超声速湍流燃烧火焰面模型判别建模及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以超燃冲压发动机燃烧室内部的超声速燃烧现象为研究背景,以超声速燃烧火焰面模型为主要研究对象,综合运用理论分析、数值计算、实验研究等多种手段对超声速燃烧火焰面模型进行了系统、深入的研究。
     根据火焰面模型的基本思想,系统介绍了层流扩散火焰面理论、低速湍流燃烧火焰面模型、超声速湍流燃烧火焰面模型及相应的火焰面数据库生成方法;针对超声速流的特点并结合当前超声速流中火焰面模型的修正方法,建立了考虑激波作用的超声速燃烧稳态火焰面模型。
     针对超声速燃烧流场是否能用火焰面模型进行描述这一根本性问题,从理论上系统地对超燃冲压发动机燃烧室内部的超声速燃烧流场是否满足火焰面模型假设进行了判别。结果表明,对于预混燃烧,由于实际低速回流区/剪切层中脉动速度较低,所有飞行马赫数下的超声速燃烧流场均满足火焰面模型假设;对于非预混燃烧,除高飞行马赫数下极小部分燃烧流场位于慢化学反应区外,其余状态也均满足火焰面模型假设。
     针对稳态火焰面模型在临界标量耗散率附近的处理方法会导致解的不连续,进而可能引发流场非物理解和数值不稳定等缺陷,参考低速流中的火焰面/进度变量模型,建立了考虑激波作用的超声速燃烧火焰面/进度变量模型,并提出了一种高效的火焰面数据库生成方法。
     为了考察所建立的火焰面/进度变量模型用于描述带有复杂构型超声速燃烧流场的适用性,采用实验和数值计算两种手段分别对带有支板和凹腔的超燃冲压发动机燃烧室内部燃烧流场进行研究。实验与计算结果的对比分析表明,文中所建立的火焰面/进度变量模型可用于描述带有复杂构型的超声速燃烧流场。对于带有支板的超声速燃烧流场,通过数值计算定量研究了燃料喷注当量比、支板厚度等因素对燃烧效率的影响,发现燃料喷注当量比和支板厚度对燃烧效率影响较小。对于带有凹腔的超声速燃烧流场,通过数值计算定量研究了燃料喷注角度、燃料喷注当量比、多凹腔构型等因素对燃烧效率的影响,发现燃料垂直喷射时燃烧效率较高;燃料喷注当量比对燃烧效率影响较小;串联凹腔构型会使燃烧效率提高,并联凹腔构型单侧喷注燃料时对燃烧效率几乎没有影响,反而会使流场总压损失增大,但并联凹腔构型双侧喷注燃料会使燃烧效率大幅提高。
The present research investigates the supersonic combustion in a scramjet combustor and develops a new flamelet model for supersonic combustion. The new flamelet model was implemented based on the in-house hybrid LES/RANS code and validated by experimental investigations.
     Firstly, flamelet model for turbulent combustion in low-speed flow was introduced based on basic theory of flamlet for laminar flow, then it was extended to supersonic flow and revised according to compressibility and occurrence of shock waves in flow field. A steady flamelet model for supersonic turbulent combustion was established, and it takes into account the effects of shock waves.
     Secondly, whether the flamelet model is feasible for the supersonic combustion flow field is analyzed by distinguishing whether the supersonic combustion flow field in a scramjet combustor meets the assumptions of flamelet model. The results show that: (i) for premixed combustion, as the fluctuation velocity of the flow in low-speed recirculation zone and mixing layer is very slow, the entire flow field will satisfy the assumption of flamelet model at all flight Mach numbers, (ii) for non-premixed combustion, most parts of the flow field satisfy the assumption of flamelet model and only a small part of the flow field at high flight Mach number does not meet.
     Thirdly, the processing methods of the steady flamelet model in the vicinity of the critical scalar dissipation rate may result in a discontinuity of the solution. Further, this discontinuity can introduce non-physical solutions and numerical instabilities. Based on the flamelet/progress variable model for the low-speed flows, a new flamelet/progress variable model which takes into account the effect of the shock waves was established. In the meantime, an efficient method for the generation of flamelet data libraries was developed.
     Finally, in order to validate the applicability of the new flamelet/progress variable model to simulate the supersonic combustion flow field with complex configurations, the supersonic flow and combustion of the scramjet combustors with strut and cavity configurations were investigated through both experimental investigations and numerical simulations. The results indicate that the new developed flamelet/progress variable model is capable of describing the fluid flow and combustion in a scramjet combustor with complex configurations. When the strut thickness and the ER of the fuel change, the response of the combustion efficiency was quantificationally investigated, and the results reveal that the strut thickness and the ER of the injected fuel have little effect on the combustion efficiency. Through the quantificational studies, the influence of the injection angle and ER of the fuel, and the multi-cavity configuration on the combustion efficiency were revealed. The results show: (i) the combustion efficiency is higher when the fuel is injected in a vertical direction than in any other direction, (ii) an increase in the ER has little effect on the combustion efficiency, (iii) cavities installed in tandem can increase the combustion efficiency, (iv) when the fuel is injected from one side of the combustor walls, the cavities installed in parallel have little effect on the combustion efficiency but increase the loss of total pressure, and (v) when the fuel is injected from both sides of the combustor walls, cavities installed in parallel will greatly increase the combustion efficiency.
