2): 1000-1005
    [20] Li Y, Horowitz R. Mechatronics of electrostatic microactuators for computer disk drive dual-stage servo systems. IEEE/ASME Trans. on Mechatronics, 2001, 6(2): 111-121
    [21] Semba T, Hirano T, Hong J. Dual-stage servo controller for HDD using MEMS microactuator. IEEE Trans. on Magnetics, 1999, 35(5): 2271-2273
    [22] Oboe R, Murari B. Modeling and control of a dual stage actuator hard disk drive with MEMS-based secondary actuator. Proceedings of the 6th International Workshop on Advanced Motion Control, Nagoya, Japan, Mar. 2000: 479-484
    [23] Oboe R, Beghi A, Murari B. Modeling and control of a dual stage actuator hard disk drive with piezoelectric secondary actuator. Proceedings of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA, Sep. 1999: 138-143
    [24] Evans R B, Griesbach J S, Messner W C. Piezoelectric microactuator for dual stage control. IEEE Trans. on Magnetics, 1999, 35(2): 977-982
    [25] Jing Y, Luo J, Yi X, et al. Design and evaluation of PZT thin-film micro-actuator for hard disk drives. Sensors and Actuators, 2004, 116: 329-335
    [26] Jing Y, Luo J, Huang P, et al. U-type Piezoelectric thin-film microactuator for hard disk drives. IEEE Trans. on Magnetics, 2005, 41(11): 4309-4314
    [27]荆阳,雒建斌,杨文言.压电陶瓷微致动器的制作及驱动行为研究.兵工学报, 2005, 26(1): 77-81
    [28] Hernandez D, Park S S, Horowitz R, et al. Dual-stage track-following servo design for hard disk drives. Proceedings of the American Control Conference, San Diego, California, USA, Jun. 1999, 6: 4116-4121
    [29] Pang C K, Guo G, Chen B M, et al. Nanoposition sensing and control in HDD dual-stage servo systems. Proceedings of the 2004 IEEE International Conference on Control Applications, Taipei, Taiwan, Sep. 2004, 1: 551-556
    [30] Horowitz R, Li Y, Oldham K, et al. Dual-stage servo systems and vibration compensation in computer hard disk drives. Control Engineering Practice, 2007, 15(3): 291-305
    [31] Cheng G, Peng K, Chen B M, et al. A microdrive track following controller design using robust and perfect tracking control with nonlinear compensation. Mechatronics, 2005, 15(8): 933-948
    [32]程国扬,金文光.硬盘磁头快速精确定位伺服控制系统的设计.中国电机工程学报, 2006, 26(12): 139-143
    [33] Wu D, Guo G, Chong T C. Comparative analysis on resonance compensation in HDD dual-stage actuation systems. IEEE Trans. on Industrial Electronics, 2003, 50(6): 1179-1186
    [34] Guo G, Wu D, Chong T C. Modified dual-stage controller for dealing with secondary-stage actuator saturation. IEEE Trans. on Magnetics, 2003, 39(6): 3587-3592
    [35] Al-Mamun A, Mareels I, Lee T H, et al. Dual stage actuator control in hard disk drive-a review. The 29th Annual Conference of the IEEE Industrial Electronics Society, Nov. 2003, 3: 2132-2137
    [36] Guo L, Chang J, Hu X. Track-following and seek/settle control schemes for high density disk drives with dual-stage actuators. Proceedings of 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Como, Italy, Jul. 2001, 2: 1136-1141
    [37] White M T, Hirano T. Use of the relative position signal for microactuators in hard disk drive. Proceedings of the American Control Conference, Denver, Colorado, USA, Jun. 2003: 2535-2540
    [38] Horowitz R, Chen T L, Oldham K, et al. Nanotechnology-Part F: Microactuators for dual-stage servo systems in magnetic disk files. Springer Berlin Heidelberg, 2007: 1509-1544
    [39] Guo G, Hao Q, Low T S. A dual-stage control design for high track per inch hard disk drives. IEEE Trans. on Magnetics, 2001, 37(2): 860-865
    [40] Li Y, Guo G, Wang Y. A nonlinear control scheme for fast settling in hard disk drives. IEEE Trans. on Magnetics, 2004, 40(4): 2086-2088
    [41] Hawwa M A, Masoud A A. A nonlinear PID servo controller for computer hard diskdrives. Proceedings of the 9th IEEE International Workshop on Advanced Motion Control, Istanbul, Turkey, 2006: 672-676
