用户名: 密码: 验证码:
超燃冲压发动机燃烧室工作过程理论和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综合运用理论分析、试验研究和数值模拟等多种手段,对煤油燃料超燃冲压发动机燃烧室的性能分析评价方法、方案设计及其优化、点火燃烧性能及其影响因素、内流场结构及其特点进行了系统深入的研究,取得了很多有意义的成果。
     提出了超燃冲压发动机燃烧室的性能分析评价方法。开发了燃烧室两相多组分一元反应流分析程序,为超声速燃烧室方案设计阶段的快速性能评估与设计优化提供了一种有效的手段。
     在燃料射流穿透度概念的基础上,提出了燃料射流相对穿透度的概念,并将其成功应用于发动机点火燃烧性能的分析。
     进行了338次相同模拟条件、不同发动机点火方式、结构和工作参数下的超燃冲压模型发动机试验,对煤油燃料超燃冲压发动机燃烧室的点火燃烧性能及其影响因素进行了系统的研究。结果发现,利用全高度支板前缘产生的斜激波可以实现煤油的自燃着火和稳定燃烧,但支板太厚可能致使燃烧室壅塞。利用半高度后掠支板和氢气引导火焰相结合的点火方式,也可以实现煤油的可靠点火和稳定燃烧。由于受射流相对穿透度影响,氢气引导火焰的点火特性和燃烧室尺度有关,表现出明显的尺度效应。当利用点火器强制点火时,存在一个能够点火的能量阈值。煤油能够维持稳定燃烧且不出现热壅塞的当量比范围与点火方式和燃烧室构型等因素密切相关。燃料喷注压降和当量比、燃料喷嘴位置、燃料射流相对穿透度、点火方式、燃烧室结构、凹腔火焰稳定器结构等因素影响发动机燃烧室燃烧性能。
The performance analysis and evaluation method, schematic design and optimization, ignition and combustion performance and their relative conditions, internal flow field and its characteristics of kerosene fueled scramjet combustor are studied detailedly and comprehensively by means of theoretical analysis, experimental investigation and numerical simulation. Many results are obtained.The methodology for scramjet combustor performance analysis and evaluation is build up. A computer program for two phases, multi species, chemical reacting flow analysis and computation in scramjet combustor is worked out. This provides an effective means for rapid performance analysis and design optimization of scramjet combustor.Based on the concept of penetration depth of fuel jet, the concept of relative penetration depth of fuel jet is presented. This concept is applied successfully in the ignition and combustion performance analysis of the scramjet model.Three hundred and thirty eight scramjet model experiments in same simulation flying conditions were conducted in the conditions of different ignition method, different structural and working parameters. The ignition and combustion performance of kerosene fueled scramjet combustor are studied detailedly and comprehensively. The kerosene was ignited by the oblique shockwave induced by the leading edge of the full height strut and stable combustion was sustained. But too thick strut can make the combustor choke. Combination use of the oblique Shockwave induced by the leading edge of the half height strut and hydrogen pilot flame can also ignite the kerosene and hold the combustion stably. Because of the relative penetration depth of the fuel jet, the ignition performance of hydrogen pilot flame has relations with the combustor scale. There is an energy threshold value beyond which kerosene can be ignited by the igniters. The equivalent fuel/air ratio range in which the kerosene can combust stably without choking has close relations with the ignition method, the structural parameters of the combustor, etc. Many parameters, such as the fuel jet pressure drop, the equivalent fuel/air ratio, the position of the fuel injectors, the relative penetration depth of the fuel jet, the ignition method, the structural parameters of the combustor, the structural parameters of the cavity, and so on, do have influences on the combustion performance of the scramjet combustor.
引文
[1] 刘英姿.国外高超音速飞行器研制动态.飞航导弹,1998(7):11~16.
    [2] 司徒明.双燃式液体冲压发动机研究—地面连管模型试验.飞航导弹,1997(3):45~48.
    [3] 周进,刘卫东,梁剑寒等.高超音速飞行器推进系统工作过程研究.国防报告,国防科大航天与材料工程学院,2002.12.
    [4] Murthy, S. N. B., and E. T. Curran. High-speed flight propulsion systems. Volume 137 progress in astrotaunics and aeronautics, AIAA 1991.
    [5] 龙玉珍.高超音速巡航导弹用超燃冲压发动机特点与设计方案.飞航导弹,1997(8).
    [6] E. T. Curran and S. N. B. Murthy. Scramjet Propulsion. Progress in Astronaunics and Aeronautics, AIAA, Washington, DC, 2001.
    [7] Andrews E H. Scramjet Development and Testing in the United States. AIAA 2001-1927, 2001.
    [8] P. J. Waltrup, M. E. White, F. Zarlingo, E. S. Cravlin. History of U. S. Navy Ramjet, Scramjet, and Mixed-Cycle Propulsion Development. Journal of Propulsion and Power, 2002, 18(1): 14~27.
    [9] P. J. Waltrup. Liquid-Fueled Supersonic Combustion Ramjets: A Research Perspective. Journal of Propulsion and Power. 1987, 3(6): 515~524.
    [10] George F. Orton. Air-Breathing Hypersonic Research at Boeing Phantom Works. AIAA 2002-5251, 2002.
    [11] http://hapb-www.larc.nasa.gov/public/Projects/Hyperx.html.
    [12] http://hapb-www.larc.nasa.gov/public/Engines/scramjet_engines.html.
    [13] http://www.nasa.gov/missions/x43a.html.
    [14] Charles E. Cockrell, Jr., Walter C. Engelund, Robert D. Bittner, Arthur D. Dilley, Tom N. Jentink, Abdelkader Frendi. Integrated Aero-Propulsive CFD Methodology for the Hyper—X Flight Experiment. AIAA 2000-4010, 2000.
    [15] Richard R. Kazmar. Hypersonic Propulsion at Pratt & Whitney-Overview. Pratt & Whitney Space Propulsion. AIAA 2002-5144, 2002.
    [16] 占云.高超声速技术(HyTech)计划.飞航导弹.2003(3):43~49.
    [17] L. Bezgin, O. Gouskov, V. Kopchenov, I. Laskin. CFD Support of the Development of Hypersonic Flight Laboratory and Model Scramjet. AIAA 2002-5125, 2002.