引文
[1] Heiser W H, Pratt D T, Deley D H. Hypersonic Airbreathing Propulsion [M]. Washington: American Institute of Aeronautics and Astronautics Inc, 1994
    [2] Murthy S N B, Curran E T. High-speed flight propulsion systems [J]. Progress in astronautics and aeronautics, 1991, 137:124-158
    [3] Curran E T. Scramjet Engines: The first Forty Years [J]. Journal of Propulsion and Power, 2001, 17 (6):1138~1148
    [4] Curran E T, Murthy S N B. Scramjet Propulsion [J]. Progress in astronautics and aeronautics, 2002, 189:211-245
    [5] Andrews E H. Scramjet development and resting in the United States [R]. AIAA 2001-1927, 2001
    [6] Waltrup P J. Liquid fueled supersonic combustion ramjet:A research perspective of the past,present and future [R]. AIAA 1986-0158, 1986
    [7] Waltrup P J. Liquid-fueled supersonic combustion ramjets:A research perspective [J]. Journal of Propulsion and Power, 1987, 3 (6):515-524
    [8] Waltrup P J, White M E, Zarlingo F, Cravlin E S. History of U.S Navy Ramjet, Scramjet, and Mix-Cycle Propulsion Development [J]. Journal of Propulsion and Power, 2002, 18 (1):14~17
    [9] McClinton C R, Hunt F L, Ricketts R H, Reukauf P, etal. Airbreathing hypersonic technology vision vehicles and development dreams [R]. 1999-4978, 1999
    [10] Orton G F. Air-Breathing hypersonic research at Boeing Phantom works [R]. AIAA 2002-5251, 2002
    [11] Cockrell C E, Engelund W C, Bittner R D. Integrated aero-propulsive CFD methodology for the Hyper-X flight Experiment [R]. AIAA 2000-4010, 2000
    [12] Kazmar R R. Hypersonic Propulsion at Pratt & Whitney - Overview [R]. AIAA Paper 2002-5144, 2002
    [13] Voland R T, Auslender A H, Smart M K, etal. CIAM/NASA Mach 6.5 scramjet flight and ground test [R]. AIAA 99-4848,
    [14] Bezgin L, Gouskov O, Kopchenov V, etal. CFD support of the development of hypersonic flight laboratory and model scramjet [R]. AIAA 2002-5125,
    [15] Serre L, Falempin F. the French military hypersonic propulsion program status in 2002 [R]. AIAA 2002-5141,
    [16] Falempin F, Serre L, etal. Activities on high-speed airbreathing propulsion [C]. International Colloquium on Hypersonic Propulsion. Beijing, China, 2003
    [17] Kobayashi S. Japanese Spaceplane Program Overview [R]. AIAA 95-6002,
    [18] Kanda T, Hiraiwa T, Tomioka T M S, etal. Mach 6 Testing of a scramjet engine model [J]. Journal of Propulsion and Power, 1997, 13 (4):543~551
    [19] Chinzei N T K. Scramjet engine tests at NAL of Japan [C]. International Colloquium on Hypersonic Propulsion. Beijing,China, 2003
    [20] Wakamatsu Y, Kanda T, Yatsuyanagi N. Preliminary consideration of hypersonic test vehicle for scramjet engine test [C]. 2000
    [21] Kania P. The German hypersonic technology program ---Overview [R]. AIAA 95-6005,
    [22] George F P, Louis S. Air-breathing hypersonic research at BOEING phantom works [R]. AIAA 2002-5251,
    [23]陈英硕. X-43A创新的世界记录[J].飞航导弹, 2004, 12 (2)
    [24]龙玉珍.高超音速巡航导弹用超燃冲压发动机特点与设计方案[J].飞航导弹, 1997, 8 (1):29-37
    [25]龙玉珍.国际性超燃冲压发动机研究进入飞行实验阶段[J].飞航导弹, 1998, 12:53-56
    [26]贺武生.超燃冲压发动机研究综述[J].飞航导弹, 2005, 31 (1):29-32
    [27]袁越.高超声速飞行技术研究的进展[J].中国航天, 1998, 7:20-23
    [28]刘英姿.国外高超音速飞行器研制动态[J].飞航导弹, 1998, 7:11-16
    [29]从敏.防区外发射高超声速攻击导弹[J].飞航导弹, 2003, 2:1-7
    [30]周军,徐文.美国高超声速研制的最新进展[J].飞航导弹, 2003, 1:31-35
    [31]周军,徐文.高超声速技术综述[J].飞航导弹, 2003, 4:22-23
    [32]从敏.美国考虑研制高超声速飞行器[J].飞航导弹, 2003, 4:1-7
    [33] Pinkle I I, Serafini J S. Graphical Method for Obtaining Flow Field in Two-Dimensional Supersonic Stream to Which Heat is Added [R]. NASA TN-2206, 1950
    [34]刘陵.超音速燃烧与超音速燃烧冲压发动机[M].西北工业大学出版社, 1993
    [35]刘陵,张榛.超音速燃烧冲压发动机最佳设计参数[J].推进技术, 1988, 9 (1):73-78
    [36]刘陵,张榛,牛海发,刘敬华.超音速燃烧室燃烧效率数学模型及气流状态参数的计算[J].推进技术, 1989, 10 (2):1-7
    [37]刘陵,张榛,唐明,刘敬华等.氢燃料超音速燃烧室实验研究[J].航空动力学报, 1991, 6 (3):267~270
    [38]刘兴洲,刘敬华,王裕人等.超声速燃烧实验研究(I) [J].推进技术, 1991, 12 (2):1-8
    [39]刘兴洲,刘敬华,王裕人等.超声速燃烧实验研究(II) [J].推进技术, 1991, 12 (2):1-8
    [40]张堃元,萧旭东,徐辉.非均匀流等溢角设计高超侧压进气道[J].推进技术, 1998, 19 (1):20-24
    [41]张堃元,马燕荣,徐辉.非均匀流等压比变后掠高超侧压式进气道研究[J].推进技术, 1999, 20 (3):40-44
    [42]张堃元,萧旭东,徐辉.非均匀超声速进气道二维绕流研究[J].空气动力学报, 2000, 18 (1):92~97
    [43]杨进军,张堃元,徐辉.双模态冲压发动机高超进气道的实验研究[J].推进技术, 2001, 22 (6):473-475
    [44]张堃元,王成鹏,杨建军,徐惊雷.带高超进气道的隔离段流动特性[J].推进技术, 2002, 23 (4):311-314
    [45]赵桂萍,周新海.高超声速进气道湍流流场的数值模拟[J].推进技术, 1998, 19 (3):33-38
    [46]陈方,陈立红,张新宇.不同收缩比超燃冲压发动机进气道的数值研究[C].第十届全国激波与激波管学术讨论会.四川,绵阳, 2001
    [47]丁猛.超声速/高超声速进气道——隔离段流场的数值模拟[D].国防科技大学, 2000
    [48]丁猛,李桦,范晓樯.等截面隔离段中激波串结构的数值模拟[J].国防科技大学学报, 2001, 23 (1):15-18
    [49]乐嘉陵,刘陵.高超声速飞行器的碳氢燃料双模态超燃冲压方案研究[J].流体力学实验与测量, 1997, 11 (2):1~13
    [50]路艳红,凌文辉,刘敬华等.亚/超双模态超音速燃烧的实验研究[J].推进技术, 1996, 20 (3):56-60
    [51]刘敬华,凌文辉,胡欲立等.亚/超双模态超音速燃烧的实验研究[J].推进技术, 1996, 17 (2):48-52
    [52]刘敬华,凌文辉,马祥辉等.超声速燃烧室流场的数值模拟研究[J].推进技术, 1999,20 (2):28-32