    [42] Franklin G F, Powell J D, Workman M. Digital control of dynamic systems (Third edition). Massachusetts: Addison Wesley Publishing Company, 1998
    [43] Choi Y M, Jeong J, Gweon D G, et al. A new damping scheduling proximate time optimal servomechanism. Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, Jun. 2006: 321-326
    [44] Hredzak B, Herrmann G, Guo G. A proximate-time-optimal-control design and its application to a hard disk drive dual-stage actuator system. IEEE Trans. on Magnetics, 2006, 42(6): 1708-1715
    [45] Choi Y M, Jeong J, Gweon D G. A novel damping scheduling scheme for proximate time optimal servomechanism in hard disk drives. IEEE Trans. on Magnetics, 2006, 42(3): 468-472
    [46] Kim H S, Lim S, Iurascu C C, et al. A robust, discrete, near time-optimal controller for hard disk drives. Precision Engineering, 2004, 28: 459-468
    [47] Serikitkankul P, Seki H, Hikizu M. Adaptive near time-optimal seek control of a disk drive actuator. IEEE Trans. on Magnetics, 2005, 41(10):2869-2871
    [48] Shim W, Morris J C. Discrete-time closed-form solution of time-optimal seek control for hard disk drives. Proceedings of the 2005 American Control Conference, Portland, OR, USA, Jun. 2005: 3223-3228
    [49] Goh T B, Li Z, Chen B M, et al. Design and implementation of a hard disk drive servo system using robust and perfect tracking approach. IEEE Trans. on control systems technology, 2001, 9(2): 221-233
    [50] Li Z, Liu K, Chen B M, et al. Robust and perfect tracking control design of a hard disk drive with a dual-stage actuator. Proceedings of the American Control Conference, Arlington, VA, USA, Jun. 2001, 5: 3849-3854
    [51] Chen B M, Lin Z, Liu K. Robust and perfect tracking of discrete-time systems. Automatica, 2002, 38: 293-299
    [52]程国扬,金文光.硬盘两级伺服磁头定位系统的鲁棒控制.电机与控制学报, 2006, 10(2): 134-137
    [53] Chen B M, Lee T H, Peng K, et al. Composite nonlinear feedback control for linear systems with input saturation: theory and an application. IEEE Trans. on Automatic Control, 2003, 48(3): 427-439
    [54] Peng K, Chen B M, Lee T H, et al. Design and implementation of a dual-stage actuated HDD servo system via composite nonlinear control approach. Mechatronics, 2004, 14 (9): 965-988
    [55] Venkataramanan V, Peng K, Chen B M, et al. Discrete-time composite nonlinear feedback control with an application in design of a hard disk drive servo system. IEEE Trans. on Control Systems Technology, 2003, 11(1): 16-23
    [56] Peng K, Chen B M, Cheng G, et al. Modeling and compensation of nonlinearities and friction in a micro hard disk drive servo system with nonlinear feedback control. IEEE Trans. on Control Systems Technology, 2005, 13(5): 708-721
    [57] Cheng G, Peng K. Robust composite nonlinear feedback control with application to a servo positioning system. IEEE Trans. on Industrial Electronics, 2007, 54(2): 1132-1140
    [58] Cheng G, Jin W. Parameterized design of nonlinear feedback controllers for servo positioning systems. Journal of Systems Engineering and Electronics, 2006, 17(3): 593-599
    [59] He Y, Chen B M, Wu C. Composite nonlinear control with state and measurable feedback for general multivariable systems with input saturation. Systems & Control Letters, 2005, 54: 455-469
    [60] Lan W, Chen B M, He Y. On improvement of transient performance in tracking control for a class of nonlinear systems with input saturation. Systems & Control Letters, 2006, 55: 132-138
    [61] He Y, Chen B M, Wu C. Improving transient performance in tracking control for linear multivariable discrete-time systems with input saturation. Systems & Control Letters, 2007, 56: 25-33
    [62] You K H, Hong M. Robust linear quadratic sliding-mode control for hard disk drives. IEEE Trans. on Instrumentation and Measurement, 2007, 56(3): 1087-1093