    [18] Laurent SERRE, Francois Falempin. PROMETHEE: the french military hypersonic propulsion program Status in 2002. AIAA 2002-5141, 2002.
    [19] Francois Falempin, Laurent Serre. French R&T Activities on High-Speed Airbreathing Propulsion. International Colloquium on Hypersonic Propulsion. Beijing, China, 2003.
    [20] 周军,徐文.法国试验超声速和高超声速发动机.飞航导弹.2003(2):32~33.
    [21] Takeshi Kanda, Tetsuo Hiraiwa, Tohru Mitani, Sadatake Tomioka, Nobuo Chinzei. Math 6 Testing of a Scramjet Engine Model. Journal of Propulsion and Power, 1997, 13(4): 543~551.
    [22] Tohru Mitani, Tetsuo Hiraiwa, Shigeru Sato, Sadatake Tomioka, Takeshi Kanda, Kouichiro Tani. Comparison of Scramjet Engine Performance in Mach 6 Vitiated and Storage-Heated Air. Journal of Propulsion and Power, 1997, 13(5): 635~642.
    [23] Tohru Mitani, Tetsuo Hiraiwa, Yuichi Tarukawa, Goro Masuya. Drag and Total Pressure Distributions in Scramjet Engines at Mach 8 Flight. Journal of Propulsion and Power, 2002, 18(4): 953~960.
    [24] N. Chinzei and T. Kanda. Scramjet Engine Tests at NAL of Japan. International Colloquium on Hypersonic Propulsion. Beijing, China, 2003.
    [25] Yoshio Wakamatsu, Takeshi Kanda, Nobuyuki Yatsuyanagi. Priliminary Consideration of Hypersonic Test Vehicle for Scramjet Engine Test. ISTS 2000-g-24, 2000.
    [26] Takeshi Kanda, Kenji Kudo. A Conceptual Study of a Combined Cycle Engine for an Aerospace Plane. National Aerospace Laboratory of Japan, AIAA 2002-5146, 2002.
    [27] Christopher S. Craddock, B. E., Computational Optimization of Scramjets and Shock Tunnel Nozzles: [dissertation]. Department of Mechanical Engineering, The University of Queensland, Brisbane, Australia. 1999.
    [28] http://www.spaee.eorn/missionlaunehes/hyshot-020816.html.
    [29] Leo H. Townend. The Domain of the Seramjet. Phil. Trans. R. Soc. Lond. A, 1999(357): 2317~2334.
    [30] J. Scott Hames. Single-Stage-To-Orbit Vehicle Performance Evaluation Methods. AIAA92-5056. 1992.
    [31] 袁生学.论超声速燃烧.中国科学(A辑).1998,28(8):735~741.
    [32] 袁越.高超声速飞行技术研究的进展.中国航天.1998(7):20~23.
    [33] 龙玉珍.国际性超燃冲压发动机研究进入飞行试验阶段.飞航导弹.1998(12):53~56.
    [34] 刘陵,刘敬华,张榛,唐明.超音速燃烧与超音速燃烧冲压发动机.西安:西北工业大学出版社,1993、1.
    [35] Daines R, Segal C. Combined Rocket and Airbreathing Propulsion Systems for Space-Launch Applications. Journal of Propulsion and Power, 14 (5): 605~612, 1998.
    [36] Tsien, H. S. and Beilock, M. Heat Source in a Uniform Flow. Journal of Aeronautical Sciences. 1949, 16(12).
    [37] Pinkie, I.I. and Serafini, J. S. Graphical Method for Obtaining Flow Field in Two-Dimensional Supersonic Stream to Which Heat is Added, NASA TN-2206, Nov, 1950.
    [38] Edward T. Curran. Scramjet Engines: The First Forty Years. Journal of Propulsion and Power.2001,17(6): 1138~1148.
    [39] Dugger, G. L. Recent Advances in Ramjet Combustion. ARS Journal, Vol.29, No.11, 1959,pp.819-827.
    [40] Weber, R. J. A Survey of Hypersonic-Ramjet Concepts. American Rocket Society, Paper 875-59, 1959.
    [41] Mallinson D. H. Discussion on Hypersonic Ramjet Development. High Math Number Airbreathing Engines, Pergamon Oxford, England, U.K., 1961, pp.80-83.
    [42] Hawkins R. and Fox M. D. An Investigation of Real Gas Effects Relevant to the Performance of a Kerosene Fueled Hypersonic Ramjet. Supersonic Flow, Chemical Processes and Radiative Transfer, Macmillan, New York, 1964, pp. 113-136.
    [43] Roy M. M. Moteurs Thermiques. Comptes rendus de I' Academie des Science, Vol.222, No. 1, 1946; see also Royal Aircraft+Establishment Library Translation 112, 1946.
    [44] Nicholls J. A. Dabora E. K. and Gealev R. L. Studies in Connection with Stabilized Detonation Waves. Proceedings of the Seventh Symposium on Combustion, Butterworths, London, 1959, pp. 766-772.
    [45] Gross R. A. and Chinitz W. A Study of Supersonic Combustion. Journal of the Aerospace Sciences, Vol. 27, No. 7, 1960, pp. 517-524.
    [46] Ferri A. Discussion on M. Roy's Paper Propulsion Supersonic par Turboreacturs et par Statoreacteurs. Advances in Aeronautical Sciences, Vol. 1, Pergamon, Oxford, England, U. K., 1959, pp. 79-112.
    [47] Ferri, A., Libby P. A. and Zakkay V. Theoretical and Experimental Investigations of Supersonic Combustion. Proceedings of the International Council of the Aeronautical Sciences, Third Congress, Stockholm, 1962, Spartan, New York, 1964, pp. 1089-1155.
    [48] Ferri A. Review of Problems in Application of Supersonic Combustion. Journal of the Royal Aeronautical Society, Vol. 68, No. 645, 1964, pp.575-597.
    [49] Waltrup P.J., Stull F.D. and Anderson G.Y. Supersonic Combustion Ramjet(Scramjet) Engine Development in the United States. Proceedings of the Third International Symposium on Air Breathing Engines, Deutsche Gesellschaft fur Luft- und Raumfarht, Germany, March 1976, pp.835-862.