    [53]白菡尘,刘伟雄,贺伟等. M6氢燃料双模态冲压模型发动机的实验研究[C].第十届全国激波与激波管学术讨论会.四川,绵阳, 2001
    [54]张树道,张肇元,司徒明.一种研究双燃式(超燃)冲压发动机进气道和燃烧室冷态内流场的实验方法[J].流体力学实验与测量, 1998, 12 (2):51-54
    [55]张树道,张肇元,徐胜利,司徒明.双燃式(超燃)冲压发动机中激波与边界层之间相互作用对内部流动的影响[J].流体力学实验与测量, 1999, 13 (2):16-21
    [56]张树道.双燃式超燃冲压发动机(DCR/DCM)冷流内流现象研究[D].中国科学技术大学,博士学位论文, 1999
    [57]司徒明,王子川,牛余涛等.高温富油燃气超燃实验研究[J].推进技术, 1999, 20 (6):75-79
    [58]陈兵,徐旭,蔡国飙.二维超燃冲压发动机尾喷管优化设计[J].推进技术, 2002, 23 (5):433-437
    [59]晏至辉.超燃冲压发动机尾喷管仿真和实验研究[D].国防科学技术大学,硕士学位论文, 2005
    [60]叶中元.思路决定出路,途径决定结局[C].高超技术研讨会论文集, 2003
    [61]刘奕,郭印诚,张会强,王希麟,林文漪.大涡模拟及其在湍流燃烧中的应用[J].力学进展, 2001, 31 (2):215-226
    [62]张会强,陈兴隆,周力行,陈昌麒.湍流燃烧数值模拟研究的综述[J].力学进展, 1999, 29 (4):567-576
    [63] Poinsot T, Veynante D. Theoretical and nummerical combustion [M]. Edwards, USA, 2005
    [64] Peters N. Turbulent Combustion [M]. Cambridge University Press, 2000
    [65] Ladeinde F. A Critical Review of Scramjet Combustion Simulation [R]. AIAA 2009-127, 2009
    [66] Pope S B. The probability approach to the modeling of turbulent reacting flows [J]. Combustion and Flame, 1976, 27: 299 -312
    [67] Wang H F, CHEN Y L. PDF modeling of turbulent non-premixed combustion with detailed chemistry [J]. Chemical Engineering Science, 2004, (59)
    [68] James S, Anand M S, Razdan M K, Pope S B. In situ detailed chemistry calculations in combustor flow analysis [J]. J.Eng.Gas Turbines Power, 2001, 123:747-756
    [69]Xu J, Pope S B. PDF Calculations of turbulent nonpremixed flames with local extinctions [J]. Combustion and Flame, 2000, 123:281-307
    [70] Xiao K, Schmidt D, Maas U. A Study of Local Flame Structures in piloted jet diffusion flame using a probability density function method [J]. Proc.Combust.Institute, 2000, 28:157-165
    [71] Pope S B. PDF meyhods for turbulent reactive flows [J]. Prog.Energy Combust.Sci., 1985, 11:119-192
    [72] Haworth D C, Pope S B. A generalized Langevin model for turbulent flows [J]. Phys. Fluids, 1986, 29:387-405
    [73] Dopazo C. Probability density function approach for a t urbulent axisymmetric heated jet centerline evolution [J]. Physics Fluids, 1975, 18:397-404
    [74] Janicka J, Kolbe W, Kollmann W. Closure of the transport equation for the probability dnsity function of turbulent scalar fields [J]. J.Non-Equilib Thermodyn, 1979, 4:47-66
    [75] Subramaniam S, Pope S B. A Mixing Model for turbulent reactive flows based on Euclidean Mininum Spanning Trees [J]. Combustion and Flame, 1998, 115:41-63
    [76] Cao R, Pope S B. Numerical integration of stochastic differential equations weak second-order mid-point scheme for application in the composition PDF method [J].Computational Phys, 2002, 185:194-212
    [77] Pope S B. A Monte Carlo method for the PDF equations of turbulent reactive flow [J]. Combust.Sci.Tech, 1981, 25:159-174
    [78] Rofkaerts D. Use of a Monte Carlo PDF method in a study of the influence of turbulence fluctuations on selectivity in a jet-stirred reactor [J]. Applied Scientific Research, 1991, 48:271-300
    [79] Falk L, Schaer S. A pdf modeling of precipitation reactors [J]. Chem.Eng, Sci., 2001, 56:2445-2457
    [80] Zhu M, Bray K N C, Rumberg O, Rogg B. Pdf transport equations for two phase reactive flows and sprays.[J] Combust Flame,122(3):327-338,2000 [J]. Combustion and Flame, 2000, 122 (3):327-338
    [81] Durand P, Gorokhovski M, Borghi R. An application of pdf model to diesel engine combustion [J]. Combust.Sci.Tech, 1999, 144:47-48
    [82] Givi P. Modeling free simulation of turbulent reactive flows [J]. Progress in Energy and Combustion Science, 1989, 15:1-107
    [83] Pope S B. Computations of turbulent combustion: Progress and challenges [C]. the 23rd Symposium(International) on Combustion. 1990
    [84] Jaberi F A, Colucci P J, James S, Givi P, Pope S B. Filtered mass density function for large-eddy simulation of turbulent reacting flows [J]. Fluid Mech, 1999, 401:85-121
    [85] Farschi M. A PDF Closure Model for Compressible Turbulent Chemically Reacting Flows [R]. AIAA 1989-0390,
    [86] Hsu A T. A Study of Hydrogen Diffusion Flames Using PDF Turbulence Model [R]. AIAA 1991-1978,
    [87]范周琴,孙明波,刘卫东.湍流燃烧的概率密度函数输运方程模型研究[J].飞航导弹, 2010, 30 (3):90-95
    [88] Delarue B J, Pope S B. Calculations of subsonic and supersonic turbulent reacting mixing layers using Probability Density Function methods [J]. Phys. Fluids, (10):487-498
    [89] M?bus M, Gerlinger P, Brüggermann. Scalar and Joint scalar-Velocity-Frequency Monte Carlo PDF simulation of Supersonic Combustion [J]. Combustion and Flame, 2003, 132 (1):3-24
    [90]徐旭常,周力行.燃烧技术手册[M].化学工业出版社, 2008
    [91] D.B.Spalding. Mixing and chemical reacting in steady confined turbulent flames [C]. 13th Symposium(International) on Combustion. Pittsburgh, 1971