    [63] Wu W C, Liu T S. Sliding mode based learning control for track-following in hard disk drives. Mechatronics, 2004, 14: 861-876
    [64] Tai T L, Chen J S. Discrete-time sliding-mode controller for dual-stage systems—ahierarchical approach. Mechtronics, 2005, 15: 949-967
    [65] Lee S H, Chung C C. Optimal sliding mode dual-stage actuator control for magnetic disk drives. 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, Dec. 2004: 4075-4080
    [66] Lee S H, Kim Y H, Baek S E. Modeling and control of a dual-stage actuator for hard disk drive servo systems. Proceedings of the American Control Conference, Chicago, Illinois, USA, Jun. 2000: 4254-4258
    [67] Oldham K, Kon S, Horowitz R. Fabrication and optimal strain sensor placement in an instrumented disk drive suspension for vibration suppression. Proceedings of the 2004 American Control Conference, Boston, Massachusetts, USA, Jun. 2004: 1855-1861
    [68] Suh S M, Chung C C, Lee S H. Discrete-time LQG/LTR dual-stage controller design in magnetic disk drives. IEEE Trans. on Magnetics, 2001, 37(4):1891-1895
    [69] Hu X, Guo W, Huang T, et al. Discrete-time LQG/LTR dual-stage controller design and implementation for high track density HDDs. Proceedings of the American Control Conference, San Diego, California, USA, Jun. 1999: 4111-4115
    [70] Herrmann G, Guo G. HDD dual-stage servo-controller design using aμ-analysis tool. Control Engineering Practice, 2004, 12(3): 241-251
    [71] Li Y. Dual-stage servo control and active vibration compensation in magnetic hard disk drives: [PhD Dissertation]. University of California, berkeley, 2003
    [72] Ding J. Digital control of dual actuator hard disk drive systems: [PhD Dissertation]. University of California, berkeley, 2003
    [73] Callafon R. de, Nagamune R, Horowitz R. Robust dynamic modeling and control of dual-stage actuators. IEEE Trans. on Magnetics, 2006, 42(2): 247-254
    [74] Nagamune R, Huang X, Horowitz R. Multirate track-following control with robust stability for a dual-stage multi-sensing servo system in HDDs. Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, Dec. 2005: 3886-3891
    [75] Yamaura H, Ono K. New H∞controller design for track-following. IEEE Trans. on Magnetics, 2001, 37(2): 877-882
    [76] Ohno K, Hirata M, Horowitz R. A comparative study of the use of the generalized hold function for HDDs. IEEE/ASME Trans. on Mechatronics, 2005, 10(1): 26-33
    [77] Postlethwaite I, Turner M C, Herrmann G. Robust control applications. Annual Reviews in Control, 2007, 31(1): 27-39
    [78] Du C, Xie L, Teoh J N, et al. An improved mixed H 2 /H∞control design for hard disk drives. IEEE Trans. on Control Systems Technology, 2005, 13(5): 832-839
    [79] Huang X, Horowitz R. Robust controller design of a dual-stage disk drive servo system with an instrumented suspension. IEEE Trans. on Magnetics, 2005, 41(8): 2406-2413
    [80] Huang X, Horowitz R, Li Y. A comparative study of MEMS microactuators for use in a dual-stage servo with an instrumented suspension. IEEE/ASME Trans. on Mechatronics, 2006, 11(5): 524-532
    [81] Huang X, Nagamune R, Horowitz R. A comparison of multirate robust track-following control synthesis techniques for dual-stage and multisensing servo systems in hard disk drives. IEEE Trans. on Magnetics, 2006, 42(7): 1896-1904
    [82]赵东超.硬盘驱动器高性能控制方法研究及其仿真系统的设计:[硕士学位论文].西北工业大学, 2000
    [83]孙书利,邓自立. Wiener状态滤波器设计新方法.控制与决策, 2002, 17(4): 503- 505
    [84]李彦鹏,黎湘,庄钊文.一种快速Kalman滤波算法实现及效果评估.电子与信息学报, 2005, 27(1): 153– 154
    [85]姚天任,孙洪.现代数字信号处理.武汉:华中科技大学出版社, 1999. 61-63
    [86] Long G, Ling F, Proakis J G. The LMS algorithm with delayed coefficient adaptation. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989, 37(9): 1397-1405
    [87] Eweda E. Comparison of RLS, LMS, and sign algorithms for tracking randomly time-varying channels. IEEE Trans. on Signal Processing, 1994, 42(11): 2937-2944