    [50] Andrews E. H. and Mackley E. A. Review of NASA's Hypersonic Engine Project. AIAA Paper 93-2323, 1993.
    [51] Rubert K F, Lopez H J. The NASA Hypersonic Research Engine Program. N92-21521.
    [52] Heiser W H, Pratt D T,Deley D H, et al. Hypersonic Airbreathing Propulsion. American Institute of Aeronautics and Astronautics Inc, Washington, D. C. 1994.
    [53] Billig F. S. SCRAM: A Supersonic Combustion Ramjet Missile. AIAA Paper 93-2329, June 1993.
    [54] Billig F. S. Supersonic Combustion Ramjet Missile. Journal of Propulsion and Power, 11(1): 1139~1146, 1995.
    [55] Billig F. S., Dugger G. L. and Waltrup P. J. Inlet-Combustor Interface Problems in Scramjet Engines. Proceedings of the First International Symposium on Air Breathing Engines, International Society for Airbreathing Engines, June 1972.
    [56] Waltrup P J, Billg F S. Structure of shock waves in cylindrical ducts. Journal of AIAA, 1973, 11 (10).
    [57] Billig F. S. and Sullins G. A. Optimization of Combustor-Isolator in Dual Mode Ram Scramjets. AIAA Paper 93-5154, Nov.-Dec. 1993.
    [58] Chase R. L. and Tang M. H. A History of the NASP Program from the Formation of the Joint Program Office to the Termination of the HySTP Scramjet Performance Demonstration Program. AIAA Paper 95-6051, April 1995.
    [59] Waldman B. and Harsha P. NASP—A Maturing Technology Base. AIAA Paper 93-5173, Nov.-Dec. 1993.
    [60] Voland R. and Rock K. NASP Concept Demonstration Engine and Subscale Parametric Engine Tests. AIAA Paper 95-6055, April 1995.
    [61] Mercier R A, Ronald T M F. US Air Force Hypersonic Technology Program. AIAA Paper, 1996.
    [62] Faulkner R. F. and Weber J. W. Hydrocarbon Scramjet Propulsion System Development, Demonstration and Application. AIAA Paper 99-4922, Nov. 1999.
    [63] Rausch V., McClinton C. and Sitz J. Hyper-X Program Overview. Proceedings of the 14th International Symposium on Air Breathing Engines, ISABE Paper 99-7213, Sep. 1999.
    [64] McClinton C R, Rausch D R. Hyper-X Program Status. AIAA 2001-1910,2001.
    [65] Http://www.nasa.gov.
    [66] Frank Lu and Dan Marren. Advanced Hypersonic Test Facilities. Volume 198 Progress in Astrotaunics and Aeronautics, AIAA 2002.
    [67] Sosounov V. Research and Development of Ram/Scramjet and Turbojets in Russia. AGARD Lecture Ser. 194, AGARD, 1993.
    [68] Tretjakov P., Golovitchev V. L., and Bruno C. Supersonic Combustion: A Russia Review, 1967-1993. Joint Meeting of the Italian and Spanish Sections of the Combustion Institute, Combustion Inst., Pittsburgn, PA, June-July 1993, pp.V111-1.1—V111-1.4.
    [69] Tretyakov P. K. The Study of Supersonic Combustion for a Scramjet. Experimentation, Modeling and Computation in Flow, Turbulence, and Combustion, Vol. 1, New York, 1996, chap.22, pp. 319-336.
    [70] Roudakov A., Schickhman Y., Semenov V., Novell Ph., and Fourt O. Flight Testing an Axisymmetric Scramjet: Russian Recent Advances. International Astronautical Federation, IAF Paper 93-S.4.485, 44th, Oct. 1993.
    [71] Voland R. T., Auslander A. H., Smart M. K., Roudakov A. S., Semenov V. L., and Kopchenov V. CLAM/NASA Mach 6.5 Scramjet Flight and Ground Test. AIAA Paper 99-4848, Nov. 1999.
    [72] 丛敏.国际性超燃冲压发动机研究进入飞行试验阶段.飞航导弹,1998 (12):53~56.
    [73] Mestre A. and Viaud L. Combustion Supersonic dans un Canal Cylindrique. Supersonic Flow, Chemical Processes and Radiative Transfer, MacMillan, New York, 1964, pp.93-111.
    [74] Marguet R. and Huet C. Research of an Optimum Solution for a Fixed Geometry Ramjet, in the Math 3-7 Range, with Successively Subsonic and Supersonic Combustion. ONERA TP 656E, 1968.
    [75] Leuchter O. Problems of Mixing and Supersonic Combustion of Hydrogen in Hypersonic Ramjets. ONERA TP 973, 1971.
    [76] Hirsinger F. Optimization Des Performances d'un Statoreacteur Supersonic: Etude Theorique et Experiments. Proceedings of the 1st International Symposium on Air Breathing Engines, International Society for Airbreathing Engines, June 1972.
    [77] Contensou P., Marguet R. and Huet C. Etude Theorique et Experimentale d'un Statoreacteur a Combustion Mixte(Domaine de vol Mach 3/7), International Council of the Aeronautical Sciences, ICAS Paper 72-74, 1972.
    [78] Sancho M., Colin Y. and Johnson C. Program Overview: The French Hypersonic Research Program PREPHA. AIAA 7th International Space Plans and Hypersonic Systems and Technologies Conference, Nov. 1996.
    [79] Falepin F. H., Lacaze H. Reference and Generic Vehicle for the French Hypersonic Technology Program. AIAA Paper 95-6038, 1995.
    [80] Scherrer D., Dessomes O., Montmayeur N. and Ferrandon O. Injection Studies in the French Hypersonic Technology Program. AIAA Paper 95-6096, April 1995.
    [81] Bouchez M., Hachemin J. V., Leboucher C., Scherrer D. and Saucerau D. Scramjet Combustor Design in French PREPHA Program—Status in 1996. AIAA Paper 96-4582-CP, Nov. 1996.
    [82] Bouchez M., Saunier E., Peres P., and Lansalot T. Advanced Carbon/Carbon Injection Strut for Actual Scramjet. AIAA Paper 96-4567-CP, Nov. 1996.