    [92] Libby P A, Williams F A. Turbuent reacting flows [M]. Berlin: 1980
    [93] Magnussen B F, Mjertager B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion [C]. 16th Symposium (Int.) on Combustion. 1976
    [94]周力行.多相湍流反应流体力学[M].国防工业出版社, 2002
    [95]王应时,范维澄等.燃烧过程数值计算[M].科学出版社, 1986
    [96] Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion [J]. Progress in Energy and Combust Sci, 1984, 10:319-339
    [97] Domingo P, Vervisch L, Bray K. Partially premixed flamelets in LES of nonpremixed turbulent combustion [J]. Combustion Theory Modelling, 2002, 6 529-551
    [98] Wirth M, Peters N. Turbulent premixed combustion: A flamelet formulation and spectral analysis in theory and ic-engine experiments [C]. Twenty-fourth symposium (international) on combustion, The Combustion Institute, 1992
    [99] Pitsch H, Chen M, Peter N. Unsteady flamelet modeling of turbulent hydrogen-air diffusion flame [C]. the 27th symposium (international) combustion.
    [100]Barths H, Peters N, Berhm N, Mack A, etal. Simulation of pollutant formation in agas-turbine combustor using unsteady flamelets [C]. the 27th symposium (international) combustion. 1998
    [101]Sirpakagorn P, Kosaly G, Pitsch H. Local extinction-reignitionin turbulent non-permixed combustion [C]. In Annual Reseacrh Briefs. 2000
    [102]Pitsch H, Cha C M, Fedotov S. Flamelet modelling of non-premixed Turbulent combustion with local extinction and re-ignition. [J]. Combust.Theory Modelling, 2003, 7:317-332
    [103]Mitarai S, Kosily G, Riley J, J. A new lagrangian flamelet model for local flame extinction and re-ignition [J]. Combust Flame, 2004, 137:306-319
    [104]Barths H, Peters N, Berhm N, Mack A, etal. Simulation of pollutant formation in a gas-turbine combustor using unsteady flamelets [C]. The 27th symposium (international) on combustion. 1998
    [105]Hassea C, Peters N. Flamelet modeling of diesel engine combustion [C]. Intenraitonal Multi-dimensional Engine Modeling User's Group meetings. 2001
    [106]Oevermann M. Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling [J]. Aerospace of Science and Technology, 2000, (4):463-480
    [107]范周琴,孙明波,刘卫东等.支板喷射超声速燃烧流场三维大涡模拟[J].国防科大学报, 2011, 33 (1)
    [108]邢建文.化学平衡假设和火焰面模型在超燃冲压发动机数值模拟中的应用[D].博士学位论文,中国空气动力研究与发展中心, 2007
    [109]Berglund M, Fureby C. LES of supersonic combustion in a scramjet engine model [J]. Proceedings of the Combustion Institute, 2007, 31:2497–2504
    [110]范周琴,孙明波,刘卫东.基于火焰面模型的超声速燃烧混合LES/RANS模拟[J].推进技术, 2011, 32 (2)
    [111]Klimenko A Y. Multicomponent diffusion of various scalars in turbulent flow [J]. Fluid Dynamics, 1990, 25:327-333
    [112]Gerlinger P. Investigation of an Assumed PDF Approach for Finite-Rate Chemistry [R]. AIAA 2002-0166,
    [113]Bilger R W. Conditional Moment Closureosure for turbulent reacting flow [J]. Physics of Fluids, 1993, A5 (2):436-447
    [114]Klimenko A Y, Bilger R W. Conditional Moment Closure for Turbulent Combustion [J]. Progress in Energe and Combustion Science, 1999,
    [115]Swaminathan N, Dally B B. Cross stream dependence of conditional average in elliptic region, of flows behind a bluff-body [J]. Physics of Fluids, 1998, 10 (9):2424-2426
    [116]Kronenburge A, Bilger R W, J J H K. Second-order Conditional Moment Closure for turbulent jet diffusion flames [C]. the 27th Symposim (International) on Combustion. 1998
    [117]Bushe W, K, Steiner H. Conditional moment closure for large eddy simulation of nonpremixed turbulent reacting flows [J]. Phys.Fluids, 1999, 11 (7):1896-1906
    [118]Steiner H, Bushe W K. Large eddy simulation of a turbulent reacting jet with conditional source term estimation [J]. Phys.Fluids, 2001, 13 (3):754-769
    [119]Smagorinsky J. General circulation experiments with the primitive equations I, the basic experiment [J]. Monthly Weather Review, 1963, 91 (3):99-164
    [120]Menon S, McMurtry P A, Kerstein A R. A linear eddy mixing model large eddy simulation of turbulent combustion, in Galperin B.,Orszag S., LES of Complex Engineering and Geophysical Flows, 1993
    [121]孙明波,梁剑寒,王振国.湍流燃烧亚格子线性涡模型研究[J].燃烧科学与技术, 2007, 13 (2):169-176
    [122]Menon S, Stone C, Patel N. Multi-Scale Modeling for LES of Engineering Designs of Large-Scale Combustors [R]. AIAA 2004-0157, 2004
    [123]Genin F, Chernyavsky B, Menon S. Large Eddy Simulation of Scramjet Combustion Using a Subgrid Mixing/combustion Model [R]. AIAA-2003-7035 2003
    [124]Genin F, Menon S. LES of supersonic combustion of hydrocarbon spray in a SCRAMJET [R]. AIAA 2004-4132, 2004
    [125]Menon S, Fryxell B. Simulations of Strong Shock-Shear Layer Interactions in Complex Domains [R]. CCL Report 2004-015, School of Aerospace Engineering, Georgia Institute of Technology, 2004