    [88]刁鸣,刘玫,成洁.递推最小二乘算法在新型无源探测系统中的应用.系统工程与电子技术, 2006, 28(6): 801-803
    [89]高守传,黄春琳,粟毅.基于RLS横向滤波自适应抵消法的直达波抑制.信号处理, 2004, 20(6): 566-571
    [90] Banister B C, Zeidler J R. Tracking performance of the RLS algorithm applied to an antenna array in a realistic fading environment. IEEE Trans. on Signal Processing, 2002,50(5): 1037-1050
    [91]黎海涛,张靖. MPSK调制系统中的自适应信道估计.信号处理, 2003, 19(1): 75-77
    [92]张华君,韩崇昭.递推批量最小二乘在直升机电动舵机故障诊断中的应用.西安交通大学学报, 2004, 38(2) :158-161
    [93]张延华,姚林泉,郭玮.数字信号处理:基础与应用.北京:机械工业出版社, 2005. 280-282
    [94] Cao J Y, Liang J, Cao B G. Optimization of fractional order PID controllers based on genetic algorithms. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, China, Aug. 2005, 9: 5686-5689
    [95] Galucio A C, DeüJ F, MenguéS, et al. An adaptation of the gear scheme for fractional derivatives. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 6073-6085
    [96] Tseng C C, Pei S C, Hsia S C. Computation of fractional derivatives using fourier transform and digital FIR differentiator. Signal Processing, 2000, 80(1): 151-159
    [97] Zeng Q S, Cao G Y, Zhu X J. Analysis of the effect on control systems of order variation for fractional-order PIλDμcontrollers. Journal of Harbin Institute of Technology, 2005, 12(3): 336-341
    [98] Oustaloup A, Bluteau B, Nouillant M. First generation scalar CRONE control: application to a two DOF manipulator and comparison with non linear decoupling control. International Conference on Systems, Man and Cybernetics, Oct. 1993, 4: 453-458
    [99] Podlubny I, Dorcak L, Kostial I. On fractional derivatives, fractional-order dynamic systems and PIλDμ–controllers. Proceedings of the 36th Conference on Decision & Control, San Diego, California, USA, 1997: 4985-4990
    [100] Podlubny I. Fractional-order systems and PIλDμ–controllers. IEEE Trans. on Automatic Control, 1999, 44(1): 208-214
    [101]张邦楚,王少锋,韩子鹏,等.飞航导弹分数阶PID控制及其数字实现.宇航学报, 2005, 26(5): 653-656
    [102] Zhang B, Zhu J, Pan S, et al. Using fractional-order PIλDμcontroller for control of aerodynamic missile. Journal of China Ordnance, 2006, 2(2): 127-131
    [103]曹军义,曹秉刚,杜彦亭.分数阶控制器在气动位置伺服控制中的应用研究.化工自动化及仪表, 2006, 33(2): 61-64
    [104]曾庆山,曹广益,王振滨.分数阶PIλDμ控制器的仿真研究.系统仿真学报, 2004,16(3): 465-469
    [105] Ma C, Hori Y. Fractional order control and its application of PIαD controller for robust two-inertia speed control. The 4th International Power Electronics and Motion Control Conference, 2004, 3: 1477-1482
    [106] Calderón A J, Vinagre B M, Feliu V. Fractional order control strategies for power electronic buck converters. Signal Processing, 2006, 86(10): 2803-2819
    [107]曹军义,梁晋,曹秉刚.基于分数阶微积分的模糊分数阶控制器研究.西安交通大学学报, 2005, 39(11): 1246-1249
    [108]曾庆山,曹广益.分数阶线性系统的能观性研究.系统工程与电子技术, 2004, 26(11): 1647-1650
    [109] Monje C A, Calderon A J, Vinagre B M, Chen Y Q, Feliu V. On fractional PIλcontroller: some tuning rules for robustness to plant uncertainties. Nonlinear Dynamics, 2004, 38: 369-381
    [110] Barbosa R S, Machado J A. Tenreiro, Ferreira I M. Tuning of PID controllers based on bode’s ideal transfer function. Nonlinear Dynamics, 2004, 38: 305-321
    [111]王振滨,曹广益,曾庆山,等.分数阶PID控制器及其数字实现.上海交通大学学报, 2004, 38(4): 517-520
    [112] Valério D, Costa J. Sáda. Tuning of fractional PID controllers with Ziegler-Nichols-type rules. Signal Processing, 2006, 86: 2771-2784
    [113] Xue D, Zhao C, Chen Y Q. Fractional order PID control of a DC-motor with elastic shaft: a case study. Proceedings of the 2006 American Control Conference. Minneapolis, 2006: 3182-3187
    [114] Xue D, Zhao C, Chen Y Q. A modified approximation method of fractional order system. Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, Luoyang, China, Jun. 2006: 1043-1048