    [83] 王培.法俄合作研制超燃冲压发动机.飞航导弹,1999(7).
    [84] Bouchez M., Levine V., Davidenko D., Avrashkov D. and Genevieve P. Airbreathing Space Launcher Interest of a Fully Variable Geometry Propulsion System and Corresponding French-Russian Partnership. AIAA Paper 2000-3340, July 2000.
    [85] Zierep J. Theory of Flows in Compressible Media with Heat Addition. ADARDograph 191 1974.
    [86] Kania P. The German Hypersonic Technology Program-Overview. AIAA Paper 95-6005, 1995.
    [87] Koschel W. W. Basic Hypersonic Propulsion Research in German Universities. AIAA Paper 98-1634, April 1998.
    [88] Sabel'nikov V. A., Voloschenko O. V., Ostras V. N., Sermanov V. N. and Walther R. Gasdynamics of Hydrogen-Fueled Scramjet Combustors. AIAA Paper-93-2145, June 1993.
    [89] Walther R., Sabelnikov V., Koronstsvit Y., Voloschenko O., Ostras V. and Sermanov V. Progress in the Joint German-Russian Scramjet Technology Programme. Proceedings of the 12th International Symposium on Air Breathing Engines, ISABE Paper 95-7121, Sep. 1995.
    [90] Kobayashi S. Japanese Spaceplane Program Overview. AIAA Paper 95-6002, 1995.
    [91] Miyajima H., Chinzei n., Mitani T., Wakamatsu Y. and Malta M. Development Status of the NAL Ramjet Engine Test Facility and Sub-Scale, Scramjet Engines. AIAA Paper 92-5094, Dec. 1992.
    [92] Yatsuyanagi N. and Chinzei N. Status of Scramjet Research at NAL. Proceedings of the 20th International Symposium on Space Technology and Science, Paper 96-a-2-10, May 1996.
    [93] Sato S., Izumikawa M., Tomioka S. and Mitani T. Scramjet Engine Test at Mach 6 Flight Condition. AIAA Paper 97-3021, July 1997.
    [94] Tani K., Kanda T., Sunami T., Hiraiwa T. and Tomioka S. Geometrical Effects to Aerodynamic Performance of Scramjet Engine. AIAA Paper 97-3018, July 1997.
    [95] Masuya G., Komuro T., Murakami A., Shinozaki N., Nakamura A., Murayama M. and Ohwaki K. Ignition and Combustion Performance of Scramjet Combustors with Fuel Injection Struts. Journal of Propulsion and Power, Vol. 11, No. 2, 1995, pp. 301-307.
    [96] Kanda T., Wakamatsu Y., Ono F., Kudo K., Murakami A. and Izumikawa M. Math 8 Testing of a Scramjet Engine Model. AIAA Paper 99-0617, Jan. 1999.
    [97] Sato Y., Sayama M., Ohwaki K., Masuya G., Komuro T., Kudou K., Murakami A., Tani K., Wakamatsu Y., Kanda T., Chinzei N. and Kimura I. Effectiveness of Plasma Torches for Ignition and Flameholdin in Scramejt. Journal of Propulsion and Power, Vol.8, No.4, 1992,pp. 883-889.
    [98] Paull A. and Stalker R. J. Scramjet Testing in the T4 Impulse Facility. AIAA Paper 98-1533, April 1998.
    [99] 司徒明.双燃式冲压发动机研究.中国国防科学技术报告,中国航天科工集团第三研究院第三十一研究所,2000.11.
    [100] 刘小勇等.冲压发动机双模态燃烧的理论与试验研究.国防报告,中国航天科工集团第三研究院第三十一研究所,2000.9.10.
    [101] 路艳红,凌文辉,刘敬华,叶中元,马祥辉,双模态超燃燃烧室计算,推进技术,1999,20(3):56~60.
    [102] 邹家骅.支板式双模态超燃冲压发动机方案设计和参数研究.航天科工集团三院三十一所,2001.8.
    [103] 张新宇,陈立红.高焓高超声速自由射流风洞的建设与初步实验结果.第十届全国激波与激波管学术讨论会论文集:76~80.
    [104] 俞刚,张新宇.燃烧室构型对煤油超燃冲压发动机性能影响研究.流体力学实验与测量,2000,14(1):72~80.
    [105] 陈方,陈立红,张新宇.不同收缩比超燃冲压发动机进气道的数值研究.第十届全国激波与激波管学术讨论会论文集:44~49.
    [106] 孙英英,韩肇元,司徒明,王春.高温富油燃气作引导火焰的煤油超燃研究.推进技术,2001,22(2):157~161.
    [107] 司徒明,王子川,牛余涛,王春,陆惠萍.高温富油燃气超燃试验研究.推进技术,1999,20(6):75~79.
    [108] 司徒明,王春,陆惠萍,李建国,俞刚.一种研究煤油超燃的新方案.流体力学实验与测量,2001,15(3):7~12.
    [109] 孙英英,司徒明,王春,韩肇元.双燃烧室中煤油超燃试验研究.流体力学试验与测量,2000,14(1):51~56.
    [110] 贺伟等.脉冲燃烧风洞及其在超燃发动机试验研究中的应用.第十届全国激波与激波管学术讨论会论文集:50~54.
    [111] Le Jialing, Liu Weixiong. Pulse Combustion Facility and its Preliminary Application in Scramjet Combustor. 2000.
    [112] 白菡尘等.M6氢燃料双模态冲压模型发动机的试验研究.第十届全国激波与激波管学术讨论会论文集:38~43.
    [113] 谭宇.直连式超燃发动机燃烧室煤油点火燃烧初步试验研究.四川绵阳:国防科技报告,2000.10.
    [114] 刘伟雄等.激波风洞超燃发动机试验初步研究.第十届全国激波与激波管学术讨论会论文集:63~70.
    [115] Liang J H, Wang C Y. 3D Numerical Simulation of Supersonic Reacting Flows in Scramjet Combustor. AIAA Paper 96-2664, 1996.
    [116] 梁剑寒.超燃发动机氢/空气混合增强与燃烧流场的并行数值模拟.[博士学位论文].长沙,国防科技大学,1998.