    [126]Ghodkel C D, Choi J J, Srinivasan S, Menon S. Large Eddy Simulation of Supersonic Combustion in a Cavity-Strut Flameholder [R]. 2011-323, 2011
    [127]Chapman D R. Computational Aerodynamics Development and Outlook [J]. AIAA Journal, 1979, 17:1293-1313
    [128]Piomelli U, Moin P, Ferziger J H, Kim J. New Approximate Boundary Conditions for Large-Eddy Simulations of Wall-Bounded Flows [J]. Physics of Fluids A, 1989, 1:1061-1068
    [129]Schumann U. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli [J]. Journal of Computational Physics, 1975, 18:376-404
    [130]Deardorff J W. A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers [J]. Journal of Fluid Mechanics, 1970, 41: 453-480
    [131]Balaras E, Benocci C, Piomelli U. Two-Layer Approximate Boundary Conditions for Large-Eddy Simulations [J]. AIAA journal, 1996, 34:1111-1119
    [132]Balaras E, Benocci C. Subgrid-Scale Models in Finite-Difference Simulations of Complex Wallbounded Flows [R]. AGARD CP 551, 1994
    [133]Spalart P R. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach [C]. 1st Air Force Office of Scientific Research International Conf on DNS/LES. Aug,1997
    [134]Fan T C, Tian M, Edwards J R, Hassan H A, Baurle R A. Validation of a hybrid Reynolds-averaged /Large eddy simulation method for simulating cavity flameholder configurations [R]. AIAA paper 2001-2929,
    [135]Menter F R. Two equation eddy viscosity turbulence models for engineering applications [J]. AIAA Journal, 1994, 32 (8):1589-1605
    [136]Xiao X, Edwards J R, Hassan H A, Baurle R A. Inflow Boundary Conditions for Hybrid Large Eddy/Reynolds Averaged Navier-Stokes Simulations [J]. AIAA Journal, 2003, 41 ( 8):1481-1489
    [137]Nichols R H, Nelson C C. Application of hybrid RANS/LES turbulence model [R]. AIAA paper 2003-0083,
    [138]Baurle R A, Tam C J, Edwards J R, Hassan H A. Hybrid Simulation Approach for Cavity Flows: Blending,Algorithm, and Boundary Treatment Issues [J]. AIAA Journal, 2003, 41 (8):1463-1484
    [139]Fan T C, Xiao X D, Edwards J R, Hassan H A, Baurle R A. Hybrid LES / RANS Simulation of a Shock Wave/Boundary Layer Interaction [R]. AIAA paper 2002-0431, 2002
    [140]孙明波.超声速来流稳焰凹腔的流动及火焰稳定机制研究[D].国防科学技术大学,博士论文, 2008
    [141]杨阳,邢建文,乐嘉陵,王金诺.湍流燃烧模型对氢燃料超燃室流场模拟的影响[J].航空动力学报, 2008, 23 (4):605-610
    [142]邢建文,乐嘉陵.火焰面模型在超燃冲压发动机数值模拟中的应用[J].实验流体力学, 2008, 22 (2):40-45
    [143]Berglund M, Fureby C. LES of supersonic combustion in a scramjet engine model [J]. Proceedings of the Combustion Institute, 2007, 31:2497-2504
    [144]Oevermann M. Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling [J]. Aerospace of Science and Technology, 2000, 4:463-480
    [145]Swaminathan N, Bilger R W. Assessment of combustion submodels for turbulent nonpremixed hydrocarbon flames [J]. Combustion and Flame, 1998, 116 (4):519~545
    [146]Swaminathan N, Bilger R W. Comment and reply on the“Assessment of computation submodels for turbulent non-premixed hydrocarbon flames" [J]. Combustion and Flame, 1999, 116:675-677
    [147]Eifler P, Kollmann W. PDF Prediction of Supersonic Hydrogen Flames [R]. AIAA paper 93-0448, 1993
    [148]Dauptain A, Cuenot B, Poinsot T J. Large eddy simulation of a supersonic hydrogen-air diffusion flame [C]. Complex Effects in Large Eddy Simulation, Limassol, 2005
    [149]Williams F A. Progress in knowledge of flamelet structure and extinction [J]. Progress in Energy Combustion Science, 2000, 26:657-682
    [150]Balakrishnan G, Williams F A. Turbulent Combustion Regimes for Hypersonic Propulsion Employing Hydrogen/Air Diffusion Flames [J]. Journal of Propulsion and Power, 1994, 10 (3):434-436
    [151]Bray K N C, Libby P A, Williams F A. High speed turbulent combustion in Turbulent Reacting Flows [M]. Academic Press, 1994
    [152]Waidmann W, Alff F, B?hm M, Brummund U, Clau W, Oschwald M. Supersonic combustion of hydrogen/air in a SCRAMJET combustion chamber [J]. Space Technology, 1995, 15 (6):421-429
    [153]A. Ingenito, Bruno C. Physics and Regimes of Supersonic Combustion [J]. AIAA Journal, 48 (3)
    [154]Mitani T, Kouchi T. Flame structures and combustion efficiency computed for a Mach 6 scramjet engine [J]. Combustion and Flame, 2005, 142:187–196
    [155]Zheng L L, Bray K N C. The Application of New Combustion and Turbulence Models to H2-Air Nonpremixed Supersonic Combustion [J]. Combustion and Flame, 1994, 99:440-448
    [156]Sabelnikov V, Deshaies B, Figueira L S F, Silva D. Revisited Flamelet Model for Nonpremixed Combustion in Supersonic Turbulent Flows [J]. Combustion and Flame, 1998, 114:577-584
    [157]Evans J S, Schexnayder J C, Beach H L. Applicaton of a Two-Dimensional Parabolic Computer Program to Prediction of Turbulent Reacting Flows [R]. NASA 1169, 1978