    [115] Charef A. Analogue realization of fractional-order integrator, differentiator andfractional PIλDμcontroller. IEE Proc.-Control Theory Appl, 2006, 153(6): 714-720
    [116] Chen Y Q, Vinagre B M. A new IIR-type digital fractional order differentiator, Signal Processing, 2003, 83(11): 2359-2365
    [117] Vinagre B M, Chen Y Q, Petrás I. Two direct tustin discretization methods for fractional-order differentiator/integrator. Journal of the Franklin Institute, 2003, 340: 349-362
    [118] Valério D, Costa J. Sáda. Time-domain implementation of fractional order controllers. IEE Proc.-Control Theory Appl, 2005, 152(5): 539-552
    [119] Al-Alaoui M A. Using fractional delay to control the magnitudes and phases of integrators and differentiators. IET Signal Process, 2007, 1(2): 107-119
    [120] Al-Alaoui M A. Novel digital integrator and differentiator. Electronics Letters, 1993, 29(4): 376-378
    [121] Al-Alaoui M A. Novel stable higher order s-to-z transforms. IEEE Trans. on Circuits Systems I: Fund. Theory Appl, 2001, 48(11): 1326-1329
    [122] Chen Y Q, Moore K L. Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. on Circuits and Systems-I Fund. Theory Appl, 2002, 49(3): 363-367
    [123] Al-Mamun A, Lee T H, Low T S. Frequency domain identification of transfer function model of a disk drive actuator. Mechatronics, 2002, 12: 563-574
    [124] Suthasun T, Mareels I, Al-Mamun A. System identification and controller design for dual actuated hard disk drive. Control Engineering Practice, 2004, 12(6): 665-676
    [125] Hirata M, Tomizuka M. Short track seeking of hard disk drives under multirate control-computtionally efficient approach based on initial value compensation. IEEE/ASME Trans. on Mechatronics, 2005, 10(5): 535-545
    [126] Karaman M, Messner W C. Robust dual stage HDD track follow control systems design for hand-off shaping. Magnetic Recording Conference, Digest of the Asia-Pacific, 2002: BA5-01-BA5-02
    [127] Li Y, Sun Y, Smith C, et al. Optimization of initial value compensation for settle control in hard disk drives. IEEE Trans. on Magnetics, 2005, 41(2): 797-801
    [128] Kim Y H, Lee S H. An approach to dual-stage servo design in computer disk drives.IEEE Trans. on Control Systems Technology, 2004, 12(1): 12-20
    [129] Yeh S S, Hsu P L. An optimal and adaptive design of the feedforward motion controller. IEEE/ASME Trans. on Mechatronics, 1999, 4(4): 428-439
    [130] Yi L. Two degree of freedom control for disk drive servo systems: [PhD Dissertation]. University of California, berkeley, 2000
    [131] Ding J, Wu S C, Tomizuka M. Settling control with reference redesign for dual actuator hard disk drive systems. Annual Reviews in Control, 2004, 28(2): 219-227
    [132] Kim J J, Choi Y M, Gweon D G. A novel mode switching control for fast settling and high precision positioning. International Conference on Control, Automation and Systems, COEX, Seoul, Korea, Oct. 2007: 1656-1659
    [133] Numasato H, Tomizuka M. Settling control and performance of a dual-actuator system for hard disk drives. IEEE/ASME Trans. on Mechatronics, 2003, 8(4): 431-438
    [134] Yamaguchi T, Shishida K, Tohyama S, et al. A mode-switching controller with initial value compensation for hard disk drive servo control. Control Engineering Practice, 1997, 5(11): 1525-1532
    [135] Yamaguchi T, Hirai H. Control of transient response on a servosystem using mode-switching control, and its application to magnetic disk drives. Control Engineering Practice, 1998, 6: 1117-1123
    [136] Venkataramanan V, Chen B M, Lee T H. A new approach to the design of mode switching control in hard disk drive servo systems. Control Engineering Practice, 2002, 10: 925-939
    [137] Lin Z, Pachter M, Banda S. Toward improvement of tracking performance-nonlinear feedback for linear systems. International Journal of Control, 1998, 70: 1-11