    [117] 柳军,乐嘉陵.高超声速三维热化学非平衡流计算程序及其应用.第十届全国激波与激波管学术讨论会论文集:55~62.
    [118] 刘卫东,梁剑寒等.超燃冲压模型发动机试验研究.国防科学技术报告,2003、9.
    [119] 黄生洪,何国强,何洪庆.支板火箭引射冲压发动机引射模态燃烧流动(Ⅰ)瞬时掺混燃烧流动的数值模拟.推进技术,2003,24(2).
    [120] 黄生洪,何洪庆,何国强.支板火箭引射冲压发动机引射模态燃烧流动(Ⅱ)二次燃烧及构型的影响.推进技术,2003,24(3).
    [121] 王国辉,何国强,蔡体敏.一次火箭参数对RBCC引射模态性能的影响,推进技术,2003,24(3).
    [122] 黄生洪等.火箭基组合循环(RBCC)推进系统概念设计模型.推进技术,2003,24(1).
    [123] 马朝恺,徐旭,蔡国飙.超声速补燃的数值模拟和实验研究.推进技术,2002,23(5):394~397.
    [124] 徐旭,蔡国飙.氢/碳氢燃料超声速燃烧的数值模拟.推进技术,2002,23(5):398~401.
    [125] 徐大军,孙冰等.超燃冲压发动机一体化设计与优化方法研究.推进技术,2002,23(5):360~362.
    [126] 陈兵,徐旭,蔡国飙.二维超燃冲压发动机尾喷管优化设计.推进技术,2002,23(5):433~437.
    [127] 张树道.双燃式超燃冲压发动机冷态内流现象研究:[博士学位论文].中国科学技术大学,1999.3.
    [128] 岳朋涛.超燃冲压发动机燃烧室若干问题的研究:[博士学位论文].中国科学技术大学,2002.5.
    [129] 徐胜利,黄生洪等.部分裂解煤油超燃点火的初步数值模拟.第十届全国激波与激波管学术讨论会论文集:71~73.
    [130] 徐胜利,Archer R.D.,Milton B.E.,岳朋涛.煤油在超声速气流中横向喷射的实现.中国科学(E辑),2000,30(2):179~186.
    [131] 徐胜利,Archer R.D.,Milton B.E.,岳朋涛.煤油在超声速气流中非定常横向喷射的实验观察.空气动力学学报,2000,18(3):272~279.
    [132] 岳朋涛,徐胜利等.组合件H2燃料超燃流场的三维数值研究.第十届全国激波与激波管学术讨论会论文集:74~75.
    [133] 孙英英.碳氢燃料超燃火焰传播与特性的实验研究[博士学位论文].中国科学技术大学,2002.11.
    [134] 张堃元等.带高超进气道的隔离段流动特性.推进技术,2002,23(4):311~314.
    [135] 何枫等.超声速欠膨胀冲击射流的数值模拟.推进技术,2002,23(2):96~99.
    [136] 叶中元.对美国高超声速推进系统研制动态的分析.飞航导弹,1999(4):33~36.
    [137] 乐嘉陵.关于开展国家高超声速飞行器研究的建议.“863”航天高技术论证建议,1998.3.
    [138] Hunt J L, Johnston P J, et al. Hypersonic Airbreathing Missile Concepts Under Study at Langley. AIAA Paper 82-0316, 1982.
    [139] Kay I W, Peschke W T, and Guile R N. Hydrocarbon-Fueled Scramjet Combustion Investigation. AIAA Paper 90-2337, 1990.
    [140] Waltrup P J. Liquid Fueled Supersonic Combustion Ramjets: A Research Perspective of the Past, Present and Future. AIAA Paper 86-0158, 1986.
    [141] Weber R. J. and Mackay J. S. An Analysis of Ramjet Engines using Supersonic Combustion. NASA TN 4386, Sept. 1958.
    [142] Hideo IKAWA. Rapid Methodology for Design and Performance Prediction of Integrated Supersonic Combustion Ramjet Engine. Journal of Propulsion, Vol. 7, No. 3, May-June 1991, pp. 437-444.
    [143] Yu G, Li J G, et al. Experimental Studies on H2/Air Model Scramjet Combustor.AIAA 99-2449, 1999.
    [144] 张鹏,俞刚.超燃燃烧室一维流场分析模型的研究.流体力学实验与测量,2003,17(1).
    [145] Bussing T R A, Murman E M. A one-dimensional unsteady model of dual-mode scramjet operation. AIAA 83-0422.
    [146] 刘敬华,凌文辉,刘兴洲等.超音速燃烧室性能非定常准一维流数值模拟.推进技术,1998,19(1):1~6.
    [147] John D A, Corin S, James C, et al. Experimental supersonic hydrogen combustion employing staged behind a rearward-facing step. Journal of Propulsion and Power, 1993, 9(3): 472~478.
    [148] Donohue J M, McDaniel J C, Haj-Hariri H. Experimental and numerical study of swept ramp injection into a supersonic flowfield. AIAA Journal, 1994, 32 (9): 1860~1867.
    [149] Gerligradov P, Brilggemann. Numerical investigation of hydrogen strut injection into supersonic airflows. Journal of Propulsion and Power,2000,16 (1): 22~28.
    [150] Gruenig C, Avrashkov V, Mayinger F.Self-ignition and supersonic reaction of pylon-injected hydrogen fuel. Journal of Propulsion and Power, 2000, 16 (1): 35~40.
    [151] Parent B, Sislian J P. Turbulent hypervelocity fuel/air mixing by cantilevered ramp injectors. AIAA 2001-1888, 2001.
    [152] Vinagradov V, Grachev V, Petrov M, et al. Experimental investigation of 2-D dual mode scramjet with hydrogen fuel at Mach 4-6. AIAA 90-5269.
    [153] Billig F S, Waltrup P J, Stockbridge R D. Integral-Rocket, dual combustion ramjet: Anew propulsion concept. Journal Spacecraft and rockets, 15(5): 416-424, 1980.
    [154] Segal C, Owens M G, et al. Flameholding configuration for kerosene combustion in a mach 1.8 airflow. AIAA 97-2888, 1997.