    [158]Ben-Yakar A. Experimental investigation of mixing and ignition of transverse jets in supersonic crossflows [D]. Doctor thesis, Stanford university, 2000
    [159]M.Gamba, M.G.Mungal, R.K.Hanson. Ignition and near-wall burning in transverse hydrogen jets in supersonic crossflow [R]. AIAA 2011-319,
    [160]Byrne S O, Stotz I, Neely A J, etc. OH PLIF Imaging of Supersonic Combustion using Cavity Injection [R]. AIAA 2005-3357, 2005
    [161]Gruber M R, Donbar J M, Carter C D, Hsu K-Y. Mixing and Combustion Studies Using Cavity-Based Flameholders in a Supersonic Flow [J]. Journal of Propulsion and Power, 2004, 20 (5):769-779
    [162]Rasmussen C C, Dhanuka S K, Driscoll J F. Visualization of flameholding mechanisms in a supersonic combustor using PLIF [J]. Proceedings of the Combustion Institute, 2007, 31: 2505–2512
    [163]Sun M B, Wang Z G, Liang J H, Geng H. Flame Characteristics in a Supersonic Combustorwith Hydrogen Injection Upstream of a Cavity flameholder [J]. Journal of Propulsion and Power, 2008, 24 (4):688-696
    [164]Micka D J, Driscoll J F. Reaction Zone Imaging in a Dual-Mode Scramjet Combustor Using CH-PLIF [R]. AIAA 2008-5071, 2008
    [165]Secundov A. Flamelet model application for non-premixed turbulent combustion [R]. NASA NONCCW-75, 1996
    [166]Terrapon V E, Ham F, Pecnik R, Pitsch H. A flamelet-based model for supersonic combustion [R]. Center for Turbulence Research, Annual Research Briefs 2009, 2009
    [167]Pierce C D, Moin P. Progress-variable approach for large eddy simulation of non-premixed turbulent combustion [J]. Journal of Fluid Mechanics, 2004, 504:73-97
    [168]Saghafian A, V.E.Terrapon, F F H, etal. An Efficient Flamelet-based Combustion Model for Supersonic Flows. [R]. AIAA 2011-2267,
    [169]王海峰.湍流非预混燃烧的数值模拟研究[D].中国科学技术大学,博士学位论文, 2005
    [170]Mura A, Robin V, Champion M. Modeling of scalar dissipation in partially premixed turbulent flames [J]. Combustion and Flame, 2007, 149:217-224
    [171]Shreenivasan O J, Kumar R, Kumar T S, Sujith R I, Chakravarthy S R. Mixing in Confined Supersonic Flow Past Strut Based Cavity and Ramps [R]. AIAA Paper 2004-4194, 2004
    [172]Tomioka S, Kobayashi K, Kudo K, murakami A, Mitani T. Distributed Injection for Performance Improvement of a Supersonic Combustor with Multi-Staged Wall-Injections [R]. AIAA 2003-6991,
    [173]Muller S, Hawk C W, Bakker P G, Parkinson D, Turner M. Mixing of Supersonic Jets in a Strutjet Propulsion system [J]. Journal of Propulsion and Power, 2001, 17 (5):1129~1131
    [174]Spetman D M, Hawk C W, Moser M D. Development of a Strutjet Cold-Flow Mixing Experiment [J]. Journal of Propulsion and Power, 1999, 15 (1):155~158
    [175]Tomioka S, Murakami A, Kudo K, Mitani T. Effects of Injection Scheme on Performance of a Staged Supersonic Combustor [R]. AIAA Paper 99-2107, 1999
    [176]Raman G. Supersonic Jet Mixing Enhancement Using Impingement Tones from Obstacles of Various Geometries [J]. AIAA Journal, 1995, 33 (3):454~462
    [177]Gruenig C, Avrashkov V, Mayinger F. Fuel Injection into a Supersonic Airflow by Means of Pylons [J]. Journal of Propulsion and Power, 2000, 16 (1):29~34
    [178]Glawe D D, Samimy M, Nejad A S, Chen T H. Effect of Nozzle Geometry on Parallel Injection from the base of an Extended Strut into a Supersonic Flow [R]. AIAA1995-0522,
    [179]Vinagradov V, Kobigsky S, Petrov M. Experimental Investigation of Liquid Carbonhydrogen Fuel Combustion in Channel at Supersonic Velocities [R]. AIAA Paper 92-3429, 1992
    [180]Vinagradov V A, Kobigsky S A, Petrov M D. Experimental Investigation of Kerosene Fuel Combustion in Supersonic Flow [J]. Journal of Propulsion and Power, 1995, 11 (1):130~134
    [181]侯凌云,王人杰.某支板式超音速剪切流燃烧的数值研究[J].工程热物理学报, 2007, 28 (4)
    [182]王晓栋,乐嘉陵,宋文艳.带支板的冲压燃烧室的燃烧性能研究[J].空气动力学学报, 22 (3):274-278
    [183]周建兴,朴英,岂兴明,祝剑虹,陈美宁.两种超声速燃烧室内氢气燃烧的三维数值研究[J].航空动力学报, 2008, 23 (3)
    [184]Gerlinger P, Stoll P, Kindler M, etal. Numerical investigation of mixing and combustion enhancement in supersonic combustors by strut induced streamwise vorticity [J]. Aerospace Science and Technology, 2008, 12:159-168
    [185]Berglund M, Fedina E, Fureby C, Tegnér J. Finite Rate Chemistry Large-Eddy Simulation of Self-Ignition in a Supersonic Combustion Ramjet [J]. AIAA JOURNAL, 2010, 48 (3):540-550
    [186]Génin F, Menon S. Simulation of Turbulent Mixing Behind a Strut Injector in Supersonic Flow [J]. AIAA J, 2010,
    [187]Tetsuji S, Masatoshi K. Experimental Study of Strut Injectors in a Supersonic Combustor Using OH-PLIF [R]. AIAA paper 2005-3304,
    [188]Chang X Y, Gu H B. Thrust and Drag of a Scramjet Model with Different Combustor Geometries [R]. AIAA 2005-3315,
    [189]Hsu K-Y, Carter C D, Gruber M R, Barhorst T. Experimental Study of Cavity-Strut Combustion in Supersonic Flow [R]. AIAA-2007-5394,