    [138] Wei A R, Zhao K Y. Stabilization and L2-gain analysis of uncertain discrete-time systems with state delay and actuator saturation. Systems Engineering and Electronics, 2006, 28 (8): 1204-1209
    [139] Song Y, Xiang Z, Chen Q, et al. Control of switched systems with actuator saturation. Journal of control theory and applications, 2006, 1: 38-43
    [140] Hu T, Lin Z, Chen B M. An analysis and design method for linear systems subject to actuator saturation and disturbance. Automatica, 2002, 38(2): 351-359
    [141] Cao Y Y, Lin Z, Ward D G. An antiwindup approach to enlarging domain of attractionfor linear systems subject to actuator saturation. IEEE Transactions on Automatic Control, 2002, 47 (1): 140-145
    [142] Herrmann G, Turner M C, Postlethwaite I, et al. Practical implementation of a novel anti-windup scheme in a HDD-dual-stage servo-system. IEEE/ASME Transactions on Mechatronics, 2004, 9(3): 580-592
    [143] Li Y, Venkataramanan V, Guo G, et al. Dynamic nonlinear control for fast seek-settling performance in hard disk drives. IEEE Trans. on Industrial Electronics, 2007, 54(2): 951-962
    [144] Venkataramanan V, Li Y, Wang Y, et al. Improvement of tracking performance in hard disk drive servo via tracking-differentiator and composite nonlinear control. Proceedings of the American Control Conference, Denver, Colorado, USA, 2003: 3089-3094
    [145] Cheng G, Peng K, Chen B M, et al. Improving transient performance in tracking general references using composite nonlinear feedback control and its application to high-speed XY-table positioning mechanism. IEEE Trans. on Industrial Electronics, 2007, 54(2): 1039-1051
    [146] Su Y X, Sun D, Duan B Y. Design of an enhanced nonlinear PID controller. Mechatronics, 2005, 15(8): 1005-1024
    [147] Su Y X, Zheng C H, Duan B Y. Automatic disturbance rejection controller for precise motion control of permanent-magnet synchronous motors. IEEE Trans. on Industrial Electronics, 2005, 52(3): 814-823
    [148]韩京清,王伟.非线性跟踪-微分器.系统科学与数学, 1994, 14(2): 177-183
    [149] Ozcetin H K, Saberi A, Shamash Y. An H∞-almost disturbance decoupling problem for nonstrictly proper systems-a singular perturbation approach. In: proceedings of the 30th conference on decision and control, Brighton, England, 1991. p. 1055-1061
    [150] Chen B M, Lee T H, Hang C C, et al. An H∞almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis. IEEE Trans. on Control Systems Technology, 1999, 7(2): 160-174
    [151] Chen B M. http://hdd.ece.nus.edu.sg/~bmchen/linsyskit/index.html
    [152] Zhang H, Huang X, Peng G. A novel adaptive feedforward compensation algorithm for hard disk drive. Proceedings of the 2006 IEEE International Conference onMechatronics and Automation, Luoyang, China, Jun. 2006, 1275-1279
    [153] Kim Y H, Kang C I, Tomizuka M. Adaptive and optimal rejection of non-repeatable disturbance in hard disk drives. Proceedings of the 2006 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, California, USA, Jul. 2005: 1-6
    [154] Park S W, Jeong J, Yang H S, et al. Repetitive controller design for minimum track misregistration in hard disk drives. IEEE Trans. on Magnetics, 2005, 41(9): 2522-2528
    [155] Kempf C, Messner W, Tomizuka M, et al. Comparison of four discrete-time repetitive control algorithms. IEEE Control Systems Magazine, 1993, 13(6): 48-54
    [156] Jinzenji A, Sasamoto T, Aikawa K, et al. Acceleration feedforward control against rotational disturbance in hard disk drives. IEEE Trans. on Magnetics, 2001, 37(2): 888-893
    [157] White M T, Tomizuka M. Increased disturbance rejection in magnetic disk drives by acceleration feedforwrd control and parameter adaptation. Control Engineering Practice, 1997, 5(6): 741-751
    [158] Bodson M. Rejection of periodic disturbances of unknown and time-varying frequency. International Journal of Adaptive Control and Signal Processing, 2005, 19: 67-88