    [155] Bonghi L, Dunlap M J, et al. Hydrogen piloted energy for supersonic combustion of liquid fuels. AIAA 95—0730.
    [156] Vinogradov V A, Kobigsky S A, and Petrov M D. Experimental investigation of kerosene fuel combustion in supersonic flow. Journal of propulsion and power, 11 (1): 130—134, 1995.
    [157] Owens M G, Segal C, et al. Combustion of kerosene in a supersonic airstream—Thermal efficiency of selected injection configurations. AIAA Paper 96—3140.
    [158] Davis D. L., Bowersox R. D. W. Computational fluid dynamics analysis of cavity flame holders for scramjets. AIAA 97-3270, 1997.
    [159] Davis D. L., Bowersox R. D. W. Stirred reactor analysis of cavity flame holders for scramjets. AIAA 97-3274, 1997.
    [160] Yu K., Wilson K. J., Smith R. A., and Schadow K. C. Experimental investigation on dual purpose cavity in supersonic reacting flows. AIAA 98-0723, 1998.
    [161] Ben-Yaker A. and Hanson R. K. Supersonic combustion of cross-flow jets and the influence of cavity flame-holders. AIAA 99-0484, 1999.
    [162] Mathur T., Lin K. C., Kennedy P., Gruber M., Donbar J., Jackson T., Biling F., Liquid JP-7 combustion in a scramjet combustor. AIAA 2000-3581, 2000.
    [163] Hsu K. Y., Carter C., Crafton J., Gruber M., Donbar J., Mathur T., Schommer D. and Terry W. Fuel distribution about a cavity flameholder in supersonic flow, AIAA 2000-3585, 2000.
    [164] Burnes R., Parr T. P., Wilson K. J. and Yu K. Investigation of supersonic mixing control using cavities: effect of fuel injection localtion. AIAA 2000-3618, 2000.
    [165] 俞刚,李建国,陈立红,黄庆生.煤油—氢双燃料超声速燃烧点火特性研究.流体力学实验与测量,Vol.14,No.1,pp.63—71,2000.
    [166] 黄庆生.煤油—氢双燃料超声速燃烧研究:[硕士学位论文].中国科学院力学研究所,1999.9.
    [167] Yu G, Li G J, Chang X Y, et al. Investigation of kerosene combustion characteristic with pilot hydrogen in model supersonic combustion. Journal of Propulsion and Power, Vol. 17, No.6, 2001, pp. 1263~1272.
    [168] Bushnell D M. Mixing and combustion issues in hypersonic Mr-breathing propulsion in high speed flow. Kluwer Academic Publishers, 1994.
    [169] Bogdanoff D. W. Compressibility effects in turbulent shear layer. AIAA Journal, Vol. 21, June 1983, pp. 926-927.
    [170] McMurtry P. A., Riley J. J. Mechanisms by which heat release affects the flow field in a chemically reacting, turbulent mixing layer. AIAA Paper 87-0131.
    [171] Kraus D. K., Cutler A. D. Mixing enhancement by use of swirling jets. AJAA Paper 93-3126.
    [172] Waitz I A, Marble F E, and Zukoski E. A systematic experimental and computational investigation of a class of contoured wall fuel injectors. AIAA Paper 92-0625, 1992.
    [173] Madabhushi R. K., Choi D., et al. Computational modeling of mixing process for scramjet combustor application. AIAA 97-2638, 1997.
    [174] Hartfield Jr R. J., Hollo S. D. and McDaniel J. C. Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence. Journal of Propulsion and Power, 10 (1): 129—135, 1994.
    [175] Stouffer S. D., Baker N. R., et al. Effects of compression and expansion-ramp fuel injector configurations on scramjet combustion and heat transfer. AIAA Paper 93-0609.
    [176] Eklund D R, Stouffer S D. A numerical and experimental study of a supersonic eombustor employing swept ramp fuel injectors. AIAA Paper 94-2819.
    [177] Gouskov O, Kopchenov V, Vinogradov V, Waltrup P J. Numerical researches of gaseous fuel pre-injection in hypersonic 3-D inlet. AIAA 2000-3599, 2000.
    [178] Ben-Yakar A., Hanson R. K. Cavity flameholders for ignition and flame stabilization in scramjets: review and experimental study. AIAA 98-3122, 1998.
    [179] Mathur T., Streby G., et al. Supersonic combustion experiments with a cavity-based fuel injector. AIAA 99-2102, 1999.
    [180] Sato S., Imamura A., et al. Advanced mixing control in supersonic air stream with a wall-mounted cavity. Journal of Propulsion and Power, 15(2): 358-360, 1999.
    [181] Yu K. H., Schadow K. C. Cavity-acutated supersonic mixing and combustion control. Combustion and Flame, 99: 295-301, 1994.
    [182] Yu K. H., Wilson K. J. and Schadow K. C. Effect of flame-holding cavities on supersonic combustion performance. AIAA 99-2638, 1999.
    [183] Baurle R A, Mathur T, et al. A numerical and experimental investigation of a scametjet combustor for hypersonic missile applications. AIAA 98-3121, 1998.
    [184] 余勇,丁猛,刘卫东等.煤油超音速燃烧的试验研究.国防科技大学学报,2004(1):1~4.
    [185] Baurle R A, Gruber M R. A study of recessed cavity flowfields for supersonic combustion applications. AIAA 98-0938, 1998.
    [186] Gruber M R, Baurle R A, et al. Funmdamengtal studies of cavity-based flameholder concepts for supersonic combustors. AIAA 99-2248, 1999.
    [187] Brent S. Green and H. F. Nelson. Effect of inflow pressure and wall heat transfer on shock-induced combustion/detonation. AIAA 96-0111, 1996.
    [188] M. Wendt, R. Stalker, P. Jacobs. Effect of fuel temperature on supersonic combustion. AIAA 95-6029, 1995.
    [189] Franco F. Tao. The design, operation, and performance of a prototype steam injection system for a supersonic combustion wind tunnel. AIAA 95-0004, 1995.
    [190] Buggeln R C, McDonald H, and Levy R. Development of a three-dimensional inlet flow analysis. NASA CR-3218,1980.