    [190]Ben-Yakar A, Hanson R K. Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview. [J]. Journal of Propulsion and Power, 2001, 17 (4):869~877
    [191]丁猛.基于凹腔的超声速火焰稳定技术研究[D].博士学位论文,国防科学技术大学, 2005
    [192]潘余.超燃冲压发动机多凹腔燃烧室燃烧与流动过程研究[D].博士学位论文,国防科技大学, 2007
    [193]李麦亮.激光光谱诊断技术及其在火箭发动机燃烧研究中的应用[D].博士学位论文,国防科学技术大学研究生院, 2004
    [194]耿辉.超声速燃烧室中凹腔上游横向喷注燃料的流动、混合与燃烧特性研究[D].博士论文,国防科学技术大学, 2007
    [195]O'Byrne S, Stotz I, Neely A J, etc. OH PLIF Imaging of Supersonic Combustion using Cavity Injection [R]. AIAA 2005-3357, 2005
    [196]Jeong E, O'Byrne S, Jeung I, Houwing A F P. Investigation of Supersonic Combustion with Angled Injection in a Cavity-Based Combustor [J]. Journal of Propulsion and Power, 2008, 24 (6)
    [197]Kim K M, Baek S W, Han C Y. Numerical study on supersonic combustion with cavity-based fuel injection [J]. International Journal of Heat and Mass Transfer, 2004, 47:16
    [198]Ghodke C D, Pranatharthikaran J, Retaureau G J, Menon S. Numerical and Experimental Studies of Flame Stability in a Cavity Stabilized Hydrocarbon-Fueled Scramjet [R]. AIAA 2011-2365, 2011
    [199]陈方,陈立红,张新宇.壁面凹腔强化H2超声速燃烧的数值模拟[J].推进技术2006, 27 (6):565-570
    [200]陈坚强,司徒明.带双凹槽燃烧室中超声速流场的数值模拟[J].空气动力学学报, 2004, 22 (4)
    [201]刘娟,潘余,刘卫东等.超燃冲压发动机燃烧室中双凹腔对引导氢分布的影响[J].国防科大学报, 31 (2)
    [202]刘娟,潘余,刘卫东等.超燃冲压发动机双凹腔燃烧室氢气燃烧流场分析[J].航空动力学报, 24 (11)
    [203]Yu K H, Wilson K J, Smith R A, etal. Experimental investigation on dual-purpose cavity in supersonic reacting flows [R]. AIAA 98-0723,
    [204]Bai X S. Turbulent combustion [M]. Lund Institute of Technology, 2005
    [205]Turns S R. An introduction to combustion: concepts and applications [M]. New York: 2000
    [206]Peters N. Local quenching due to flame stretch and non-premixed turbulent combustion [J]. Combustion. Sci. Tech, 1983, (30):1-17
    [207]http://www.stanford.edu/group/pitsch/FlameMaster.htm
    [208]Barlow R S, Frank J H. Effects of turbulence on species mass fractions in methane/air jet flames [C]. Proceedings of Combustion Institute. 1998
    [209]Spalding D B. Mathematical models of turbulent flames;a review [J]. Combustion Science and Technology, 1976, 13:3-25
    [210]Lockwood F C, Naguib A S. The prediction of the fluctuation in the properties of free, round-jet, turbulent diffusion flame [J]. Combustion and Flame, 1975, (24):109~124
    [211]Jimenez J, Linan A, Rogers M, etal. A Prior testing of subgrid models for chemically reacting non-premixed turbulent shear flows [J]. Journal of Fluid Mechanics, 1997, (349):149-171
    [212]Wall C, Boersma B J, Moin P. An evaluation of the assumed beta probability density function subgrid-scale model for large eddy simulation of non-premixed turbulent combustion with heat release [J]. Phys Fluids, 2000, (12):2522-2529
    [213]Pope S B, Chen Y L. The velocity-dissipation rate probability density function model for turbulent flows [J]. Phys. Fluid, 1990, (2):1437-1449
    [214]Wang H F, Chen Y L. Steady flamelet modeling of a turbulent non-premixed flame considering scalar dissipation rate fluctuations [J]. Fluid Dynamics Research, 2005, (37):133-153
    [215]王海峰,陈义良,蔡晓丹等.湍流射流扩散火焰的层流火焰面模拟[J].推进技术, 2003, 24 (1)
    [216]董刚,王海峰,陈义良.用火焰面模型模拟甲烷/空气湍流射流扩散火焰[J].力学学报, 2005, 37 (1)
    [217]Chen C S, Chang K C, Chen J Y. Application of a robust beta-pdf treatment to analysis of thermal NO formation in nonpremixed hydrogen-air flame [J]. Combustion and Flame, 1994, 98:375-390
    [218]Liu F, Guo H, Smallwood G J. A robust and accurate algorithm of the beta-pdf integration and its application to turbulent methane-air diffusion combustion in a gas turbine combustor simulator [J]. International Journal of Thermal Science, 2002, 41:763-772
    [219]Cook D J, Pitsch H, Chen J H, Hawkes E R. Flamelet-based modeling of auto-ignition with thermal inhomogeneities for application to HCCI engines [J]. Proceedings of the Combustion Institute, 2007, 31:2903-2291
    [220]刘瑜.化学非平衡流的计算方法研究及其在激波诱导燃烧现象模拟中的应用[D].国防科学技术大学,硕士学位论文, 2008
    [221]Yoshizawa A, Horiuti K. Statistically derived subgrid scale kinetic energy model for Large-eddy simualtion of turbulent flows [J]. Journal of the Physical Society of Japan, 1985, 54:2834-2839
    [222]di Mare F, Jones W P, Menzies K R. Large eddy simulation of a model gas turbine combustor [J]. Combustion and Flame, 2004, 137 (3):278-294
    [223]吴子牛.计算流体力学基本原理[M].科学出版社, 2001
    [224]Garnier E, Sagaut P. Large Eddy Simulation of Shock/Boundary-Layer Interaction [J]. AIAA Journal, 2002, 40 (10):1121-1129
    [225]黄冉.超燃冲压发动机燃烧室支板绕流及喷射流场大涡模拟[D].国防科学技术大学,硕士学位论文, 2006
    [226]Bray K N C. Turbulent flows with premixed reactants in turbulent reacting flows [M]. Springer Verlag, 1980