    [159] Byl M F, Ludwick S J, Trumper D L. A loop shaping perspective for tuning controllers with adaptive feedforward cancellation. Precision Engineering, 2005, 29(1): 27-40
    [160] Sacks A, Bodson M, Messner W. Advanced methods for repeatable runout compensation. IEEE Trans. on Magnetics, 1995, 31(2): 1031-1036
    [161] Bodson M, Sacks A, Khosla P. Harmonic generation in adaptive feedforward cancellation schemes. IEEE Trans. on Automatic Control, 1994, 39(9): 1939-1944
    [162] Liu J J, Yang Y P. Stability of the frequency adaptive control technique and its application to compact disk drives. Control Engineering Practice, 2005, 13(5): 629-639
    [163] Zhang J, Chen R, Guo G, et al. Modified adaptive feedforward runout compensation for dual-stage servo system. IEEE Trans. on Magnetics, 2000, 36(5): 3581-3584
    [164] Messner W, Bodson M. Design of adaptive feedforward controllers using internal model equivalence. Proceedings of the American Control Conference, Baltimore, Maryland, USA, Jun. 1994, 2: 1619-1623
    [165] Bodson M. Equivalence between adaptive cancellation algorithms and linear time-varying compensators. 43rd IEEE Conference on Decision and Control, Dec. 2004, 1: 638-643
    [166] Oh D, Lee S, Baek S. Adaptive feedforward rejection of microactuator resonance in disk drive dual-stage actuator servo. Asia-Pacific Magnetic Recording Conference, Nov. 2000: TP11/01-TP11/02
    [167] Zhang J, Weerasooriya S, Huang T, et al. Modified AFC runout cancellation and its influence on track following. 23rd International Conference on Industrial Electronics, Control and Instrumentation, IECON 97, Nov. 1997, 1: 35-40
    [168] Weerasooriya S, Zhang J L, Low T S. Efficient implementation of adaptive feedforward runout cancellation in a disk drive. IEEE Trans. on Magnetics, 1996, 32(5): 3920-3922
    [169] Lee H. Implementation of adaptive feedforward cancellation algorithms for pre-embossed rigid magnetic (PERM) disks. IEEE Trans. on Magnetics, 1997, 33(3): 2419-2423
    [170] Onuki Y, Ishioka H, Yada H. Repeatable runout compensation for disk drives using multi-loop adaptive feedforward cancellation. Proceedings of the 37th SICE Annual Conference, Jul. 1998: 1093-1098
    [171] Jia Q W, Wang Z, Wang Z F, Wang F C. Repeatable runout disturbance compensation with a new data collection method for hard disk drive. IEEE Trans. on Magnetics, 2005, 41(2): 791-796
    [172] Bodson M, Sacks A, Khosla P. Harmonic generation in adaptive feedforward cancellation schemes. Proceedings of the 31st Conference on Decision and Control, Dec. 1992, 2: 1261-1266
    [173] Liu J J, Yang Y P. Frequency adaptive control technique for rejecting periodic runout. Control Engineering Practice, 2004, 12(1): 31-40
    [174] Chen Y Q, Moore K L. Iterative learning control with iteration-domain adaptive feedforward compensation. Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii, USA, Dec. 2003, 5: 4416-4421
    [175] Guo X, Bodson M. Adaptive rejection of disturbances having two sinusoidal components with close and unknown frequencies. Proceedings of the 2005 American Control Conference, Jun. 2005, 4: 2619-2624
    [176] Tokhi M O, Wood R. Active noise control using multi-layered perceptron neuralnetworks. Journal of Low Frequency Noise, Vibration and Active Control, 1997, 16(2): 109-144
    [177] Wu S C, Tomizuka M. Repeatable runout compensation for hard disk drives using adaptive feedfroward cancellation. Proceedings of the 2006 American Control Conference, Minneapolis, Minnesota, USA, Jun. 2006: 382-387
    [178] Elliott S J, Stothers I M, Nelson P A. A multiple error LMS algorithm and its application to the active control of sound and vibration. IEEE Trans. on Acoustics, Speech and Signal Processing, 1987, 35(10): 1423-1434