    [191] Anderson B H. Three-dimensional design methodology for advanced technology aircraft supersonic inlet systems. NASA TM-83558,1984.
    [192] Kumar A. Numerical analysis of the scramjet inlet flow field using two-dimensional navier-stokes equations. AIAA Paper 81-185,1981.
    [193] Kumar A. Three dimensional anviscid analysis of the scramjet inlet flow field. AIAA Paper 82-0060,1982.
    [194] Schetz J A, Billig F S, and Favin S. Analysis of mixing and combustoin in a scramjet combustor with a co-axial fuel jet. AIAA Paper 80-1256,1980.
    [195] Schetz J A, Billig F S. Studies of scramjet flowfield. AIAA Paper 87-2161,1987.
    [196] Drummond J P, Rogers R C, and Evans J S. Combustor modelling for scramjet engines. AGARD-CP-275,1979.
    [197] Drummond J P, Weidner E H. Numerrical study of a scramjet engine flow field. AIAA Paper 81-0186,1981.
    [198] Drummond J P, Rogers R C, and Hussaini M Y. A detailed numerical model of a supersonic reacting mixing layer. AIAA Paper 86-1427,1986.
    [199] Uenishi K, Rogers R C, and Northam G B. Three dimensional computations of transverse hydrogen jet combustion in a supersonic airstream. AIAA Paper 87-0089,1987.
    [200] Widhopf G F, Wang JC T. A TVD finite-volume technique for nonequilibrium chemically reacting flows. AIAA Paper 88-2711,1988.
    [201] Dimotakis P.E. and Hall J.L. A simple finite chemical kinetics analysis of supersonic turbulent shear layer combustion. AIAA Paper 87—1879.
    [202] Yu S T, Tsai Y L P, Shuen J S. Three-dimensional calculations of supersonic reacting flows using an LU scheme. Journal of computational physics, 101,276-286,1992.
    [203] Sirignano W.A. and Kim I. Diffusion flame in a two-dimensional, accelerating mixing layer. Physics of Fluids 9 (9), Sep.1997.
    [204] Chakraborty D. , Nagaraj Upadhyaya H.V. , Paul PJ. and Mukunda H.S. A thermo-chemical exploration of a two-dimensional reacting supersonic mixing layer. Physics of Fluids 9 (11), Nov. 1997.
    [205] Delarue B.J. and Pope S.B. Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods. Physics of Fluids 10 (2), Feb. 1998.
    [206] Day M.J. and Reynolds W.C. The structure of the compressible reacting mixing layer: Insights from linear stability analysis. Physics of Fluids 10 (4), Apr. 1998.
    [207] White, M.E., Drummond, J.P., Kumar,A. Evolution and application of CFD technique for scramjet engine analysis. Journal of Propulsion, Vol.3, No.5, Sept.-Oct. 1987, pp. 423-438.
    [208] T. A. Jarymowycz, V. Yang and K. K. Kuo. Numerical study of solid-fuel combustion under supersonic cross flows. Journal of propulsion and power, Vol.8, No.2, March-April 1992, pp.346-353.
    [209] G.Wadawadigi, J. C. Tannehill and P. E. Buelow and S. L. Lawrence. Three- dimensional upwind parabolized Navier-Stokes code for supersonic combustion flow fields. J. Thermophysics and Heat Transfer, Vol.7, No.4, 1993, pp.661-667.
    [210] Christopher J. Roy, Jack R. Edwards. Numerical simulation of a three-dimensional flame/shock wave interaction. AIAA 98-3210, 1998.
    [211] Ming-Hsiung Chen, Rick Gaffney, Pei-Kuan Wu, Abdollah S. Nejad. Numerical simulation of axisymmetric sonic He and H2 injection into a mach 2 airstream. AIAA 95-0873.
    [212] 刘宏,杜新,沈月阳,雷麦芳,王发民.甲烷超声速燃烧过程的数值模拟.推进技术,2002,23(1):63~66.
    [213] Drummond J P, Hussaini M Y, and Zang T A. Spectral methods for modeling supersonic chemically reacting flowfields. AIAA Journal, 24(9): 1461-1467, 1986.
    [214] Jou W H, Riley J J. Progress in direct numerical simulations of turbulent reacting flows. AIAA Journal, 27(1): 1543-1556, 1989.
    [215] Kallenberg M, von Lavante E. Numerical analysis of three-dimensional effects in unsteady supersonic combustion. AIAA 97-3180, 1997.
    [216] Azevedo J L F, Figueira da Silva L F. The development of an unstructured grid solver for reactive compressible flow applications. AIAA 97-3239,1997.
    [217] Shang H M, Chen Y S. Unstructured adaptive grid method for reacting flow computation. AIAA 97-3183,1997.
    [218] Donohue J M, McDaniel Jr J C, and Haj-Hariri H. Experimental and numerical study of swept ramp injection into a supersonic flowfield. AIAA Paper 93-2445, 1993.
    [219] Tam C J, Baurle R A, and Gruber M R. Numerical study of jet injection into a supersonic crossflow. AIAA 99-2254, 1999.
    [220] Krishnamurthy R, Rogers R C, and Tiwari S N. Numerical study of hypervelocity flows through a scramjet combustor. Journal of Propulsion and Power, 13(1): 131-141,1997.
    [221] McClure T H, Ervin E. CFD Analysis of circular transverse injector for a scramjet combustor. AIAA Paper 96-0729, 1996.
    [222] Thompson J F, Thames F C, and Mastin C W. TOMCAT. A code for numerical generation of boundary-fitted curvilinear coordinate systems on fields containing any number of arbitrary two-dimensional bodies. Journal of Computational Physics, 24: 274-302, 1977.
    [223] Dufour E, Bouchez M. Computational analysis of kerosene-fueled scramjet. AIAA 2001-1817, 2001.
    [224] 刘国球.液体火箭发动机原理.北京:宇航出版社,1993.6.
    [225] 阿列玛缩夫 B E 等著,张中钦,庄逢辰等译.火箭发动机原理.北京:宇航出版社,1993年4月.
    [226] John J. Bertin. Hypsersonic Aerothermodynamics. American Institute of Aeronautics and Astronautics Inc, Washington, D. C. 1994.