    [227]Peters N. Laminar Flamelet Concepts in Turbulent Combustion [C]. Twenty-First Symposium(International) on Combustion, The Combustion Institute, 1986:1231-1250
    [228]Williams F A. Turbulent Combustion, in Buckmaster J. D., The Mathematics of Combustion Society for Industrial and Applied Mathematics, 1985
    [229]Clemens N T, Mungal M G. Large scale structure and entrainment in the supersonic mixing layer [J]. Journal of Fluid Mechanics, 1995, 284:171-216
    [230]Goebel S G, Dutton J C. An Experimental Study of Turbulent Compressible Mixing Layers [J]. AIAA Journal, 1991, 29 (4):538-546
    [231]Law C K. Combustion Physics [M]. Cambridge university press, 2006
    [232]Micka D J, Driscoll J F. Dual-Mode Combustion of a Jet in Cross-Flow with Cavity Flameholder [R]. AIAA 2008-1062, 2008
    [233]N.Peters, Oran E S, J.P.Boris. Numerical Approaches to Combustion Modeling [J]. Institute of Aeronautics and Astronautics, 1991:155-182
    [234]H.Tennekes, Lumley J L. A First Course in Turbulence [M]. Cambridge: MIT Press, 1974
    [235]D.C.Wilcox. Turbulence Modeling for CFD [M]. California: DCW Industries, 2000
    [236]Pitsch H, Trouillet P, Pierce C D. A joint experimental/large eddy simulation study of a model gas turbine combustor [C]. Western States Section Meeting of the Combustion Institute. San Diego, 2002
    [237]Pitsch H, Cha C M, Fedotov S. Flamelet modelling of non-premixed turbulent combustion with local extinction and re-ignition [J]. Combust. Theory Modelling, 2003, 7 317-332
    [238]Pitsch H, Fedotov S. Investigation of scalar dissipation rate fluctuations in non-premixed turbulent combustion using a stochastic approach [J]. Comb. Theory Modelling, 2001, 5:41-57
    [239]Pierce C D. Progress-variable approach for large eddy simulation of turbulent combustion [D]. Stanford: Stanford university, 2001
    [240]Terrapon V E, Pecnik F H R,Pitsch H. A flamelet-based model for supersonic combustion [J]. 2009,
    [241]Cuenot B, Egolfopoulos F N, Poinsot T. An unsteady laminar flamelet model for non premixed combustion [J]. Combustion Theory Modelling, 2000, 4:77-97
    [242]Amirreza S, Vincent E, T, Frank H, Heinz P. An Efficient Flamelet-based Combustion Model for Supersonic Flows [R]. AIAA 2011-2267, 2011
    [243]耿辉,桑艳,翟振辰等.利用OH基的自发辐射图像研究凹腔在超音速燃烧中的作用[C].液体火箭推进技术发展研讨会论文集,中国三亚, 2005
    [244]Geng H, Zhou J, Zhai Z C. Reveal the mixing and combustion in supersonic flowfield by using planar laser induced fluorescence technology [C]. Asian Joint Conference on Propulsion and Power. China,Beijing, 2006
    [245]陈军.超声速流场中的凹腔火焰稳定器的点火与稳焰研究[D].国防科学技术大学,硕士学位论文, 2006
    [246]Sick V, Wermuth N. Single-shot imaging of OH radicals and simultaneous OH radical/acetone imaging with a tunable Nd:YAG Laser [J]. Applied Physics B, 2009, 79:139-143
    [247]Versluis M, Boogaarts M, Klein-Douwel R. Laser-induced fluorescence imaging in a 100kW natural gas flame [J]. Applied Physics B, 1992, 55:164-170
    [248]Koch A, Chryssostomou A, Andresen P, etal. Multi-species detection in spray flames with tunable excimer lasers [J]. Applied Physics B, 1993, 56:165-176
    [249]Koch A, Voges H, Andresen P, etal. Planar imaging of a laboratory flame and of internal combustion in an automobile engine using UV Rayleigh and fluorescence light [J]. Applied Physics B, 1993, 56:177-184
    [250]Cohen L M, Jassowski D M, Ito J L. Performance of a Titan rocket engine using laser-induced fluorescence of OH [J]. AIAA Journal, 2001, 39 (10):1926-1935
    [251]Li M L, Zhou J, Geng H. Investigations on Function of Cavity in Supersonic Combustion Using OH PLIF [R]. AIAA 2004-3657,
    [252]Bryant R A, Ratner A, Driscoll J F. Using PLIF determined flame structure to analyzesupersonic combustion efficiencies [R]. AIAA 1999-0445,
    [253]Parker T E, Allen M G, Foutter R R, etal. Measurements of OH and H2O for reacting flow in a supersonic combusting ramjet combustor [J]. Journal of Propulsion and Power, 1995, 11 (6):1154-1161
    [254]杨仕润,赵建荣,俞刚,张新宇.超音速燃烧室氢氧基平面激光诱导荧光测量[J].激光技术, 2004, 28 (1):20-23
    [255]耿辉,翟振辰,桑艳,林志勇,周进.利用OH-PLIF技术显示超声速燃烧的火焰结构[J].国防科技大学学报, 2006, 28 (2):1-6
    [256]范周琴,孙明波,刘卫东.高温条件下火焰传播速度研究[J].弹箭与制导学报, 2011, 31 (3):105-107
    [257]Baurle R A, Eklund D R, Gruber M R. Numerical study of scramjet combustor fueled by aerodynamic ramp injector in dual mode combustion. [R]. AIAA 2001-0379,
    [258]Kumaran K, Babu V. Investigation of the effect of chemistry models on the numerical predictionsof the supersonic combustion of hydrogen [J]. Combustion and Flame, 2009, 156:826-841
    [259]Rajasekaran A, Babu V. Numerical simulation of three dimensional reacting flow in a model supersonic combustor [J]. Journal of Propulsion and Power, 2006, 4 (22)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700