    [179] Conway R, Felix S, Horowitz R. Parametric uncertainty identification and model reduction for robust H2 synthesis for track-following in dual-stage hard disk drives. Proceedings of the 2007 American Control Conference, New York City, USA, Jul. 2007: 68-75
    [180] Conway R, Felix S, Horowitz R. Model reduction and parametric uncertainty identification for robust H2 control synthesis for dual-stage hard disk drives. IEEE Trans. on Magnetics, 2007, 43(9): 3763-3768
    [181] Hredzak B, Hong F, Ge S S, et al. Modeling and compensation of pivot nonlinearity in hard disk drives. 16th IEEE International Conference on Control Applications, Singapore, Oct. 2007: 108-113
    [182] Ohno K, Horowitz R. A pivot nonlinearity compensation by use of variable structure estimator for hard disk drives. Microsystem Technologies, 2005, 11(8): 702-710
    [183] Yan T, Lin R. Experimental modeling and compensation of pivot nonlinearity in hard disk drives. IEEE Trans. on Magnetics, 2003, 39(2): 1064-1069
    [184] Peng K, Cheng G, Chen B M, et al. Improvement on a hard disk drive servo system using friction and disturbance compensation. Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Jul. 2003, 2: 1160-1165
    [185] Gong J Q, Guo L, Lee H S, et al. Modeling and cancellation of pivot nonlinearity in hard disk drives. IEEE Trans. on Magentics, 2002, 38(5): 3560-3565
    [186] Ishikawa J, Tomizuka M. Pivot friction compensation using an accelerometer and a disturbance observer for hard disk drives. IEEE/ASME Trans. on Magnetics, 1998, 3(3): 194-201
    [187] Peng K, Cheng G, Chen B M, et al. Modeling and analysis of micro hard disk drives. The Fourth International Conference on Control and Automation, Montreal, Canada, Jun. 2003: 952-956
    [188] Yi L, Tomizuka M. Two-degree-of-freedom control with robust feedback control for hard disk servo systems. IEEE/ASME Trans. on Mechatronics, 1999, 4(1): 17-24
    [189] Liu X, Liu J C. Analysis and measurement of torque hysteresis of pivot bearing in hard disk drive applications. Tribology International, 1999, 32(3): 125-130
    [190] Branch E L, Bikdash M, Homaifar A. Fuzzy and time-suboptimal control for dual track following and seeking of the magnetic hard disk drive. Proceedings of the 5th Biannual World Automation Congress, Jun. 2002, 13:37-42
    [191] Li C, Cheng K H, Chen J L, et al. Self-organizing intelligent system and its application for hard disk drive control. Proceedings of the 2005 American Control Conference, Portland, OR, USA, Jun. 2005, 4: 2263-2268
    [192] Tanaka K, Oka M, Uchibori A. Precise position control of an ultrasonic motor using the PID controller combined with NN. Electrical Engineering in Japan, 2004, 146(3): 46-54
    [193] Sasaki M, Suzuki T, Ida E, et al. Track-following control of a dual-stage hard disk drive using a neuro-control system. Engineering Applications of Artificial Intelligence, 1998, 11(6): 707-716
    [194] Fujinaka T, Yoshioka M, Omatu S. An intelligent approach to position control of a hard disk drive. Artificial Life and Robotics, 2001, 5(1): 15-19
    [195] Herrmann G, Ge S S, Guo G. Practical implementation of a neural network controller in a hard disk drive. IEEE Trans. on Control Systems Technology, 2005, 13(1): 146-154
    [196] Wu Y S, Zhao M S. Tunable activation function neural cell model and superintend learn and application. Science in China (series E), 2001, 31(3): 263-272
    [197] Yang C, Yu Y, Zhao D, et al. Study on modeling of multispectral emissivity and optimization algorithm. IEEE Trans. on Neural Network, 2006, 17(1): 238-242
    [198] Peng K, Cheng G, Chen B M, et al. Comprehensive modeling of friction in a hard disk drive actuator. Proceedings of the 2003 American Control Conference, Denver, Colorado, USA, Jun. 2003, 2: 1380-1385

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700