    [227] 庄逢辰.液体火箭发动机喷雾燃烧的理论、模型及应用.长沙:国防科技大学出版社,1995年7月.
    [228] A. Haider and O. Levenspiel. Drag coefficient and terminal velocity of spherical and nonspherieal particles. Powder Technology, 58: 63-70, 1989.
    [229] W. E. Ranz and W. R. Marshall, Jr. Evaporation from Drops, Part Ⅰ. Chem. Eng. Prog., 48(3): 141-146, March 1952.
    [230] W. E. Ranz and W. R. Marshall, Jr. Evaporation from Drops, Part Ⅱ. Chem. Eng. Prog., 48(4): 173-180, April 1952.
    [231] Fluent Release: 6.0.12 Database. Fluent Inc, 1998.
    [232] 赵坚行.燃烧的数值模拟.北京:科学出版社,2002.
    [233] K. K. Y. Kuo. Principles of Combustion. John Wiley and Sons, New York, 1986.
    [234] Mary Kae Lockwood, Dennis H. Petley, John G. Martin, James L. Hunt. Airbreathing hypersonic vehicle design and analysis methods and interactions. Progress in Aerospace Sciences 35(1999) 1~32.
    [235] Peter D. Mcquade, Scott Eberhardt and Eli Livne. CFD-Based aerodynamic approximation concepts optimization of a two-dimensional scramjet vehicle. Journal of Aircraft, Vol.32No.2: 262~269, March-April 1995.
    [236] Walter C. Engelund, Scott D. Holland, Charles E. Cockrell, et al. Propulsion system airframe integration issues and aerodynamics datebase development for the hyper-x flight research vehicle. ISOABE 99-7215.
    [237] 朱也夫,马卡伦著,刘兴洲 等译.冲压和火箭冲压发动机原理.
    [238] 王小平,曹立朋.遗传算法—理论、应用与软件实现.西安:西安交通大学出版社,2002.
    [239] 邢文训,谢金星.现代优化计算方法.北京:清华大学出版社,1999.
    [240] 玄光男[日],程润伟.遗传算法与工程设计.北京:科学出版社,2000.
    [241] 潘正君,康立山,陈毓屏.演化算法.北京:清华大学出版社,1998.
    [242] 张文修,梁怡.遗传算法的数学基础.西安:西安交通大学出版社.2000.
    [243] 超燃冲压发动机研究发展综述.中国国防科学技术报告,GF68324.
    [244] Adela Ben-Yakar, Ronald K. Hanson. Cavity Flame-Holders for Ignition and Flame Stabilization in Scramjets: An Overview. Journal of Propulsion and Power. 2001, Vol.17, No.4.
    [245] 刘欧子,胡欲立,蔡元虎等.超声速燃烧凹槽火焰稳定的研究动态.推进技术,2003,24(3):265~271.
    [246] 司徒明.碳氢燃料超燃研究与应用.流体力学实验与测量,2000,14(1).
    [247] Billig F S. Research on supersonic combustion. AIAA-92-0001, 1992.
    [248] 美国国家海洋和大气局、国家航宇局和空军部.任现淼,钱志民译.标准大气.1976.
    [249] 徐华舫.空气动力学基础.北京:北京航空学院出版社.1987.
    [250] E. E. Zukoski and F. W. Spaid. Secondary injection of gases into a supersonic flow. AIAA Journal, Vol. 2, No. 10, pp. 1689, 1964.
    [251] M. R. Gruber, A. S. Nejad, and L. P. Goss. Surface pressure measurements in supersonic transverse injection flow fields. AIAA 97-3254, 1997.
    [252] F. W. Spaid, and E. E. Zukoski. Further experiments concerning secondary injection of gases into a supersonic flow. AIAA Journal, Vol. 4, No. 12, December 1966, pp. 2216-2218.
    [253] K. C. Wang, O. I. Smith, and A. R. Karagozian. In-flight imaging of transverse gas jets injected into compressible crossflows. AIAA Journal, Vol. 33, No. 12, December 1995, pp. 2259-2263.
    [254] T. Arai, H. Fukuzoe, J. Miura, H. Nagata, and H. Hosokawa. Experimental investigation of inclined hydrogen injection into a supersonic flow. 9th space planes and hypersonic systems and technologies conference. AIAA paper 99-4915, 1999.
    [255] M. R. Gruber, A. S. Nejad, T. H. Chen, and J. C. Dutton. Mixing and penetration studies of sonic jets in a roach 2 freestream. Journal of Propulsion and Power, Vol. 11, No. 2, 1995, pp. 315-323.
    [256] R. C. Orth and J. A. Funk. An experimental and comparative study of jet penetration in supersonic flow. Journal of Spacecraft, Vol. 4, No. 9, pp. 1236, 1967.
    [257] J. A. Schetz and F. S. Billig. Penetration of gasesous jets injected into a supersonic stream. J. Spacecraft Rockets, 3, pp. 1658, 1966.
    [258] Gruenig C, Avrashkov V, Mayinger F. Self-ignition and supersonic reaction of pylon-injected hydrogen fuel. Journal of Propulsion and Power, 2000, 16(1): 35~40.
    [259] F. S. Billig, R. C. Orth, and M. Lasky. A Unified Analysis of Gaseous Jet Penetration. AIAA Journal, Vol. 9, No. 6, pp. 1048, 1971.
    [260] 曾丹芩,奥越,朱克雄,李清荣.工程热力学.北京:高等教育出版社.1982、5.
    [261] 潘宇.超燃燃烧室及其关键技术.航空航天部航空科学技术情报研究所技术报告,1991.
    [262] 赖林.带空腔超燃发动机燃烧室喷雾流场特性研究:[硕士学位论文].国防科学技术大学研究生院,2003.11.
    [263] 忻孝康等.计算流体动力学.长沙:国防科技大学出版社,1989年8月.
    [264] R. A. Baurle, D. R. Eklund. Analysis of Dual-Mode Hydrocarbon Scramjet Operation at Mach 4-6.5. AIAA 2001-3299, 2001.
    [265] C. G. Rodriguez, D. W. Riggins, R. D. Bittner. Numerical Simulation of Dual-mode Scramjet Combustors. N20000034102/XAB.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700